How Do Neurons Convey Information?

Total Page:16

File Type:pdf, Size:1020Kb

Load more

p CHAPTER 4 How Do Neurons Convey Information? Electricity and Neurons How Neurons Integrate What Is Electricity? Information Early Clues to Electrical Activity in the Nervous Excitatory and Inhibitory Postsynaptic Potentials System Focus on Disorders: Myasthenia Gravis Modern Tools for Measuring a Neuron’s Summation of Inputs Electrical Activity The Axon Hillock How the Movement of Ions Creates Electrical Charges Into the Nervous System and Back Out The Electrical Activity How Sensory Stimuli Produce Action Potentials of a Membrane How Nerve Impulses Produce Movement The Resting Potential Focus on Disorders: Lou Gehrig’s Disease Graded Potentials The Action Potential Using Electrical Activity The Nerve Impulse to Study Brain Function Saltatory Conduction and Myelin Sheaths Single-Cell Recordings EEG Recordings Focus on Disorders: Epilepsy Event-Related Potentials Mason Morfit / FPG International / PictureQuest Micrograph: Dr. David Scott/Phototake 112 I p igure 4-1 is perhaps the most reproduced drawing body (not shown here) causes the head to turn toward the in behavioral neuroscience. Taken from René painful stimulus and the hands to rub the injured toe. F Descartes’s book titled Treatise on Man, it illus- Descartes’s theory was inaccurate, as discussed in trates the first serious attempt to explain how information Chapter 1. Even at the time that his book appeared, this travels through the nervous system. Descartes proposed theory did not receive much support. It was clear from the that the carrier of information is cerebrospinal fluid flow- examination of nerves that they were not tubes, and the ing through nerve tubes. When the fire in Figure 4-1 burns idea that muscles fill with fluid as they contract proved to the man’s toe, it stretches the skin, which tugs on a nerve be equally wrong. If an arm muscle is contracted when tube leading to the brain. In response to the tug, a valve in the arm is held in a tub of water, the water level in the tub a ventricle of the brain opens and cerebrospinal fluid does not rise, as it should if the mass of the muscle were flows down the tube and fills the leg muscles, causing increasing owing to an influx of fluid. them to contract and pull the toe back from the fire. The Still, Descartes’s theory was remarkable for its time flow of fluid through other tubes to other muscles of the because it considered the three basic processes that un- derlie a behavioral response: 1. Detecting a sensory stimulus and sending a message to the brain 2. Deciding, by using the brain, what response should be made 3. Sending a response from the brain to command mus- cles to move Descartes was trying to explain the very same things that we want to explain today. If it is not stretched skin tug- ging on a nerve tube that initiates the message, the mes- sage must still be initiated in some other way. If it is not the opening of valves to initiate the flow of cerebrospinal fluid to convey the information, the flow of information must Figure 4-1 still be sent by some other means. If it is not the filling of In Descartes’s concept of how the nervous system conveys muscles with fluid that produces movements, some other information, heat from a flame causes skin on the foot to stretch, mechanism must still cause muscles to contract. What all and this stretching pulls a nerve tube going to the brain. The pull opens a valve in the brain’s ventricle. The fluid in the ventricle these other mechanisms are is the subject of this chapter. flows through the nerve tube to fill the muscles of the leg, causing We will examine how information gets from the environ- the foot to withdraw. Tubes to other muscles (not shown) cause ment to neurons, how neurons conduct the information the eyes and head to turn to look at the burn and cause the hand and body to bend to protect the foot. throughout the nervous system, and how neurons ulti- From Descartes, 1664. mately activate muscles to produce movement. I 113 p 114 I CHAPTER 4 ELECTRICITY AND NEURONS The first hints about how the nervous system conveys its messages came in the second half of the eighteenth century with the discovery of electricity. By following the clue that electricity was in some way implicated in neural messages, scientists eventually provided an accurate answer to the three questions to be examined in this chapter. What Is Electricity? Link to an introductory review Electricity is a flow of electrons from a body that contains a higher charge (more of electricity at the Web site at electrons) to a body that contains a lower charge (fewer electrons). The body with the www.worthpublishers.com/kolb/ higher electrical charge is called the negative pole, because electrons are negatively chapter4. charged and this body has more of them. The body with