G C A T T A C G G C A T genes Article Genome Size Dynamics in Marine Ribbon Worms (Nemertea, Spiralia) Juraj Paule 1, Jörn von Döhren 2, Christina Sagorny 2 and Maria A. Nilsson 3,4,* 1 Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany;
[email protected] 2 Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, D-53121 Bonn, Germany;
[email protected] (J.v.D.);
[email protected] (C.S.) 3 Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany 4 LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, D-60325 Frankfurt am Main, Germany * Correspondence:
[email protected] Abstract: Nemertea is a phylum consisting of 1300 mostly marine species. Nemertea is distinguished by an eversible muscular proboscis, and most of the species are venomous. Genomic resources for this phylum are scarce despite their value in understanding biodiversity. Here, we present genome size estimates of Nemertea based on flow cytometry and their relationship to different morphological and developmental traits. Ancestral genome size estimations were done across the nemertean phylogeny. The results increase the available genome size estimates for Nemertea three-fold. Our analyses show that Nemertea has a narrow genome size range (0.43–3.89 pg) compared to other phyla in Lophotrochozoa. A relationship between genome size and evolutionary rate, developmental modes, and habitat was found. Trait analyses show that the highest evolutionary rate of genome size is found Citation: Paule, J.; von Döhren, J.; in upper intertidal, viviparous species with direct development.