NERVE TISSUE Neuron – Nerve Cell

Total Page:16

File Type:pdf, Size:1020Kb

NERVE TISSUE Neuron – Nerve Cell Department of Histology and Embryology, P. J. Šafárik University, Medical Faculty, Košice NERVE TISSUE: Sylabus for foreign students Author: doc. MVDr. Iveta Domoráková, PhD. Revised by: prof. MUDr. Eva Mechírová, CSc. NERVE TISSUE FUNCTION: Reception, transmission, processing of nerve stimuli. Coordination of all functional activities in the body: - motor function (body movement) - sensory (rapid response to external stimuli) - visceral, endocrine and exocrine glands - mental functions, memory, emotion A) Anatomically nervous system consists of: 1. CNS (central nervous system) – brain, spinal cord 2. PNS (peripheral nervous system) – peripheral nerves and ganglia B) Functionally nervous system is divided into the: 1. Somatic nervous system (sensory and motor innervation) 2. Autonomic nervous system (involuntary innervation of smooth muscles, glands) C) Microscopic structure of the nerve tissue - two types of cells: 1. Nerve cells – neurons 2. Glial cells (supporting, electrical insulation, metabolic function) Neuron – nerve cell - is the structural and functional unit of the nerve tissue - receives stimuli from other cells - conducts electrical impulses to another cells by their processes - chainlike communication - ten bilion of neurons in humans A. Neurons according the shape: Pyramidal (E) star-shaped (D) pear-shaped (G) oval (B) B. Types of neurons according number of the processes 1. multipolar (D,E,G)) 2. bipolar (A) 3. pseudounipolar (B) 4. unipolar C. Neurons - according the function Motor (efferent) neurons – convey impulses from CNS to effector cells Sensory (afferent) neurons - convey impulses from receptors into CNS Interneurons – integrated network between motor and sensory neurons Neurosecretory neurons – synthesize and release hormones (e.g. oxytocin – hypothalamus) PERIKARYON (SOMA), cell body trophic centre (troph-; nutrition) nucleus oval, euchromatic, prominent nucleolus perinuclear cytoplasm contains: Nissl substance – basophilic (rER); protein-producing cell (membrane, neurotransmitters, enzymes) Golgi apparatus mitochondria lysosomes transport vesicles lipofuscin (pigment of age), melanin (pigments) cytoskeleton – keep the shape of cell; transport LM: neurofibrils (argyrophilic, brown or black after silver impregnation) EM: neurofilaments (intermediate filaments) neurotubules (microtubules) Part of the perikaryon from which axon extends is called axon hillock. It is an area free of rER and GA. DENDRITES Are receptor processes that receive stimuli from other neurons or from the external environment. Dendrites give up from perikaryon, they branch (arborisation) and become thinner. Their cytoplasm is basophilic because of presence of Nissl bodies in their thick part. Cytoplasm of dendrites contains: rER (Nissl substance) mitochondria neurofilament and neurotubule no GA !! AXONS Are effector processes that transmit stimuli away from the cell body to another neurons or effector cells. Golgi type I neurons – have long axon (e.g. motor neurons in the spinal cord – 100cm) Golgi type II neurons – have short axon Cytoplasm (axoplasm) of axons contains: neurotubules, neurofilaments (transport of vesicles, metabolites) mitochondria smooth endoplasmic reticulum (synthesis, transport) vesicles Description of axon: o axolemma o axoplasm o axon hillock o initial segment - bare area of axon, not coverd by myeline sheath; Function: propagation of nerve impulses = action potential o myeline sheath (myelinated axons) o node of Ranvier o internodal segment o collaterals o terminal arborization o terminal buttons (endings); synaptic vesicles o synapses Substances required in the axon and dendrites are synthesized in the cell body and need transport to their destination. AXONAL TRANSPORT – with the help of microtubules, mitochondria (energy) direction: • anterograde – from perikaryon to the axon terminal • retrograde – carries material from axon to the perikaryon Neurons communicate with other neurons and effector cells by SYNAPSES Synapses are specialized junctions between neurons that facilitate transmission of impulses from one (presynaptic) neuron to another (postsynaptic) neuron. A. Synapse between neuron and effector organ: 1. skeletal muscle fiber = myoneuronal junction (motor end-plate) 2. gland cells B. Synapses between neurons TYPES OF SYNAPSES: 1. Axo-dendritic synapse 2. Axo-somatic synapse 3. Axo-axonal synapse According the mechanism of conduction of nerve impulse: Chemical synapse – synaptic vesicles; neurotransmitters Electrical synapse – gap junctions – ion transport – direct spread of electrical current (smooth muscles, cardiac muscles cells) Synaps is composed of 3 parts: 1. presynaptic membrane of synaptic boutton (axoplasm contains synaptic vesicles, mitochondria) 2. synaptic cleft 3. postsynaptic membrane (contains receptors for attachment of neurotransmitters) Synaptic transmission Process of myelination: A. myelinated nerve fiber in peripheral nerve a) axon has myeline sheath (concentric layers of myeline) b) on the surface is Schwann sheath (rest of the Schwann cell cytoplasm with nucleus) B. non-myelinated nerve fibers in the peripheral nerve - several axons (5-10) are invaginated to the superficial part of Schwann cell cytoplasm. C. Myelinated axons in the central nervous system (CNS) – myelin sheath is formed by processes of oligodendrocytes. One inetrnodal segment is formed by one process of oligodendrocyte. One oligodendrocyte can form more internodal segments by its processes. D. Non-myelinated axons in the CNS – axons are surrounded by neuropil (processes of other neurons and glial cells). Neuroglial cells in CNS Neuroglial cells in PNS LM: neuron surrounded by satellite cells EM: myelinated axon .
