Electrical Synapses and Their Functional Interactions with Chemical Synapses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Guide to Glutamate Receptors
A guide to glutamate receptors 1 Contents Glutamate receptors . 4 Ionotropic glutamate receptors . 4 - Structure ........................................................................................................... 4 - Function ............................................................................................................ 5 - AMPA receptors ................................................................................................. 6 - NMDA receptors ................................................................................................. 6 - Kainate receptors ............................................................................................... 6 Metabotropic glutamate receptors . 8 - Structure ........................................................................................................... 8 - Function ............................................................................................................ 9 - Group I: mGlu1 and mGlu5. .9 - Group II: mGlu2 and mGlu3 ................................................................................. 10 - Group III: mGlu4, mGlu6, mGlu7 and mGlu8 ............................................................ 10 Protocols and webinars . 11 - Protocols ......................................................................................................... 11 - Webinars ......................................................................................................... 12 References and further reading . 13 Excitatory synapse pathway -
Electrical Synapses Are Drivers of Neural Plasticity Through Passage of Small Molecules
Electrical Synapses are Drivers of Neural Plasticity Through Passage of Small Molecules Lisa Voelker A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2019 Reading Committee: Jihong Bai, Chair Linda Buck Cecilia Moens Program Authorized to Offer Degree: Molecular and Cellular Biology ©Copyright 2019 Lisa Voelker 2 University of Washington Abstract Electrical Synapses are Drivers of Neural Plasticity through Passage of Small Molecules Lisa Voelker Chair of the Supervisory Committee: Jihong Bai Department of Biochemistry In order to respond to changing environments and fluctuations in internal states, animals adjust their behavior through diverse neuromodulatory mechanisms. In this study we show that electrical synapses between the ASH primary quinine-detecting sensory neurons and the neighboring ASK neurons are required for modulating the aversive response to the bitter tastant quinine in C. elegans. Mutant worms that lack the electrical synapse proteins INX-18 and INX-19 become hypersensitive to dilute quinine. Cell-specific rescue experiments indicate that inx-18 operates in ASK while inx-19 is required in both ASK and ASH for proper quinine sensitivity. Imaging analyses find that INX-19 in ASK and ASH localizes to the same regions in the nerve ring, suggesting that both sides of ASK-ASH electrical synapses contain INX-19. While inx-18 and inx-19 mutant animals have a similar behavioral phenotype, several lines of evidence suggest the proteins encoded by these genes play different roles in modulating the aversive quinine response. First, INX-18 and INX-19 localize 3 to different regions of the nerve ring, indicating that they are not present in the same synapses. -
Nervous Tissue
Nervous Tissue Prof.Prof. ZhouZhou LiLi Dept.Dept. ofof HistologyHistology andand EmbryologyEmbryology Organization:Organization: neuronsneurons (nerve(nerve cells)cells) neuroglialneuroglial cellscells Function:Function: Ⅰ Neurons 1.1. structurestructure ofof neuronneuron somasoma neuriteneurite a.a. dendritedendrite b.b. axonaxon 1.11.1 somasoma (1)(1) nucleusnucleus LocatedLocated inin thethe centercenter ofof soma,soma, largelarge andand palepale--stainingstaining nucleusnucleus ProminentProminent nucleolusnucleolus (2)(2) cytoplasmcytoplasm (perikaryon)(perikaryon) a.a. NisslNissl bodybody b.b. neurofibrilneurofibril NisslNissl’’ss bodiesbodies LM:LM: basophilicbasophilic massmass oror granulesgranules Nissl’s Body (TEM) EMEM:: RERRER,, freefree RbRb FunctionFunction:: producingproducing thethe proteinprotein ofof neuronneuron structurestructure andand enzymeenzyme producingproducing thethe neurotransmitterneurotransmitter NeurofibrilNeurofibril thethe structurestructure LM:LM: EM:EM: NeurofilamentNeurofilament micmicrotubulerotubule FunctionFunction cytoskeleton,cytoskeleton, toto participateparticipate inin substancesubstance transporttransport LipofuscinLipofuscin (3)(3) CellCell membranemembrane excitableexcitable membranemembrane ,, receivingreceiving stimutation,stimutation, fromingfroming andand conductingconducting nervenerve impulesimpules neurite: 1.2 Dendrite dendritic spine spine apparatus Function: 1.3 Axon axon hillock, axon terminal, axolemma Axoplasm: microfilament, microtubules, neurofilament, mitochondria, -
Plp-Positive Progenitor Cells Give Rise to Bergmann Glia in the Cerebellum
Citation: Cell Death and Disease (2013) 4, e546; doi:10.1038/cddis.2013.74 OPEN & 2013 Macmillan Publishers Limited All rights reserved 2041-4889/13 www.nature.com/cddis Olig2/Plp-positive progenitor cells give rise to Bergmann glia in the cerebellum S-H Chung1, F Guo2, P Jiang1, DE Pleasure2,3 and W Deng*,1,3,4 NG2 (nerve/glial antigen2)-expressing cells represent the largest population of postnatal progenitors in the central nervous system and have been classified as oligodendroglial progenitor cells, but the fate and function of these cells remain incompletely characterized. Previous studies have focused on characterizing these progenitors in the postnatal and adult subventricular zone and on analyzing the cellular and physiological properties of these cells in white and gray matter regions in the forebrain. In the present study, we examine the types of neural progeny generated by NG2 progenitors in the cerebellum by employing genetic fate mapping techniques using inducible Cre–Lox systems in vivo with two different mouse lines, the Plp-Cre-ERT2/Rosa26-EYFP and Olig2-Cre-ERT2/Rosa26-EYFP double-transgenic mice. Our data indicate that Olig2/Plp-positive NG2 cells display multipotential properties, primarily give rise to oligodendroglia but, surprisingly, also generate Bergmann glia, which are specialized glial cells in the cerebellum. The NG2 þ cells also give rise to astrocytes, but not neurons. In addition, we show that glutamate signaling is involved in distinct NG2 þ cell-fate/differentiation pathways and plays a role in the normal development of Bergmann glia. We also show an increase of cerebellar oligodendroglial lineage cells in response to hypoxic–ischemic injury, but the ability of NG2 þ cells to give rise to Bergmann glia and astrocytes remains unchanged. -
Control of Synapse Number by Glia Erik M
R EPORTS RGCs (8). Similar results were obtained un- der both conditions. After 2 weeks in culture, Control of Synapse Number we used whole-cell patch-clamp recording to measure the significant enhancement of spon- by Glia taneous synaptic activity by astrocytes (Fig. 1, A and B) (9). In the absence of astroglia, Erik M. Ullian,* Stephanie K. Sapperstein, Karen S. Christopherson, little synaptic activity occurred even when Ben A. Barres RGCs were cultured with their tectal target cells (6). This difference in synaptic activity Although astrocytes constitute nearly half of the cells in our brain, their persisted even after a month in culture, indi- function is a long-standing neurobiological mystery. Here we show by quantal cating that it is not accounted for by a matu- analyses, FM1-43 imaging, immunostaining, and electron microscopy that few rational delay. To examine whether glia reg- synapses form in the absence of glial cells and that the few synapses that do ulate synaptic activity by enhancing postsyn- form are functionally immature. Astrocytes increase the number of mature, aptic responsiveness, we measured the re- functional synapses on central nervous system (CNS) neurons by sevenfold and sponse of RGCs to pulses of L-glutamate are required for synaptic maintenance in vitro. We also show that most syn- applied to the cell somas. Regardless of the apses are generated concurrently with the development of glia in vivo. These presence of glia, RGCs responded with in- data demonstrate a previously unknown function for glia in inducing and ward currents (Fig. 1C) that were blocked by stabilizing CNS synapses, show that CNS synapse number can be profoundly glutamate receptor antagonists (10). -