the lower electrical charge is called the positive pole. Electricity is measured in volts, which describe the difference Negative pole: in electrical potential between the two poles. The term potential is used here because more electrons the electrons on the negative pole have the potential to flow to the positive pole. The Positive pole: fewer electrons negatively charged electrons are attracted to the positive pole because opposite Current: charges are attracted to each other. A flow of electrons is called a current. If you look flow of electrons from at a battery, you will see that one of its poles is marked “Ϫ” for negative and the other negative to positive pole Electrical potential: “ϩ” for positive. These two poles are separated by an insulator, a substance through difference in electrical charge which electrons cannot flow. Therefore, a current of electrons flows from the negative (measured in volts) between Ϫ ϩ negative and positive poles ( ) to the positive ( ) pole only if the two poles are connected by a conducting medium, such as a wire. If a wire from each pole is brought into contact with tissue, the current will flow from the wire connected to the negative pole into the tissue and then from the tissue into the wire connected to the positive pole. Such wires are called electrodes. Electrons can accumulate on many substances, including ourselves, which is why you sometimes get a shock from touching a metal object after walking on a carpet. From the carpet, you accumulate relatively loose electrons, which give you a greater negative charge than that of objects around you. In short, you become a negative pole. Electrons normally leave your body as you walk around, because the earth acts as a positive pole. If you are wearing rubber-soled shoes, however, you retain an electrical potential because the soles of the shoes act as an insulator. If you then touch a metal object, such as a water fountain, electrons that are equally distributed on your body suddenly rush through the contact area of your fingertips. In fact, if you watch your fingertips just before they touch the water fountain, you will see a small lightning bolt as the electrons are transferred. These electrons leaving your fingertips give you the shock. Combing your hair is another way to accumulate electrons. If you then hold a piece of paper near the comb, the paper will bend in the comb’s direction. The nega- tive charges on the comb have pushed the negative charges on the front side of the pa- per to the back side of the paper, leaving the front side of the paper positively charged. Because unlike charges attract, the paper bends toward the comb. Early Clues to Electrical Activity in the Nervous System In 1731, Stephen Gray performed a similar experiment. He rubbed a rod with a piece of cloth to accumulate electrons on the rod. Then he touched the charged rod to the feet of a boy suspended on a rope and brought a metal foil to the boy’s nose. The foil bent on approaching the boy’s nose, being attracted to it, and, as the foil and nose p HOW DO NEURONS CONVEY INFORMATION? I 115 touched, electricity passed from the rod, through the boy, to the foil. Yet the boy was Electrical stimulation. The flow of elec- completely unaware that the electricity had passed through his body. Gray speculated trical current from the tip of an electrode that electricity might be the messenger in the nervous system. Although this conclu- through brain tissue that results in changes sion was not precisely correct, two other lines of evidence suggested that electrical ac- in the electrical activity of the tissue. tivity was somehow implicated in the nervous system’s flow of information. One of these lines of evidence consisted of the results of electrical-stimulation studies, the other of the results of electrical-recording studies. ELECTRICAL-STIMULATION STUDIES Visit the CD and find the area on Electrical-stimulation studies began in the eighteenth century when an Italian scien- electrical stimulation in the module on tist, Luigi Galvani, observed that frogs’ legs hanging on a wire in a market twitched Research Methods. You’ll see a model of during a lightning storm. He surmised that sparks of electricity from the storm were an electrical stimulator and a video clip activating the muscles. Investigating this possibility, he found that, if an electrical cur- of the self-stimulation of a rat. rent is applied to a dissected nerve, the muscle to which the nerve is connected con- tracts. Galvani concluded that the electricity flowed along the nerve to the muscle. He was wrong in this conclusion, but his experiment was pointing scientists in the right Figure 4-2 direction.
Recommended publications
  • Polyribosomes Associated with Synaptic Specializations on Axon Initial Segments: Localization of Protein-Synthetic Machinery at Inhibitory Synapses