Recommended publications
  • Electrical Synapses Are Drivers of Neural Plasticity Through Passage of Small Molecules
    Electrical Synapses are Drivers of Neural Plasticity Through Passage of Small Molecules Lisa Voelker A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2019 Reading Committee: Jihong Bai, Chair Linda Buck Cecilia Moens Program Authorized to Offer Degree: Molecular and Cellular Biology ©Copyright 2019 Lisa Voelker 2 University of Washington Abstract Electrical Synapses are Drivers of Neural Plasticity through Passage of Small Molecules Lisa Voelker Chair of the Supervisory Committee: Jihong Bai Department of Biochemistry In order to respond to changing environments and fluctuations in internal states, animals adjust their behavior through diverse neuromodulatory mechanisms. In this study we show that electrical synapses between the ASH primary quinine-detecting sensory neurons and the neighboring ASK neurons are required for modulating the aversive response to the bitter tastant quinine in C. elegans. Mutant worms that lack the electrical synapse proteins INX-18 and INX-19 become hypersensitive to dilute quinine. Cell-specific rescue experiments indicate that inx-18 operates in ASK while inx-19 is required in both ASK and ASH for proper quinine sensitivity. Imaging analyses find that INX-19 in ASK and ASH localizes to the same regions in the nerve ring, suggesting that both sides of ASK-ASH electrical synapses contain INX-19. While inx-18 and inx-19 mutant animals have a similar behavioral phenotype, several lines of evidence suggest the proteins encoded by these genes play different roles in modulating the aversive quinine response. First, INX-18 and INX-19 localize 3 to different regions of the nerve ring, indicating that they are not present in the same synapses.
    [Show full text]
  • Nervous Tissue
    Nervous Tissue Prof.Prof. ZhouZhou LiLi Dept.Dept. ofof HistologyHistology andand EmbryologyEmbryology Organization:Organization: neuronsneurons (nerve(nerve cells)cells) neuroglialneuroglial cellscells Function:Function: Ⅰ Neurons 1.1. structurestructure ofof neuronneuron somasoma neuriteneurite a.a. dendritedendrite b.b. axonaxon 1.11.1 somasoma (1)(1) nucleusnucleus LocatedLocated inin thethe centercenter ofof soma,soma, largelarge andand palepale--stainingstaining nucleusnucleus ProminentProminent nucleolusnucleolus (2)(2) cytoplasmcytoplasm (perikaryon)(perikaryon) a.a. NisslNissl bodybody b.b. neurofibrilneurofibril NisslNissl’’ss bodiesbodies LM:LM: basophilicbasophilic massmass oror granulesgranules Nissl’s Body (TEM) EMEM:: RERRER,, freefree RbRb FunctionFunction:: producingproducing thethe proteinprotein ofof neuronneuron structurestructure andand enzymeenzyme producingproducing thethe neurotransmitterneurotransmitter NeurofibrilNeurofibril thethe structurestructure LM:LM: EM:EM: NeurofilamentNeurofilament micmicrotubulerotubule FunctionFunction cytoskeleton,cytoskeleton, toto participateparticipate inin substancesubstance transporttransport LipofuscinLipofuscin (3)(3) CellCell membranemembrane excitableexcitable membranemembrane ,, receivingreceiving stimutation,stimutation, fromingfroming andand conductingconducting nervenerve impulesimpules neurite: 1.2 Dendrite dendritic spine spine apparatus Function: 1.3 Axon axon hillock, axon terminal, axolemma Axoplasm: microfilament, microtubules, neurofilament, mitochondria,
    [Show full text]
