Nervous Tissue

Total Page:16

File Type:pdf, Size:1020Kb

Nervous Tissue Nervous Tissue Prof.Prof. ZhouZhou LiLi Dept.Dept. ofof HistologyHistology andand EmbryologyEmbryology Organization:Organization: neuronsneurons (nerve(nerve cells)cells) neuroglialneuroglial cellscells Function:Function: Ⅰ Neurons 1.1. structurestructure ofof neuronneuron somasoma neuriteneurite a.a. dendritedendrite b.b. axonaxon 1.11.1 somasoma (1)(1) nucleusnucleus LocatedLocated inin thethe centercenter ofof soma,soma, largelarge andand palepale--stainingstaining nucleusnucleus ProminentProminent nucleolusnucleolus (2)(2) cytoplasmcytoplasm (perikaryon)(perikaryon) a.a. NisslNissl bodybody b.b. neurofibrilneurofibril NisslNissl’’ss bodiesbodies LM:LM: basophilicbasophilic massmass oror granulesgranules Nissl’s Body (TEM) EMEM:: RERRER,, freefree RbRb FunctionFunction:: producingproducing thethe proteinprotein ofof neuronneuron structurestructure andand enzymeenzyme producingproducing thethe neurotransmitterneurotransmitter NeurofibrilNeurofibril thethe structurestructure LM:LM: EM:EM: NeurofilamentNeurofilament micmicrotubulerotubule FunctionFunction cytoskeleton,cytoskeleton, toto participateparticipate inin substancesubstance transporttransport LipofuscinLipofuscin (3)(3) CellCell membranemembrane excitableexcitable membranemembrane ,, receivingreceiving stimutation,stimutation, fromingfroming andand conductingconducting nervenerve impulesimpules neurite: 1.2 Dendrite dendritic spine spine apparatus Function: 1.3 Axon axon hillock, axon terminal, axolemma Axoplasm: microfilament, microtubules, neurofilament, mitochondria, SER and vesicles in it function: conducting impules and axonalaxonal transporttransport 2. Classification of neuron: 2.12.1 ClassificationClassification accordingaccording toto numbersnumbers ofof neuritesneurites (1)(1) multipolarmultipolar neuronneuron (2)(2) bipolarbipolar neuronneuron (3)(3) PseudounipolarPseudounipolar neuronneuron peripheralperipheral processprocess centralcentral processprocess 2.2 Classification according to their the functions (1)(1) sensorysensory neuronneuron :: (2)(2) motormotor neuronneuron:: (3)(3) interneuroninterneuron:: 2.3 Classification according to the neurotransmitter and neuromodulator (1) cholinergic neuron: acetylcholine (Ach), (2) aminergic neuron: norepinephrine (NA), dopamine (DA), 5-HT, (3) peptidergic neuron: substance P, enkephaline (4) aminoacidergic neuron: GABA, glutamic acid Ⅱ Synapse OneOne kindkind ofof specializedspecialized cellcell junction,junction, oror thethe contactcontact ofof oneone neuronneuron withwith anotheranother neuronneuron oror oneone neuronneuron withwith aa effectoreffector cellscells (gland(gland oror musclemuscle cells)cells) junctionjunction modemode :: axoaxo--dendriticdendritic synapsesynapse (most(most synapse)synapse) axoaxo--somaticsomatic synapsesynapse (most(most synapse)synapse) classificationclassification ofof synapse:synapse: cchemicalhemical synapsesynapse electricalelectrical synapsesynapse (gap(gap junction)junction) The type of synapse Chemical Synapse The stucture of synapse LM: synaptic knob EM: presynaptic element presynaptic membrane synaptic vesicles (*synapsinⅠ) mitochondria , SER, microfilament and microtubule synaptic cleft postsynaptic element postsynaptic membrane Function: excitatory synapse, inhibitory synapse Synaptic knob Synapse (TEM) Ⅲ Neuroglial cells (glial cell) 1.1. glialglial cellscells ofof centralcentral nervenerve systemsystem aastrocytestrocyte:: oligodendrocyteoligodendrocyte microgliamicroglia ependymalependymal cellcell 2.2. glialglial cellscells ofof peripheralperipheral nervenerve systemsystem schwannschwann cellcell satellitesatellite cellcell Neuroglial cell (1) Astrocytes TheThe morphologicmorphologic structure:structure: fibrousfibrous astrocyteastrocyte ((thethe mostmost inin whitewhite matter),matter), protoplasmicprotoplasmic astrocyteastrocyte (the(the mostmost inin graygray matter),matter), glialglial filamentfilament glialglial fibrillaryfibrillary acidicacidic