    Polyribosomes Associated with Synaptic Specializations on Axon Initial Segments: Localization of Protein-Synthetic Machinery at Inhibitory Synapses

    The Journal of Neuroscience October 1986, 6(10): 3079-3085 Polyribosomes Associated with Synaptic Specializations on Axon Initial Segments: Localization of Protein-Synthetic Machinery at Inhibitory Synapses Oswald Steward* and Charles E. Ribak-f *Departments of Neurosurgery and Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, and TDepartment of Anatomy and Neurobiology, University of California at Irvine, Irvine, California 92717 Previous studies have revealed a selective association between report that showed some axonal ribosomes grouped at points polyribosomes and axospinous synapses in a variety of brain of branching and beneath synaptic contacts (Jones and Powell, regions. The present study evaluates whether polyribosomes are 1969). Therefore, they were usually considered, only in passing, also associated with the symmetrical and presumably inhibitory as exceptions to the rule. Thus, it has come to be accepted as a synaptic connections found on the initial segment of axons of central tenet that essentially all of the protein constituents of some neurons in the CNS. The initial segments of pyramidal the neuron, including those required for synaptic specializations, neurons in the sensorimotor cortex of the monkey and of granule were synthesized in the cell body, and somehow selectively cells in the hippocampus of the rat were examined. The initial transported to the sites at which they would be assembled (for segments of these cell types are contacted by GABAergic ter- a review, see Grafstein and Forman, 1980). minals that form symmetrical synaptic connections. In the pres- Over the past few years, a series of observations has given ent study, these initial segments were found to contain polyri- rise to an hypothesis that challenges the prevailing view that bosomes that tended to be selectively localized beneath the virtually all neuronal proteins are produced in the cell body and synaptic specializations.
  • 11 Introduction to the Nervous System and Nervous Tissue

    11 Introduction to the Nervous System and Nervous Tissue

    11 Introduction to the Nervous System and Nervous Tissue ou can’t turn on the television or radio, much less go online, without seeing some- 11.1 Overview of the Nervous thing to remind you of the nervous system. From advertisements for medications System 381 Yto treat depression and other psychiatric conditions to stories about celebrities and 11.2 Nervous Tissue 384 their battles with illegal drugs, information about the nervous system is everywhere in 11.3 Electrophysiology our popular culture. And there is good reason for this—the nervous system controls our of Neurons 393 perception and experience of the world. In addition, it directs voluntary movement, and 11.4 Neuronal Synapses 406 is the seat of our consciousness, personality, and learning and memory. Along with the 11.5 Neurotransmitters 413 endocrine system, the nervous system regulates many aspects of homeostasis, including 11.6 Functional Groups respiratory rate, blood pressure, body temperature, the sleep/wake cycle, and blood pH. of Neurons 417 In this chapter we introduce the multitasking nervous system and its basic functions and divisions. We then examine the structure and physiology of the main tissue of the nervous system: nervous tissue. As you read, notice that many of the same principles you discovered in the muscle tissue chapter (see Chapter 10) apply here as well. MODULE 11.1 Overview of the Nervous System Learning Outcomes 1. Describe the major functions of the nervous system. 2. Describe the structures and basic functions of each organ of the central and peripheral nervous systems. 3. Explain the major differences between the two functional divisions of the peripheral nervous system.
  • Nervous System