  • Brain-Specific Expression of MAP2 Detected Using a Cloned Cdna Probe Sally A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Brain-specific Expression of MAP2 Detected Using a Cloned cDNA Probe Sally A. Lewis,* Alfredo Villasante,* Peter Sherline,* and Nicholas J. Cowan* *Department of Biochemistry, New York University Medical Center, New York, New York 10016; *Division of Endocrinology, Cornell University Medical College, New York, New York 10021 Abstract. We describe the isolation of a set of over- consistent with the coding capacity required by a lapping cDNAs encoding mouse microtubule associ- 250,000-D protein. ated protein 2 (MAP2), using an anti-MAP antiserum The MAP2-specific cloned cDNA probes were used to screen a mouse brain cDNA expression library in RNA blot transfer experiments to assay for the cloned in bacteriophage hgt 11. The authenticity of presence of MAP2 mRNA in a variety of mouse tis- these clones was established by the following criteria: sues. Though brain contained abundant quantities of (a) three non-identical clones each expressing a MAP2 mRNA, no corresponding sequences were de- MAP2 immunoreactive fusion protein were independ- tectable in RNA prepared from liver, kidney, spleen, ently isolated from the expression library; each of stomach, or thymus. We conclude that the expression these clones cross-hybridized at the nucleic acid level; of MAP2 is brain-specific. (b) anti-MAP antiserum was affinity purified using Use of the MAP2 specific cDNA probes in genomic nitrocellulose-bound fusion protein; these antibodies Southern blot transfer experiments showed the pres- detected only MAP2 in an immunoblot experiment of ence of a single gene encoding MAP2 in mouse.
    [Show full text]
  • Oligodendrocytes in Development, Myelin Generation and Beyond
    cells Review Oligodendrocytes in Development, Myelin Generation and Beyond Sarah Kuhn y, Laura Gritti y, Daniel Crooks and Yvonne Dombrowski * Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; [email protected] (S.K.); [email protected] (L.G.); [email protected] (D.C.) * Correspondence: [email protected]; Tel.: +0044-28-9097-6127 These authors contributed equally. y Received: 15 October 2019; Accepted: 7 November 2019; Published: 12 November 2019 Abstract: Oligodendrocytes are the myelinating cells of the central nervous system (CNS) that are generated from oligodendrocyte progenitor cells (OPC). OPC are distributed throughout the CNS and represent a pool of migratory and proliferative adult progenitor cells that can differentiate into oligodendrocytes. The central function of oligodendrocytes is to generate myelin, which is an extended membrane from the cell that wraps tightly around axons. Due to this energy consuming process and the associated high metabolic turnover oligodendrocytes are vulnerable to cytotoxic and excitotoxic factors. Oligodendrocyte pathology is therefore evident in a range of disorders including multiple sclerosis, schizophrenia and Alzheimer’s disease. Deceased oligodendrocytes can be replenished from the adult OPC pool and lost myelin can be regenerated during remyelination, which can prevent axonal degeneration and can restore function. Cell population studies have recently identified novel immunomodulatory functions of oligodendrocytes, the implications of which, e.g., for diseases with primary oligodendrocyte pathology, are not yet clear. Here, we review the journey of oligodendrocytes from the embryonic stage to their role in homeostasis and their fate in disease. We will also discuss the most common models used to study oligodendrocytes and describe newly discovered functions of oligodendrocytes.