protein,protein, GFAPGFAP astrocyte (LM) end feet, glia limitans Function: ① to form blood-brain barrier ② to produce the neurotrophic factors (NGF) ③to repair never tissue after the damage blood brain barrier(BBB): **continuouscontinuous capillarycapillary,, tighttight junctionjunction *basement*basement membranemembrane **neuroglialneuroglial membranemembrane (2) oligodendrocyte thethe morphologicmorphologic structure:structure: function:function: formingforming myelinmyelin sheathsheath ofof CNSCNS (3) microglia The morphologic structure: function: macrophagic activity, derived from monocyte of blood (4) ependymal cells the distribution: lining cavities of central nervous system the structure: function: transport Microglial Ependymal cells (2) glial cells of peripheral nerve system (1) schwannschwann cellcell :: toto repairrepair nevernever tissuetissue afterafter thethe damagedamage producingproducing NGFNGF ((2)2) satellitesatellite cell:cell: Ⅳ Nerve fiber and peripheral nerve 1.1. nervenerve fiberfiber beingbeing composedcomposed ofof longlong axonaxon oror dendritedendrite ofof neuronneuron envelopedenveloped byby glialglial cellscells 1.11.1 myelinatedmyelinated nervenerve fiberfiber (1)(1) myelinatedmyelinated nervenerve fiberfiber ofof PNSPNS thethe structure:structure: RanvierRanvier node,node, internodeinternode,, Myelinated nerve fiber (LM ) myelinated nerve fiber (TEM) FormationFormation ofof myelinmyelin sheathsheath ofof PNSPNS:: incisureincisure ofof myelinmyelin Incisure of myelin 1.2 Unmyelinated nerve fiber 2.2. PPeripheraleripheral NerveNerve EpineuriumEpineurium PerineuriumPerineurium EndoneuriumEndoneurium Ⅴ Nerve ending 1.1. sensorysensory nervenerve endingending receptorreceptor (1)(1) freefree nervenerve endingending (2)(2) encapsulatedencapsulated nervenerve endingending tactiletactile corpusclecorpuscle lamellarlamellar corpusclecorpuscle musclemuscle spindlespindle 2.2. motormotor nervenerve endingending effectoreffector Free nerve ending Tactile corpuscle Lamellar corpuscle (1)(1) somaticsomatic motormotor nervenerve endingending motormotor endend plateplate LMLM:: EMEM:: Motor end plate (SEM) Motor end plate(TEM) muscle spindle Muscle spindle Visceral motor nerve ending varicosityvaricosity .
Recommended publications
  • Electrical Synapses Are Drivers of Neural Plasticity Through Passage of Small Molecules
    Electrical Synapses are Drivers of Neural Plasticity Through Passage of Small Molecules Lisa Voelker A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2019 Reading Committee: Jihong Bai, Chair Linda Buck Cecilia Moens Program Authorized to Offer Degree: Molecular and Cellular Biology ©Copyright 2019 Lisa Voelker 2 University of Washington Abstract Electrical Synapses are Drivers of Neural Plasticity through Passage of Small Molecules Lisa Voelker Chair of the Supervisory Committee: Jihong Bai Department of Biochemistry In order to respond to changing environments and fluctuations in internal states, animals adjust their behavior through diverse neuromodulatory mechanisms. In this study we show that electrical synapses between the ASH primary quinine-detecting sensory neurons and the neighboring ASK neurons are required for modulating the aversive response to the bitter tastant quinine in C. elegans. Mutant worms that lack the electrical synapse proteins INX-18 and INX-19 become hypersensitive to dilute quinine. Cell-specific rescue experiments indicate that inx-18 operates in ASK while inx-19 is required in both ASK and ASH for proper quinine sensitivity. Imaging analyses find that INX-19 in ASK and ASH localizes to the same regions in the nerve ring, suggesting that both sides of ASK-ASH electrical synapses contain INX-19. While inx-18 and inx-19 mutant animals have a similar behavioral phenotype, several lines of evidence suggest the proteins encoded by these genes play different roles in modulating the aversive quinine response. First, INX-18 and INX-19 localize 3 to different regions of the nerve ring, indicating that they are not present in the same synapses.