    Nervous System

    Nervous System Nervous Tissue l Master integrating and control system of body l Composed of 2 main parts l Central nervous system consisting of brain and spinal cord l Peripheral nervous system consisting of nerves, ganglia and receptors Basic terminology l Neuron is term for “nerve cell” l Supporting cells are called glial cells: they protect the delicate neurons (see pg 254 ) – Central Nervous System (CNS) l Astrocytes, oligodendrocytes, microglia and ependymal cells – Peripheral Nervous System (PNS) l Schwann cells and satellite cells Neuroglia of CNS l Astrocytes: blood brain barrier, maintain chemical environment, metabolize neurotransmitters, regulate K+ levels, provide structural support l Oligodendrocytes: myelin sheath l Microglia: phagocytic cells l Ependymal cells – form and circulate CSF Neuroglia of PNS l Schwann cells – produce myelin sheath in CNS l Satellite cells – structural support for neuron cell bodies in PNS, regulate exchange material between cell bodies and interstitial fluid. Neuron Anatomy 1. Cell body has nucleus – Usually found in the CNS in clusters called nuclei – Sometimes found outside CNS in areas called ganglia – has neurofibrils (bundles of intermediate filaments;part of cytoskeleton) – Nissl bodies (clusters of endoplasmic reticulum) – Lipofuschin yellowish brown cytoplasmic granules, a product of lysosomes Cont… 2. Dendrites are multiple short, branching neuronal processes that RECEIVE electrical signals 3. Axons is a long, usually single neuron process that GENERATE electrical signals 4. Axon hillock is where the axon begins on the neuron cell body 5. Initial segment is first part of axon 6. Trigger zone at junction of axon hillock and initial segment, impulses arise here 7. Axoplasm – cytoplasm of axon 8.
  • The Neuronal Endomembrane System III

    The Neuronal Endomembrane System III

    0270.6474/85/0512-3135$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 5, No. 12. pp. 3135-3144 Pnnted in U.S.A. December 1985 The Neuronal Endomembrane System III. The Origins of Axoplasmic Reticulum Discrete Axonal Cisternae the Axon Hillock’ JAMES D. LINDSEY2 AND MARK H. ELLISMAN Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, California 92093 Abstract The axoplasmic reticulum (AR) and the discrete element vesicles were usually found in close association with the (e.g., vesicles, vesiculotubular bodies, multivesicular bodies, trans face of the Golgi apparatus. These results indirectly etc.) constitute the endomembrane system of the axon. It is support the hypothesis that vectors of fast axonal transport, reported here that the AR of bullfrog sciatic nerve readily fills namely the discrete elements, form directly at the trans face with osmium deposits during osmium impregnation. In con- of the Golgi apparatus. From here they move toward and trast, the discrete elements and mitochondria are highly subsequently down the axon without any membrane fission- resistant to impregnation. Hence this preparation is well fusion events with either RER or AR. AR, although it forms suited to address the nature of possible interactions between continuities with RER, retains a distinctly different chemical AR and rough endoplasmic reticulum (RER) in the axon composition from RER as evidenced by its much higher hillock. It is also ideal to study the origin of the axonal discrete affinity for osmium. Thus, it should be considered as an elements within the cell body as well as their interaction with endomembrane component separate from, although inti- other somal endomembrane system components.
  • Oligodendrocyte and Myelin

    Oligodendrocyte and Myelin

    neuroglia Article Ultrastructural Remodeling of the Neurovascular Unit in the Female Diabetic db/db Model—Part III: Oligodendrocyte and Myelin Melvin R. Hayden 1,2,*, Deana G. Grant 3, Aranyra Aroor 1,2,4 and Vincent G. DeMarco 1,2,4,5 1 Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA; [email protected] (A.A.); [email protected] (V.G.D.) 2 Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO 63212, USA 3 Electron Microscopy Core Facility, University of Missouri, Columbia, MO 65211, USA; [email protected] 4 Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65212, USA 5 Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA * Correspondence: [email protected]; Tel.: +1-573-346-3019 Received: 9 October 2018; Accepted: 5 November 2018; Published: 8 November 2018 Abstract: Obesity, insulin resistance, and type 2 diabetes mellitus are associated with diabetic cognopathy. In this study, we tested the hypothesis that neurovascular unit(s) (NVU), oligodendrocytes, and myelin within cerebral cortical grey matter and deeper transitional zone regions between the cortical grey matter and white matter may be abnormal. The monogenic (Leprdb) female diabetic db/db [BKS.CgDock7m +/+ Leprdb/J] (DBC) mouse model was utilized for this ultrastructural study. Upon sacrifice (20 weeks of age), left-brain hemispheres of the DBC and age-matched non-diabetic wild type control C57BL/KsJ (CKC) mice were immediately immersion-fixed. We found prominent remodeling of oligodendrocytes with increased nuclear chromatin condensation and volume and increased numbers of active myelination sites of the cytoplasm in transition zones.
  • The Cells That Make Us Who We Are How Neurons Communicate With