    [Show full text]
  • Build a Neuron
    Build a Neuron Objectives: 1. To understand what a neuron is and what it does 2. To understand the anatomy of a neuron in relation to function This activity is great for ALL ages-even college students!! Materials: pipe cleaners (2 full size, 1 cut into 3 for each student) pony beads (6/student Introduction: Little kids: ask them where their brain is (I point to my head and torso areas till they ​ shake their head yes) Talk about legos being the building blocks for a tower and relate that to neurons being the building blocks for your brain and that neurons send messages to other parts of your brain and to and from all your body parts. Give examples: touch from body to brain, movement from brain to body. Neurons are the building blocks of the brain that send and receive messages. Neurons come in all different shapes. Experiment: 1. First build soma by twisting a pipe cleaner into a circle 2. Then put a 2nd pipe cleaner through the circle and bend it over and twist the two strands together to make it look like a lollipop (axon) 3. take 3 shorter pipe cleaners attach to cell body to make dendrites 4. add 6 beads on the axon making sure there is space between beads for the electricity to “jump” between them to send the signal super fast. (myelin sheath) 5. Twist the end of the axon to make it look like 2 feet for the axon terminal. 6. Make a brain by having all of the neurons “talk” to each other (have each student hold their neuron because they’ll just throw them on a table for you to do it.) messages come in through the dendrites and if its a strong enough electrical change, then the cell body sends the Build a Neuron message down it’s axon where a neurotransmitter is released.
    [Show full text]
  • Immunolocalization and Molecular Properties of a High Molecular Weight Microtubule-Bundling Protein (Syncolin) from Chicken Erythrocytes E Feick, R
    Immunolocalization and Molecular Properties of a High Molecular Weight Microtubule-bundling Protein (Syncolin) from Chicken Erythrocytes E Feick, R. Foisner, and G. Wiche Institute of Biochemistry, University of Vienna, 1090 Vienna, Austria Abstract. A protein of apparent molecular weight was displaced from the polymer by salt. Brain as well 280,000 (syncolin), which is immunoreactive with an- as erythrocyte microtubules, reconstituted with taxol tibodies to hog brain microtubule-associated protein from MAP-free tubulin and purified syncolin, were ag- (MAP) 2, was purified from chicken erythrocytes. Im- gregated into dense bundles containing up to 15 Downloaded from http://rupress.org/jcb/article-pdf/112/4/689/1060909/689.pdf by guest on 29 September 2021 munofluorescence microscopy of bone marrow cells microtubules, as determinedby'etectron microscopy. revealed the presence of syncolin in cells at all stages On the ultrastructural level, syncolin molecules were of erythrocyte differentiation. In early erythroblasts visualized as globular or ringlike structures, in con- syncolin was diffusely distributed throughout the trast to the thin, threadlike appearance of filamentous cytoplasm. At later stages it was found along microtu- MAPs, such as brain MAP 2. According to ultrastruc- bules of the marginal band, as confirmed by immuno- tural measurements and gel permeation chromatogra- electron microscopy. The association of syncolin with phy, syncolin's molecular weight was ,',,1 x 106. It is the marginal band was dependent on the integrity of suggested that syncolin's specific function is the cross- microtubules, as demonstrated by temperature- linking of microtubules in the marginal band and, by dependent de- and repolymerization or marginal band implication, the stabilization of this structure typical microtubules.
    [Show full text]
  • Polyribosomes Associated with Synaptic Specializations on Axon Initial Segments: Localization of Protein-Synthetic Machinery at Inhibitory Synapses
    The Journal of Neuroscience October 1986, 6(10): 3079-3085 Polyribosomes Associated with Synaptic Specializations on Axon Initial Segments: Localization of Protein-Synthetic Machinery at Inhibitory Synapses Oswald Steward* and Charles E. Ribak-f *Departments of Neurosurgery and Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, and TDepartment of Anatomy and Neurobiology, University of California at Irvine, Irvine, California 92717 Previous studies have revealed a selective association between report that showed some axonal ribosomes grouped at points polyribosomes and axospinous synapses in a variety of brain of branching and beneath synaptic contacts (Jones and Powell, regions. The present study evaluates whether polyribosomes are 1969). Therefore, they were usually considered, only in passing, also associated with the symmetrical and presumably inhibitory as exceptions to the rule. Thus, it has come to be accepted as a synaptic connections found on the initial segment of axons of central tenet that essentially all of the protein constituents of some neurons in the CNS. The initial segments of pyramidal the neuron, including those required for synaptic specializations, neurons in the sensorimotor cortex of the monkey and of granule were synthesized in the cell body, and somehow selectively cells in the hippocampus of the rat were examined. The initial transported to the sites at which they would be assembled (for segments of these cell types are contacted by GABAergic ter- a review, see Grafstein and Forman, 1980). minals that form symmetrical synaptic connections. In the pres- Over the past few years, a series of observations has given ent study, these initial segments were found to contain polyri- rise to an hypothesis that challenges the prevailing view that bosomes that tended to be selectively localized beneath the virtually all neuronal proteins are produced in the cell body and synaptic specializations.