    [Show full text]
  • Pre-Oligodendrocytes from Adult Human CNS
    The Journal of Neuroscience, April 1992, 12(4): 1538-l 547 Pre-Oligodendrocytes from Adult Human CNS Regina C. Armstrong,lJ Henry H. Dorn, l,b Conrad V. Kufta,* Emily Friedman,3 and Monique E. Dubois-Dalcq’ ‘Laboratory of Viral and Molecular Pathogenesis, and %urgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892 and 3Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104-3246 CNS remyelination and functional recovery often occur after Rapid and efficient neurotransmission is dependent upon the experimental demyelination in adult rodents. This has been electrical insulating capacity of the myelin sheath around axons attributed to the ability of mature oligodendrocytes and/or (reviewed in Ritchie, 1984a,b). Nerve conduction is impaired their precursor cells to divide and regenerate in response after loss of the myelin sheath and results in severe neurological to signals in demyelinating lesions. To determine whether dysfunction in human demyelinating diseases such as multiple oligodendrocyte precursor cells exist in the adult human sclerosis (MS). Remyelination can occur in the CNS of MS CNS, we have cultured white matter from patients under- patients but appears to be limited (Perier and Gregoire, 1965; going partial temporal lobe resection for intractable epilep- Prineas et al., 1984). Studies of acute MS cases have revealed sy. These cultures contained a population of process-bear- that recent demyelinating lesions can exhibit remyelination that ing cells that expressed antigens recognized by the 04 appears to correlate with the generation of new oligodendrocytes monoclonal antibody, but these cells did not express galac- (Prineas et al., 1984; Raine et al., 1988).
    [Show full text]
  • Synaptic Mechanisms of Bipolar Cell Terminals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Vision Research 39 (1999) 2469–2476 Synaptic mechanisms of bipolar cell terminals Gary Matthews * Department of Neurobiology and Beha6ior, State Uni6ersity of New York, Stony Brook, NY 11794-5230, USA Received 8 May 1998; received in revised form 24 August 1998 Abstract Giant synaptic terminals of goldfish bipolar neurons allow direct studies of presynaptic mechanisms underlying neurotransmit- ter release and its modulation. Calcium influx via L-type calcium channels of the terminal triggers synaptic vesicle exocytosis, which can be monitored in isolated terminals by means of the associated changes in membrane capacitance. Information about the kinetics and calcium dependence of synaptic exocytosis has been obtained from capacitance measurements in these ribbon-type synaptic terminals. © 1999 Elsevier Science Ltd. All rights reserved. Keywords: Synaptic mechanisms; Terminals; Bipolar neurons Studies of presynaptic mechanisms in the vertebrate enzymatic digestion of goldfish retina or in single, central nervous system (CNS) are complicated by the isolated terminals. Consistent with their central role in small size of most CNS synaptic terminals. However, neurotransmitter release, voltage-dependent calcium several notable exceptions allow direct electrical mea- channels are located predominantly in the synaptic surements to be made from single terminals, including terminal of the bipolar cell (Tachibana & Okada, 1991; giant
    [Show full text]
  • Acute Reduction of Microglia Does Not Alter Axonal Injury in a Mouse Model of Repetitive Concussive Traumatic Brain Injury Rachel E
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2014 Acute reduction of microglia does not alter axonal injury in a mouse model of repetitive concussive traumatic brain injury Rachel E. Bennett Washington University School of Medicine David L. Brody Washington University School of Medicine Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Bennett, Rachel E. and Brody, David L., ,"Acute reduction of microglia does not alter axonal injury in a mouse model of repetitive concussive traumatic brain injury." Journal of Neurotrauma.31,9. 1647-1663. (2014). https://digitalcommons.wustl.edu/open_access_pubs/4711 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. JOURNAL OF NEUROTRAUMA 31:1647–1663 (October 1, 2014) ª Mary Ann Liebert, Inc. DOI: 10.1089/neu.2013.3320 Acute Reduction of Microglia Does Not Alter Axonal Injury in a Mouse Model of Repetitive Concussive Traumatic Brain Injury Rachel E. Bennett and David L. Brody Abstract The pathological processes that lead to long-term consequences of multiple concussions are unclear. Primary mechanical damage to axons during concussion is likely to contribute to dysfunction. Secondary damage has been hypothesized to be induced or exacerbated by inflammation. The main inflammatory cells in the brain are microglia, a type of macrophage. This research sought to determine the contribution of microglia to axon degeneration after repetitive closed-skull traumatic brain injury (rcTBI) using CD11b-TK (thymidine kinase) mice, a valganciclovir-inducible model of macrophage depletion.