    The Cells That Make Us Who We Are How Neurons Communicate With

    Communication within the Nervous System The Cells that make us who we are How neurons communicate with one another Garrett: Brain & Behavior 4e 1 The Cells That Make Us Who We Are • How many are there? • Neurons: 100 billion • Make up 10% of brain volume • Glia: Many more! • Make up 90% of brain volume • Neurons: Jobs include • convey sensory information to the brain; • carry out operations involved in thought and feeling; • Send commands out to the body. • Dendrites • Cell body or soma Garrett: Brain & Behavior 4e • Axons insulated with myelin (secreted by glia), with end terminals that release neurotransmitters from vesicles into the synapse 2 The Cells That Make Us Who We Are Figure 2.3: Components of a Neuron Garrett: Brain & Behavior 4e 3 The Cells That Make Us Who We Are Figure 2.4 a,b : The Three Shapes of Neurons • Unipolar neurons (a) • Bipolar neurons (b) • Multipolar neurons • Figure 2 .3, previous slide Garrett: Brain & Behavior 4e 4 The Cells That Make Us Who We Are Table 2.1: The Three Types of Neurons Figure 2.4c: The Three Shapes of Neurons Type Shape Description Motor neuron Multipolar Output to muscles/organs Sensory neuron Unipolar or Bipolar Input from receptors Interneuron Multipolar Most within the CNS. Most common. Garrett: Brain & Behavior 4e 5 The Cells That Make Us Who We Are Figure 2.5: Composition of the Cell Membrane • Lipids • Heads attracted to water in and outside the cell, tails repelled by water • Creates a double-layer membrane • Proteins • Hold the cells together • Controls the environment in and around the cell Garrett: Brain & Behavior 4e 6 The Neural Membrane • The neuron has a selectively-permeable membrane.
  • Neurophysiology and Information

    Neurophysiology and Information

    Neurophysiology and Information Christopher Fiorillo BiS 527, Spring 2010 042 350 4326, [email protected] Part 4: Synaptic Transmission Reading: Bear, Connors, and Paradiso Chapter 5 Or any other neuroscience textbook. A Single Neuron with Synapses in Yellow Synapses Are Physical Contacts between Neurons that Enable Fast Transmission of Information • Types of Synaptic Contacts – Axodendritic: Axon to dendrite – Axosomatic: Axon to cell body – Axoaxonic: Axon to axon – Dendrodendritic: Dendrite to dendrite Two Types of Synaptic Transmission • Chemical Transmission – 1921- Otto Loewi • Electrical Transmission – 1959- Furshpan and Potter • There was a long-lasting debate about whether transmission was chemical or electrical. Both occur, but chemical transmission is much more common. Direction of Information Flow • Information usually flows in one direction – First neuron = Presynaptic neuron – Target cell = Postsynaptic neuron Postsynaptic neuron Presynaptic neuron Electrical Synapses Are Composed of Gap Junctions • Gap junction are large channels – Large enough (1-2 nm) to allow all ions plus other small molecules to pass – A Connexon spans the membrane - formed by six connexin proteins • Cells are said to be “electrically coupled” – Flow of ions from cytoplasm to cytoplasm Electrical Synapses • Very fast transmission – Chemical transmission has a delay • Postsynaptic potentials (PSPs) have the same form as the presynaptic potential, but are smaller • Most electrical synapses are bidirectional, but some are unidirectional A Chemical Synapse
  • The Axon Hillock and the Initial Segment Have Been Difficult to Find in Sections Examined with the Electron Microscope

    The Axon Hillock and the Initial Segment Have Been Difficult to Find in Sections Examined with the Electron Microscope