Area-Specific Synapse Structure in Branched Posterior Nucleus Axons Reveals a New Level of Complexity in Thalamocortical Networks
The Journal of Neuroscience, March 25, 2020 • 40(13):2663–2679 • 2663 Systems/Circuits Area-Specific Synapse Structure in Branched Posterior Nucleus Axons Reveals a New Level of Complexity in Thalamocortical Networks Javier Rodriguez-Moreno,1 Cesar Porrero,1 Astrid Rollenhagen,2 Mario Rubio-Teves,1 Diana Casas-Torremocha,1 X Lidia Alonso-Nanclares,3 Rachida Yakoubi,2 XAndrea Santuy,3 XAngel Merchan-Pe´rez,3,5,6 XJavier DeFelipe,3,4,5 Joachim H.R. Lu¨bke,2,7,8* and XFrancisco Clasca1* 1Department of Anatomy and Neuroscience, School of Medicine, Auto´noma de Madrid University, 28029 Madrid, Spain, 2Institute of Neuroscience and Medicine INM-10, Research Centre Ju¨lich GmbH, 52425 Ju¨lich, Germany, 3Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biome´dica, Universidad Polite´cnica de Madrid, Pozuelo de Alarco´n, 28223 Madrid, Spain, 4Instituto Cajal, Consejo Superior de Investigaciones Científicas, Arce 37 28002, Madrid, Spain, 5CIBERNED, Centro de Investigacio´n Biome´dica en Red de Enfermedades Neurodegenerativas, 28031 Madrid, Spain, 6Departamento de Arquitectura y Tecnología de Sistemas Informa´ticos, Universidad Polite´cnica de Madrid. Boadilla del Monte, 28660 Madrid, Spain, 7Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH University Hospital Aachen, 52074 Aachen, Germany, and 8JARA-Translational Brain Medicine, 52425 Ju¨lich-Aachen, Germany Thalamocortical posterior nucleus (Po) axons innervating the vibrissal somatosensory (S1) and motor (MC) cortices are key links in the brain neuronal network that allows rodents to explore the environment whisking with their motile snout vibrissae. Here, using fine-scale high-end 3D electron microscopy, we demonstrate in adult male C57BL/6 wild-type mice marked differences between MC versus S1 Po synapses in (1) bouton and active zone size, (2) neurotransmitter vesicle pool size, (3) distribution of mitochondria around synapses, and (4) proportion of synapses established on dendritic spines and dendritic shafts. -
The Interplay Between Neurons and Glia in Synapse Development And
Available online at www.sciencedirect.com ScienceDirect The interplay between neurons and glia in synapse development and plasticity Jeff A Stogsdill and Cagla Eroglu In the brain, the formation of complex neuronal networks and regulate distinct aspects of synaptic development and amenable to experience-dependent remodeling is complicated circuit connectivity. by the diversity of neurons and synapse types. The establishment of a functional brain depends not only on The intricate communication between neurons and glia neurons, but also non-neuronal glial cells. Glia are in and their cooperative roles in synapse formation are now continuous bi-directional communication with neurons to direct coming to light due in large part to advances in genetic the formation and refinement of synaptic connectivity. This and imaging tools. This article will examine the progress article reviews important findings, which uncovered cellular made in our understanding of the role of mammalian and molecular aspects of the neuron–glia cross-talk that perisynaptic glia (astrocytes and microglia) in synapse govern the formation and remodeling of synapses and circuits. development, maturation, and plasticity since the previ- In vivo evidence demonstrating the critical interplay between ous Current Opinion article [1]. An integration of past and neurons and glia will be the major focus. Additional attention new findings of glial control of synapse development and will be given to how aberrant communication between neurons plasticity is tabulated in Box 1. and glia may contribute to neural pathologies. Address Glia control the formation of synaptic circuits Department of Cell Biology, Duke University Medical Center, Durham, In the CNS, glial cells are in tight association with NC 27710, USA synapses in all brain regions [2]. -