    [Show full text]
  • Absence of S100A4 in the Mouse Lens Induces an Aberrant Retina-Specific Differentiation Program and Cataract
    www.nature.com/scientificreports OPEN Absence of S100A4 in the mouse lens induces an aberrant retina‑specifc diferentiation program and cataract Rupalatha Maddala1*, Junyuan Gao2, Richard T. Mathias2, Tylor R. Lewis1, Vadim Y. Arshavsky1,3, Adriana Levine4, Jonathan M. Backer4,5, Anne R. Bresnick4 & Ponugoti V. Rao1,3* S100A4, a member of the S100 family of multifunctional calcium‑binding proteins, participates in several physiological and pathological processes. In this study, we demonstrate that S100A4 expression is robustly induced in diferentiating fber cells of the ocular lens and that S100A4 (−/−) knockout mice develop late‑onset cortical cataracts. Transcriptome profling of lenses from S100A4 (−/−) mice revealed a robust increase in the expression of multiple photoreceptor‑ and Müller glia‑specifc genes, as well as the olfactory sensory neuron‑specifc gene, S100A5. This aberrant transcriptional profle is characterized by corresponding increases in the levels of proteins encoded by the aberrantly upregulated genes. Ingenuity pathway network and curated pathway analyses of diferentially expressed genes in S100A4 (−/−) lenses identifed Crx and Nrl transcription factors as the most signifcant upstream regulators, and revealed that many of the upregulated genes possess promoters containing a high‑density of CpG islands bearing trimethylation marks at histone H3K27 and/or H3K4, respectively. In support of this fnding, we further documented that S100A4 (−/−) knockout lenses have altered levels of trimethylated H3K27 and H3K4. Taken together,
    [Show full text]
  • Electrical Synapses and Their Functional Interactions with Chemical Synapses
    REVIEWS Electrical synapses and their functional interactions with chemical synapses Alberto E. Pereda Abstract | Brain function relies on the ability of neurons to communicate with each other. Interneuronal communication primarily takes place at synapses, where information from one neuron is rapidly conveyed to a second neuron. There are two main modalities of synaptic transmission: chemical and electrical. Far from functioning independently and serving unrelated functions, mounting evidence indicates that these two modalities of synaptic transmission closely interact, both during development and in the adult brain. Rather than conceiving synaptic transmission as either chemical or electrical, this article emphasizes the notion that synaptic transmission is both chemical and electrical, and that interactions between these two forms of interneuronal communication might be required for normal brain development and function. Communication between neurons is required for Electrical and chemical synapses are now known to brain function, and the quality of such communica- coexist in most organisms and brain structures, but details tion enables hardwired neural networks to act in a of the properties and distribution of these two modalities of dynamic fashion. Functional interactions between transmission are still emerging. Most research efforts neurons occur at anatomically identifiable cellular have focused on exploring the mechanisms of chemi- regions called synapses. Although the nature of synaptic cal transmission, and considerably less is known transmission has been an area of enormous controversy about those underlying electrical transmission. It was (BOX 1), two main modalities of synaptic transmission — thought that electrical synapses were more abundant namely, chemical and electrical — are now recognized. At in invertebrates and cold-blooded vertebrates than chemical synapses, information is transferred through in mammals.