    THE AXON HILLOCK AND THE INITIAL SEGMENT SANFORD L. PALAY, CONSTANTINO SOTELO, ALAN PETERS, and PAULA M. ORKAND Front the Department of Anatomy, Harvard Medical School, Boston, Massachusetts 02115 and the Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts 02118 ABSTRACT Axon hillocks and initial segments have been recognized and studied in electron micrographs of a wide variety of neurons. In all multipolar neurons the fine structure of the initial seg- ment has the same pattern, whether or not the axon is ensheathed in myelin. The internal structure of the initial segment is characterized by three special features: (a) a dense layer of finely granular material undercoating the plasma membrane, (b) scattered clusters of ribo- somes, and (c) fascicles of microtubules. A similar undercoating occurs beneath the plasma membrane of myelinated axons at nodes of Ranvier. The ribosomes are not organized into Nissl bodies and are too sparsely distributed to produce basophilia. They vanish at the end of the initial segment. Fascicles of microtubules occur only in the axon hillock and initial segment and nowhere else in the neuron. Therefore, they are the principal identifying mark. Some speculations are presented on the relation between these special structural features and the special function of the initial segment. For more than 10 yr, since the introduction of even in preparations where continuity with the techniques for intracellular recording of electrical myelinated part of the axon is not evident. During potentials in nerve cells, neurophysiologists have the past several years, in electron micrographic referred to a specialized region at the beginning studies of different types of neurons, we have of the axon as the site where the action potential encountered numerous axon hillocks and initial originates.
  • Laboratory Activities Biomedik I

    Laboratory Activities Biomedik I

    Laboratory Activities Biomedik I Nerve Tissue First Year of Medical Faculty Unisba 1 2019 Laboratory Activities Histology: Nerve Tissue Writer : Wida Purbaningsih, dr., MKes Editor : Wida Purbaningsih, dr., MKes Date : October, 2019 A Sequence I. Introduction : 30 min II. Pre Test : 5 min III. Activity Lab : 120 min - Discussion : 30 min - Identify : 90 min B Topic 1. General microstructure of nerve tissue 2. General microstructure of the neuron and neuroglia 3. Microstructure of the Ganglion 4. Microstructure of the Meningens C Venue Biomedical Laboratory Faculty of Medicine, Bandung Islamic Universtity D Equipment 1. Light microscopy 2. Stained tissue section: 3. Colouring pencils Slide 1. Motor Neuron Neuron 2. Cerebrum neuroglia 3. Cerebellum Meningen 4. Medulla spinalis Ganglia: 5. Ganglion otonom Sensoric ganglia 6. Ganglion Sensorik Autonomic ganglia E Pre-requisite - Before following the laboratory activity, the students must prepare : 1. Mention the types of cells that exist in nerve tissue ! 2. Draw the schematic picture of neuron cell and give explanation 3. Mention six type of neuroglia and describe their functional (astrocyte, microglia, oligodendrosit, sel schwan, epenymal cell, and satellite cells), then draw the schematic neuroglia and give explanation 4. Draw the schematic picture of sensoric ganglion microsructure and give explanation 5. Draw the schematic picture of otonom ganglion microsructure and give explanation 2 6. Draw the schematic picture of meningens microstructure and give explanation about tissue type - Content lab in manual book ( pre and post test will be taken from the manual, if scorring pre test less than 50, can not allowed thelab activity) - Bring your text book, reference book e.q atlas of Histology, e-book etc.
  • Parts of the Nerve Cell and Their Functions 1. Cell Body