    [Show full text]
  • And High-Molecular-Weight Forms of MAP2 in the Developing Cerebellum
    The Journal of Neuroscience, December 1999, 8(12): 4503-4512 The Sequential Appearance of Low- and High-Molecular-Weight Forms of MAP2 in the Developing Cerebellum R. P. Tucker,’ L. I. Binder,’ C. Viereck,’ B. A. Hemmings,’ and A. I. Matus’ ‘Friedrich Miescher Institute, CH-4002 Basel, Switzerland, and *Department of Cell Biology and Anatomy, School of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294 Mammalian microtubule-associated protein 2 (MAPS) exists shown that a number of MAPS promote the assemblyof tubulin in high-molecular-weight (M, -280,000) and low-molecular- into microtubulesand stabilize the resulting microtubulesagainst weight (M, -70,000) forms, with the latter protein being more the depolymerizing effects of cold and various pharmacological abundant in embryonic brain homogenates than in prepa- agents(Olmsted, 1986; Matus, 1988). The most abundant MAP rations from mature brain (Riederer and Matus, 1985). In the in the mammalian CNS, MAP2, displays each of these char- current study, we have shown that avian MAP2 also exists acteristics: (1) There are 2 closely related high-molecular-weight as both high- (M, -260,000) and low-molecular-weight (M, (HMW) forms of MAP2, MAP2a, and MAP2b, which change -65,000) forms whose relative abundance changes during in relative abundanceduring development (Binder et al., 1984; brain maturation, indicating a conserved function for these Burgoyne and Cummings, 1984);(2) MAP2 is found in dendrites proteins during vertebrate neuronal morphogenesis. Using and only rarely in axons (e.g., Cacereset al., 1984; DeCamilli indirect immunohistochemistry, we have determined the cel- et al., 1984; Huber and Matus, 1984b); and (3) MAP2 stabilizes lular distribution of the high- and low-molecular-weight forms and promotes the assembly of microtubules in vitro (Murphy of MAP2 in the developing avian cerebellum.
    [Show full text]
  • Microglia Control Glutamatergic Synapses in the Adult Mouse Hippocampus
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.01.429096; this version posted February 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Microglia control glutamatergic synapses in the adult mouse hippocampus Short title: Microglia and glutamatergic synapses Bernadette Basilico1†*‡, Laura Ferrucci1‡, Patrizia Ratano2‡, Maria T. Golia1, Alfonso Grimaldi3, Maria Rosito3, Valentina Ferretti4, Ingrid Reverte1,5, Maria C. Marrone6, Maria Giubettini3,7, Valeria De Turris3, Debora Salerno3, Stefano Garofalo1, Marie-Kim St-Pierre8, Micael Carrier8, Massimiliano Renzi1, Francesca Pagani3, Marcello Raspa9, Ferdinando Scavizzi9, Cornelius T. Gross10, Silvia Marinelli5, Marie E. Tremblay8,11, Daniele Caprioli1,5, Laura Maggi1, Cristina Limatola1,2, Silvia Di Angelantonio1,3§, Davide Ragozzino1,5*§ 1Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy. 2IRCCS Neuromed, Via Atinese 18, 86077, Pozzilli, IS, Italy. 3Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy. 4Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza University of Rome, Rome, Italy. 5Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy. 6European Brain Research Institute-Rita Levi Montalcini, Rome, Italy. 7CrestOptics S.p.A., Via di Torre Rossa 66, 00165 Rome, Italy. 8Centre de Recherche du CHU de Québec, Axe Neurosciences Québec, QC, Canada; Département de médecine moléculaire, Université Laval Québec, QC, Canada. 9National Research Council, Institute of Biochemistry and Cell Biology (CNR- IBBC/EMMA/Infrafrontier/IMPC), International Campus “A. Buzzati-Traverso”, Monterotondo (Rome) Italy.