    [Show full text]
  • Notch-Signaling in Retinal Regeneration and Müller Glial Plasticity
    Notch-Signaling in Retinal Regeneration and Müller glial Plasticity DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Kanika Ghai, MS Neuroscience Graduate Studies Program The Ohio State University 2009 Dissertation Committee: Dr. Andy J Fischer, Advisor Dr. Heithem El-Hodiri Dr. Susan Cole Dr. Paul Henion Copyright by Kanika Ghai 2009 ABSTRACT Eye diseases such as blindness, age-related macular degeneration (AMD), diabetic retinopathy and glaucoma are highly prevalent in the developed world, especially in a rapidly aging population. These sight-threatening diseases all involve the progressive loss of cells from the retina, the light-sensing neural tissue that lines the back of the eye. Thus, developing strategies to replace dying retinal cells or prolonging neuronal survival is essential to preserving sight. In this regard, cell-based therapies hold great potential as a treatment for retinal diseases. One strategy is to stimulate cells within the retina to produce new neurons. This dissertation elucidates the properties of the primary support cell in the chicken retina, known as the Müller glia, which have recently been shown to possess stem-cell like properties, with the potential to form new neurons in damaged retinas. However, the mechanisms that govern this stem-cell like ability are less well understood. In order to better understand these properties, we analyze the role of one of the key developmental processes, i.e., the Notch-Signaling Pathway in regulating proliferative, neuroprotective and regenerative properties of Müller glia and bestow them with this plasticity.
    [Show full text]
  • Was Not Reached, However, Even After Six to Sevenhours. A
    PROTEIN SYNTHESIS IN THE ISOLATED GIANT AXON OF THE SQUID* BY A. GIUDITTA,t W.-D. DETTBARN,t AND MIROSLAv BRZIN§ MARINE BIOLOGICAL LABORATORY, WOODS HOLE, MASSACHUSETTS Communicated by David Nachmansohn, February 2, 1968 The work of Weiss and his associates,1-3 and more recently of a number of other investigators,4- has established the occurrence of a flux of materials from the soma of neurons toward the peripheral regions of the axon. It has been postulated that this mechanism would account for the origin of most of the axonal protein, although the time required to cover the distance which separates some axonal tips from their cell bodies would impose severe delays.4 On the other hand, a number of observations7-9 have indicated the occurrence of local mechanisms of synthesis in peripheral axons, as suggested by the kinetics of appearance of individual proteins after axonal transection. In this paper we report the incorporation of radioactive amino acids into the protein fraction of the axoplasm and of the axonal envelope obtained from giant axons of the squid. These axons are isolated essentially free from small fibers and connective tissue, and pure samples of axoplasm may be obtained by extru- sion of the axon. Incorporation of amino acids into axonal protein has recently been reported using systems from mammals'0 and fish."I Materials and Methods.-Giant axons of Loligo pealii were dissected and freed from small fibers: they were tied at both ends. Incubations were carried out at 18-20° in sea water previously filtered through Millipore which contained 5 mM Tris pH 7.8 and 10 Muc/ml of a mixture of 15 C'4-labeled amino acids (New England Nuclear Co., Boston, Mass.).
    [Show full text]
  • Microcircuitry of Bipolar Cells in Cat Retina1
    0270.6474/84/0412-2920$02.00/0 The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 4, No. 12, pp. 2920-2938 Printed in U.S.A. December 1984 MICROCIRCUITRY OF BIPOLAR CELLS IN CAT RETINA1 BARBARA A. McGUIRE,’ JOHN K. STEVENS,3 AND PETER STERLING Department of Anatomy, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Received October 31, 1983; Revised June 4, 1984; Accepted June 6, 1984 Abstract We have studied 15 bipolar neurons from a small patch (14 x 120 Frn) of adult cat retina located within the area centralis. From electron micrographs of 189 serial ultrathin sections, the axon of each bipolar cell was substantially reconstructed with its synaptic inputs and outputs by means of a computer-controlled reconstruc- tion system. Based on differences in stratification, cytology, and synaptic connections, we identified eight different cell types among the group of 15 neurons: one type of rod bipolar and seven types of cone bipolar neurons. These types correspond to those identified by the Golgi method and by intracellular recording. Those bipolar cell types for which we reconstructed three or four examples were extremely regular in form, size, and cytology, and also in the quantitative details of their synaptic connections. They appeared quite as specific in these respects as invertebrate “identified” neurons. The synaptic patterns observed for each type of bipolar neuron were complex but may be summarized as follows: the rod bipolar axon ended in sublamina b of the inner plexiform layer and provided major input to the AI1 amacrine cell. The axons of three types of cone bipolar cells also terminated in sublamina b and provided contacts to dendrites of on-6 and other ganglion cells.