    Parts of the Nerve Cell and Their Functions 1. Cell Body

    Parts of the nerve cell and their function 06/11/02 15:09 Parts of the Nerve Cell and Their Functions Silvia Helena Cardoso, PhD [1. Cell body] [2.Neuronal membrane] [3.Dendrites] [4. Axon] [5. Nerve ending] 1. Cell body The cell body (soma) is the factory of the neuron. It produces all the proteins for the dendrites, axons and synaptic terminals and contains specialized organelles such as the mitochondria, Golgi apparatus, endoplasmic reticulum, secretory granules, ribosomes and polysomes to provide energy and make the parts, as well as a production line to assemble the parts into completed products. Cytosol - Is the watery and salty fluid with a potassium-rich solution inside the cell containing enzymes responsible for the metabolism of the cell. 1. Nucleus - Derived from the Latin word for "nux", nut, the nucleus is the archivist and the architect of the cell. As archivist it contains the genes, consisting of DNA which contains the cell history, the basic information to manufacture all the proteins characteristic of that cell. As architect, it synthesizes RNA from DNA and ships it through its pores to the cytoplasm for use in protein synthesis. The.Nucleolus is an organelle within the nucleus which is involved actively in ribosome synthesis and in the transfer of RNA to the cytosol. http://www.epub.org.br/cm/n07/fundamentos/neuron/parts_i.htm Page 1 sur 5 Parts of the nerve cell and their function 06/11/02 15:09 2. Golgi Apparatus - membrane-bound structure that plays a role in packaging peptides and proteins (including neurotransmitters) into vesicles.
  • Chapter 12 Lecture Outline

    Chapter 12 Lecture Outline

    Chapter 12 Lecture Outline See separate PowerPoint slides for all figures and tables pre- inserted into PowerPoint without notes. Copyright © McGraw-Hill Education. Permission required for reproduction or display. 1 12.1a General Functions of the Nervous System • Nervous system: communication and control system – Collects information o Receptors detect stimuli and send sensory signals to spinal cord and brain – Processes and evaluates information o Brain and spinal cord determine response to sensory input – Initiates response to information o Brain and spinal send motor output via nerves to effectors (muscles or glands) 2 12.1b Organization of the Nervous System How is the nervous system organized structurally? CNS = brain + spinal cord PNS = nerves (fiber bundles) + ganglia (clusters of cell bodies along nerves) Figure 12.1a 3 12.1b Organization of the Nervous System • Functional organization: sensory versus motor – Sensory nervous system = afferent nervous system o Receives sensory information from receptors and transmits it to CNS o Somatic sensory system detects stimuli we consciously perceive o Visceral sensory system detects stimuli we typically do not perceive – E.g., signals from the heart or kidneys – Motor nervous system = efferent nervous system o Initiates motor output and transmits it from CNS to effectors o Somatic motor system sends voluntary signals to skeletal muscles o Autonomic motor system (visceral motor) sends involuntary commands to heart, smooth muscle, and glands – Has sympathetic and parasympathetic divisions
  • Neurons (And Glial Cells)

    Neurons (And Glial Cells)

    Neurons (and glial cells) Pietro De Camilli October 11, 2012 Human Brain Golgi Stain Camillo Golgi Cajal Genetically encoded dyes Martin Chalfie Aequorea victoria green fluorescent protein Jeff Lichtman Roger Tsien Genetically encoded dyes Brainbows Jeff Lichtman Neurons have a variety of shapes Neuron as polarized cells dendrites axon (typically only one) Stages of axonal development (in vitro) axon Dotti and Banker Axon and dendrites have different properties perikaryon soma cell body DENDRITES AXON (INPUT) (OUTPUT) Nerve cell grown in vitro Red: axonal marker Green: dendritic marker Both dendrites and axons can be extremely branched axons are typically longer (can be much longer) axon and dendrites of a single neuron Inhibitory interneuron (dendrites blue, axon red) shown adjacent to a schematic of a hippocampal pyramidal neuron http://www.clp.northwestern.edu/news/rewrite-textbooks-findings-challenge-conventional-wisdom-how-neurons-operate Neurons are organized in neuronal circuits Schematic diagram of the neuronal circuit mediating tail and siphon withdrawal reflex in Aplysia (an invertebrate organism) Demian Barbas, Luc DesGroseillers, Vincent F. Castellucci, et al. Learn. Mem. 10: 373, 2003 Key compartments of the neuron: cell body (soma, perikaryon) dendrites axons NeuronalMotor Neurons perikarya Ventral Horn blood capillary Most Dendrite organelles of the cell body extend into the main dendritic branches Cell body or Nissl substance = RER perikaryon Axon hillock NeuronalMotor Neurons perikarya Ventral Horn blood capillary Entry of