    [Show full text]
  • Neurons and Glia
    CHAPTER TWO Neurons and Glia INTRODUCTION THE NEURON DOCTRINE The Golgi Stain Cajal’s Contribution BOX 2.1 OF SPECIAL INTEREST: Advances in Microscopy THE PROTOTYPICAL NEURON The Soma The Nucleus Neuronal Genes, Genetic Variation, and Genetic Engineering BOX 2.2 BRAIN FOOD: Expressing One’s Mind in the Post-Genomic Era BOX 2.3 PATH OF DISCOVERY: Gene Targeting in Mice, by Mario Capecchi Rough Endoplasmic Reticulum Smooth Endoplasmic Reticulum and the Golgi Apparatus The Mitochondrion The Neuronal Membrane The Cytoskeleton Microtubules BOX 2.4 OF SPECIAL INTEREST: Alzheimer’s Disease and the Neuronal Cytoskeleton Microfilaments Neurofilaments The Axon The Axon Terminal The Synapse Axoplasmic Transport BOX 2.5 OF SPECIAL INTEREST: Hitching a Ride with Retrograde Transport Dendrites BOX 2.6 OF SPECIAL INTEREST: Intellectual Disability and Dendritic Spines CLASSIFYING NEURONS Classification Based on Neuronal Structure Number of Neurites Dendrites Connections Axon Length Classification Based on Gene Expression BOX 2.7 BRAIN FOOD: Understanding Neuronal Structure and Function with Incredible Cre GLIA Astrocytes Myelinating Glia Other Non-Neuronal Cells CONCLUDING REMARKS 23 © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 24 PART ONE FOUNDATIONS INTRODUCTION All tissues and organs in the body consist of cells. The specialized func- tions of cells and how they interact determine the functions of organs. The brain is an organ—to be sure, the most sophisticated and complex organ that nature has devised. But the basic strategy for unraveling its functions is no different from that used to investigate the pancreas or the lung. We must begin by learning how brain cells work individually and then see how they are assembled to work together.
    [Show full text]
  • Neurons – Is a Basic Cell of the Nervous System. • Neurons Carry Nerve Messages, Or Impulses, from One Part of the Body to Another
    Nervous System Nerves and Nerve Cells: Neurons – is a basic cell of the nervous system. • Neurons carry nerve messages, or impulses, from one part of the body to another. Structure of a Nerve Cell: A neuron has three basic parts: 1. Body – controls the cell’s growth 2. Axon – is a long thin fiber that carries impulses away from the cell body Myelin – is a fatty material that insulates the axon and increases the speed at which an impulse travels 3. Dendrites – are short, branching fibers that carry nerve impulses toward the cell body. • A nerve impulse begins when the dendrites are stimulated. The impulse travels along the dendrites to the cell body, and then away from the cell body on the axon. • The impulse must cross a synapse to a muscle or another neuron. Synapse – is the space between an axon and the structure with which the neuron communicates. Types of Nerve Cells: Sensory Neurons – pick up information about your external and internal environment from your sense organs and your body Motor Neurons – sends impulses to your muscles and glands, causing them to react Interneurons – are located only in the brain and spinal cord, pass impulses from one neuron to another The Central Nervous System: • The nervous system consists of two parts. Your brain and spinal cord make up one part, which is called the central nervous system. 1 • The peripheral nervous system, which is the other part, is made up of all the nerves that connect the brain and spinal cord to other parts of the body. The Brain: Brain ± a moist, spongy organ weighing about three pounds is made up of billions of neurons that control almost everything you do and experience.
    [Show full text]
  • Electrical Synapses and Their Functional Interactions with Chemical Synapses
    REVIEWS Electrical synapses and their functional interactions with chemical synapses Alberto E. Pereda Abstract | Brain function relies on the ability of neurons to communicate with each other. Interneuronal communication primarily takes place at synapses, where information from one neuron is rapidly conveyed to a second neuron. There are two main modalities of synaptic transmission: chemical and electrical. Far from functioning independently and serving unrelated functions, mounting evidence indicates that these two modalities of synaptic transmission closely interact, both during development and in the adult brain. Rather than conceiving synaptic transmission as either chemical or electrical, this article emphasizes the notion that synaptic transmission is both chemical and electrical, and that interactions between these two forms of interneuronal communication might be required for normal brain development and function. Communication between neurons is required for Electrical and chemical synapses are now known to brain function, and the quality of such communica- coexist in most organisms and brain structures, but details tion enables hardwired neural networks to act in a of the properties and distribution of these two modalities of dynamic fashion. Functional interactions between transmission are still emerging. Most research efforts neurons occur at anatomically identifiable cellular have focused on exploring the mechanisms of chemi- regions called synapses. Although the nature of synaptic cal transmission, and considerably less is known transmission has been an area of enormous controversy about those underlying electrical transmission. It was (BOX 1), two main modalities of synaptic transmission — thought that electrical synapses were more abundant namely, chemical and electrical — are now recognized. At in invertebrates and cold-blooded vertebrates than chemical synapses, information is transferred through in mammals.
    [Show full text]