    [Show full text]
  • Electrical Synaptic Transmission Requires a Postsynaptic Scaffolding Protein
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.03.410696; this version posted December 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. TITLE: Electrical synaptic transmission requires a postsynaptic scaffolding protein Abagael M. Lasseigne1*, Fabio A. Echeverry2*, Sundas Ijaz2*, Jennifer Carlisle Michel1*, E. Anne Martin1, Audrey J. Marsh1, Elisa Trujillo1, Kurt C. Marsden3, Alberto E. Pereda2#, Adam C. Miller1#@ * denotes co-first author # denotes co-corresponding author @ denotes lead contact Affiliations: 1 Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA 2 Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA 3 Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA Correspondence: [email protected] [email protected] Keywords: gap junction; connexin; ZO1 ZO-1; synaptic development; electrical coupling 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.03.410696; this version posted December 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. SUMMARY Electrical synaptic transmission relies on neuronal gap junctions containing channels constructed by Connexins. While at chemical synapses neurotransmitter-gated ion channels are critically supported by scaffolding proteins, it is unknown if channels at electrical synapses require similar scaffold support.
    [Show full text]
  • (Caspr) and Contactin Form a Complex That Is Targeted to the Paranodal Junctions During Myelination
    The Journal of Neuroscience, November 15, 2000, 20(22):8354–8364 Contactin-Associated Protein (Caspr) and Contactin Form a Complex That Is Targeted to the Paranodal Junctions during Myelination Jose C. Rios,1 Carmen V. Melendez-Vasquez,1 Steven Einheber,1 Marc Lustig,2 Martin Grumet,2 John Hemperly,5 Elior Peles,6 and James L. Salzer1,3,4 Departments of 1Cell Biology, 2Pharmacology, 3Neurology, and the 4Kaplan Cancer Center, New York University School of Medicine, New York, New York 10016, 5BD Technologies, Research Triangle Park, North Carolina 27709, and 6Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel Specialized paranodal junctions form between the axon and the associated specifically with Caspr in the paranodes, whereas a closely apposed paranodal loops of myelinating glia. They are higher-molecular-weight form of contactin, not associated with interposed between sodium channels at the nodes of Ranvier Caspr, is present in central nodes of Ranvier. These results and potassium channels in the juxtaparanodal regions; their suggest that the targeting of contactin to different axonal do- precise function and molecular composition have been elusive. mains may be determined, in part, via its association with Caspr. We previously reported that Caspr (contactin-associated protein) Treatment of myelinating cocultures of Schwann cells and neu- is a major axonal constituent of these junctions (Einheber et al., rons with RPTP␤–Fc, a soluble construct containing the carbonic 1997). We now report that contactin colocalizes and forms a cis anhydrase domain of the receptor protein tyrosine phosphatase complex with Caspr in the paranodes and juxtamesaxon.
    [Show full text]
  • Electrical Synapses in the Mammalian Brain
    24 May 2004 19:3 AR AR217-NE27-15.tex AR217-NE27-15.sgm LaTeX2e(2002/01/18) P1: IKH 10.1146/annurev.neuro.26.041002.131128 Annu. Rev. Neurosci. 2004. 27:393–418 doi: 10.1146/annurev.neuro.26.041002.131128 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on February 26, 2004 ELECTRICAL SYNAPSES IN THE MAMMALIAN BRAIN BarryW.Connors1 and Michael A. Long2 1Department of Neuroscience, Brown University, Providence, Rhode Island 02912; email: [email protected] 2Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; email: [email protected] Key Words gap junction, electrotonic synapse, electrical coupling, connexin, connexin36 I Abstract Many neurons in the mammalian central nervous system communicate through electrical synapses, defined here as gap junction–mediated connections. Elec- trical synapses are reciprocal pathways for ionic current and small organic molecules. They are often strong enough to mediate close synchronization of subthreshold and spiking activity among clusters of neurons. The most thoroughly studied electrical synapses occur between excitatory projection neurons of the inferior olivary nucleus and between inhibitory interneurons of the neocortex, hippocampus, and thalamus. All these synapses require the gap junction protein connexin36 (Cx36) for robust electri- cal coupling. Cx36 appears to interconnect neurons exclusively, and it is expressed widely along the mammalian neuraxis, implying that there are undiscovered electrical synapses throughout the central nervous system. Some central neurons may be electri- cally coupled by other connexin types or by pannexins, a newly described family of gap junction proteins. Electrical synapses are a ubiquitous yet underappreciated feature of neural circuits in the mammalian brain.
    [Show full text]