PRESYNAPTIC Α2δ SUBUNITS ARE KEY ORGANIZERS of GLUTAMATERGIC SYNAPSES Clemens L
bioRxiv preprint doi: https://doi.org/10.1101/826016; this version posted October 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. PRESYNAPTIC α2δ SUBUNITS ARE KEY ORGANIZERS OF GLUTAMATERGIC SYNAPSES Clemens L. Schöpf1, Stefanie Geisler1, Ruslan I. Stanika1, Marta Campiglio1, Walter A. Kaufmann3, Benedikt Nimmervoll1, Bettina Schlick1, Ryuichi Shigemoto3, and Gerald J. Obermair1,2* From Division of Physiology, Medical University Innsbruck, A-6020 Innsbruck1, Division Physiology, Karl Landsteiner University of Health Sciences, A-3500 Krems2, and Institute of Science and Technology Austria, A-3400 Klosterneuburg3, Austria. Running head: Presynaptic α2δ subunits organize synapses Address correspondence to: *Gerald J. Obermair, Univ.-Prof. Dr., Phone: +43-2732-72090490, E-mail: [email protected], [email protected] In nerve cells the genes encoding for α2δ the auxiliary β and α2δ subunits. α2δ subunits, the subunits of voltage-gated calcium channels targets of the widely prescribed anti-epileptic and (VGCCs) have been linked to synaptic functions anti-allodynic drugs gabapentin and pregabalin, are and neurological disease. Here we show that α2δ membrane-anchored extracellular glycoproteins, subunits are essential for the formation and which modulate VGCC trafficking and calcium organization of glutamatergic synapses. Using a currents (Arikkath and Campbell, 2003; Dolphin, cellular α2δ subunit triple loss-of-function model, 2013; Geisler et al., 2015; Obermair et al., 2008; we demonstrate a failure in presynaptic Zamponi et al., 2015). -
Neural Control and Neuromodulationof Lower Urinary
Neural Control and Neuromodulation of Lower Urinary Tract Function William C. de Groat University of Pittsburgh Topics • Anatomy and functions of the lower urinary tract • Peripheral innervation (efferent and afferent nerves) • Central neural control of the lower urinary tract • Lower urinary tract dysfunction • Treatment of dysfunction (neuromodulation) • Research opportunities Anatomy and Functions of the Lower Urinary Tract Functions Two Types of Voiding 1. Urine storage - Reservoir: Bladder INVOLUNTARY (Reflex) (infant & fetus) Defect in 2. Urine release Maturation Maturation - Outlet: Urethra INVOLUNTARY THERAPY VOLUNTARY (Reflex) (adult) (adult) Bladder Parkinson’s, MS, stroke, brain tumors, spinal cord injury, Urethra aging, cystitis Lower Urinary Tract Innervation Two Types of Visceral Afferent Neurons: Bladder & Bowel Aδ-fibers responsible for normal bladder sensations C-fibers contribute to urgency, frequency and incontinence Afferent Sensitivity may be Influenced by Substances Released from the Urothelium Aδ fiber C fiber X CNS Urothelium The Bladder U rothelium Glycosaminoglycan Layer Uroplakin Plaques and Discoidal Vesicles r=_zo_"_"l_a_o_cc-lu---.dens } Umbrella Cell Stratum Intermediate Cell Stratum } Basal Cell Stratum Afferent Nerve fiber Urothelial-Afferent Interactions ( I ( I ( I ( ' ( I ( I ( I Urothelium ( I ( 0 I I I AChR ATP, NO, NKA, ACh, NGF ~erves ' Efferent ' nerves nerves Interaction of Sensory Pathways of Multiple Pelvic Organs Convergent Dichotomizing Branch Bladder point Colon Somatic and Visceral Afferent -
Absence of S100A4 in the Mouse Lens Induces an Aberrant Retina-Specific Differentiation Program and Cataract
www.nature.com/scientificreports OPEN Absence of S100A4 in the mouse lens induces an aberrant retina‑specifc diferentiation program and cataract Rupalatha Maddala1*, Junyuan Gao2, Richard T. Mathias2, Tylor R. Lewis1, Vadim Y. Arshavsky1,3, Adriana Levine4, Jonathan M. Backer4,5, Anne R. Bresnick4 & Ponugoti V. Rao1,3* S100A4, a member of the S100 family of multifunctional calcium‑binding proteins, participates in several physiological and pathological processes. In this study, we demonstrate that S100A4 expression is robustly induced in diferentiating fber cells of the ocular lens and that S100A4 (−/−) knockout mice develop late‑onset cortical cataracts. Transcriptome profling of lenses from S100A4 (−/−) mice revealed a robust increase in the expression of multiple photoreceptor‑ and Müller glia‑specifc genes, as well as the olfactory sensory neuron‑specifc gene, S100A5. This aberrant transcriptional profle is characterized by corresponding increases in the levels of proteins encoded by the aberrantly upregulated genes. Ingenuity pathway network and curated pathway analyses of diferentially expressed genes in S100A4 (−/−) lenses identifed Crx and Nrl transcription factors as the most signifcant upstream regulators, and revealed that many of the upregulated genes possess promoters containing a high‑density of CpG islands bearing trimethylation marks at histone H3K27 and/or H3K4, respectively. In support of this fnding, we further documented that S100A4 (−/−) knockout lenses have altered levels of trimethylated H3K27 and H3K4. Taken together, -
Developmental Changes in Calcium Channel Types Mediating Central Synaptic Transmission
The Journal of Neuroscience, January 1, 2000, 20(1):59–65 Developmental Changes in Calcium Channel Types Mediating Central Synaptic Transmission Shinichi Iwasaki,1 Akiko Momiyama,2 Osvaldo D. Uchitel,3 and Tomoyuki Takahashi1 1Department of Neurophysiology, University of Tokyo Faculty of Medicine, Tokyo 113-0033, Japan, 2Laboratory of Cerebral Structure, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan, and 3Departamento de Ciencias Biologicas, Laboratorio de Fisiologia y Biologia, Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina Multiple types of high-voltage-activated Ca 21 channels trigger fact, Ca 21 currents directly recorded from the auditory calyceal neurotransmitter release at the mammalian central synapse. presynaptic terminal were identified as N-, P/Q-, and R-types at Among them, the v-conotoxin GVIA-sensitive N-type channels postnatal day 7 (P7) to P10 but became predominantly P/Q- and the v-Aga-IVA-sensitive P/Q-type channels mediate fast type at P13. In contrast to thalamic and cerebellar IPSCs and synaptic transmission. However, at most central synapses, it is brainstem auditory EPSCs, N-type Ca 21 channels persistently not known whether the contributions of different Ca 21 channel contribute to cerebral cortical EPSCs and spinal IPSCs types to synaptic transmission remain stable throughout post- throughout postnatal months. Thus, in adult animals, synaptic natal development. We have addressed this question by testing transmission is predominantly mediated by P/Q-type channels type-specific Ca 21 channel blockers at developing central syn- at a subset of synapses and mediated synergistically by multi- apses. -
GABA Enhances Transmission at an Excitatory Glutamatergic Synapse
The Journal of Neuroscience, August 15, 2001, 21(16):5935–5943 GABA Enhances Transmission at an Excitatory Glutamatergic Synapse Scott Gutovitz, John T. Birmingham, Jason A. Luther, David J. Simon, and Eve Marder Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454-9110 GABA mediates both presynaptic and postsynaptic inhibition at -(Aminomethyl)-4-chlorobenzenepropanoic acid (baclofen) many synapses. In contrast, we show that GABA enhances was an effective agonist for the GABA-evoked enhancement transmission at excitatory synapses between the lateral gastric but did not increase the postjunctional conductance. Muscimol and medial gastric motor neurons and the gastric mill 6a and 9 activated a rapid postsynaptic conductance but did not en- (gm6a, gm9) muscles and between the lateral pyloric motor hance the amplitude of the nerve-evoked EJPs. GABA had no neuron and pyloric 1 (p1) muscles in the stomach of the lobster effect on iontophoretic responses to glutamate and decreased Homarus americanus. Two-electrode current-clamp or voltage- the coefficient of variation of nerve-evoked EJPs. In the pres- clamp techniques were used to record from muscle fibers. The ence or absence of tetrodotoxin, GABA increased the fre- innervating nerves were stimulated to evoke excitatory junc- quency but not the amplitude of miniature endplate potentials. tional potentials (EJPs) or excitatory junctional currents. Bath These data suggest that GABA acts presynaptically via a application of GABA first decreased the amplitude of evoked GABAB-like receptor to increase the release of EJPs in gm6a and gm9 muscles, but not the p1 muscle, by neurotransmitter. activating a postjunctional conductance increase that was blocked by picrotoxin.