Hox Gene Expression in Postmetamorphic Juveniles of the Brachiopod Terebratalia Transversa Ludwik Gąsiorowski and Andreas Hejnol*

Total Page:16

File Type:pdf, Size:1020Kb

Hox Gene Expression in Postmetamorphic Juveniles of the Brachiopod Terebratalia Transversa Ludwik Gąsiorowski and Andreas Hejnol* Gąsiorowski and Hejnol EvoDevo (2019) 10:1 https://doi.org/10.1186/s13227-018-0114-1 EvoDevo RESEARCH Open Access Hox gene expression in postmetamorphic juveniles of the brachiopod Terebratalia transversa Ludwik Gąsiorowski and Andreas Hejnol* Abstract Background: Hox genes encode a family of homeodomain containing transcription factors that are clustered together on chromosomes of many Bilateria. Some bilaterian lineages express these genes during embryogenesis in spatial and/or temporal order according to their arrangement in the cluster, a phenomenon referred to as collinear- ity. Expression of Hox genes is well studied during embryonic and larval development of numerous species; however, relatively few studies focus on the comparison of pre- and postmetamorphic expression of Hox genes in animals with biphasic life cycle. Recently, the expression of Hox genes was described for embryos and larvae of Terebratalia transversa, a rhynchonelliformean brachiopod, which possesses distinct metamorphosis from planktonic larvae to sessile juveniles. During premetamorphic development, T. transversa does not exhibit spatial collinearity and several of its Hox genes are recruited for the morphogenesis of novel structures. In our study, we determined the expression of Hox genes in postmetamorphic juveniles of T. transversa in order to examine metamorphosis-related changes of expression patterns and to test whether Hox genes are expressed in the spatially collinear way in the postmetamor- phic juveniles. Results: Hox genes are expressed in a spatially non-collinear manner in juveniles, generally showing similar patterns as ones observed in competent larvae: genes labial and post1 are expressed in chaetae-related structures, sex combs reduced in the shell-forming epithelium, whereas lox5 and lox4 in dorso-posterior epidermis. After metamorphosis, expression of genes proboscipedia, hox3, deformed and antennapedia becomes restricted to, respectively, shell muscu- lature, prospective hinge rudiments and pedicle musculature and epidermis. Conclusions: All developmental stages of T. transversa, including postmetamorphic juveniles, exhibit a spatial non- collinear Hox genes expression with only minor changes observed between pre- and postmetamorphic stages. Our results are concordant with morphological observation that metamorphosis in rhynchonelliformean brachiopods, despite being rapid, is rather gradual. The most drastic changes in Hox gene expression patterns observed during metamorphosis could be explained by the inversion of the mantle lobe, which relocates some of the more posterior larval structures into the anterior edge of the juveniles. Co-option of Hox genes for the morphogenesis of novel struc- tures is even more pronounced in postmetamorphic brachiopods when compared to larvae. Keywords: Metamorphosis, Hox gene collinearity, Indirect development, Morphology, Spiralia, Lophophorata, Biphasic life cycle *Correspondence: [email protected] Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway © The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/ publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Gąsiorowski and Hejnol EvoDevo (2019) 10:1 Page 2 of 19 Background of the Hox genes, yet there are shifts in the combinations Hox genes encode a family of conserved homeodomain of genes defning particular body regions before and after transcription factors from the ANTP class, which by metamorphosis [47, 48]. On the other hand, in other ani- binding to regulatory DNA sequences can activate or mals (especially those with the more pronounced meta- suppress transcription of downstream genes (e.g., [1, 2]). morphosis) only one of the developmental stages exhibits Hox genes are present in genomes of almost all investi- canonical spatial collinearity of Hox genes expression, gated animals (with exception of Porifera, Ctenophora whereas the remaining stage shows either a non-col- and Placozoa [3–7]) and are hypothesized to represent linear expression or does not express Hox genes at all. a synapomorphy of the clade consisting of Cnidaria and For instance, in the tunicate Ciona intestinalis Hox genes Bilateria [4, 8–10]. In most of bilaterians, Hox genes exhibit spatially collinear expression in the nervous sys- are expressed during embryogenesis, being involved in tem of larvae, whereas in juveniles only the three poste- antero-posterior (A-P) patterning of either the whole rior genes are expressed in the intestine [15]. Conversely embryo or at least some of its developing organ systems in pilidiophoran nemertean Micrura alaskensis and in (e.g., [1, 2, 11]). Interestingly, in the genomes of some indirectly developing enteropneust Schiozcardium cali- animals, the Hox genes are clustered along the chromo- fornicum the specialized larvae develop without express- somes in the same order as they are expressed along A-P ing any of the Hox genes, which, in turn, are expressed axis, a phenomenon referred to as spatial collinearity [2, in the canonical collinear way only in the rudiments of 11–13]. Te clustering of Hox genes in the genome is juvenile worms developing either inside larval body hypothesized as a plesiomorphic feature of Bilateria (e.g., (pilidiophorans) or as the posterior extension of late larva [13]), which, however, went through extensive remod- (enteropneusts) [49, 50]. A somehow similar situation is eling in some evolutionary lineages (e.g., [12, 14–22]. Yet, found in the indirectly developing sea urchin Strongylo- spatial collinearity can be preserved despite a disorgani- centrotus purpuratus, in which only two Hox genes (hox7 zation or split of the ancestral Hox cluster (e.g., [14]), the and hox 11/13b) take part in the larva formation, whereas situation for which the term trans-collinearity was coined the rudiments of adult animal, developing inside the by Duboule [12]. larval body, show collinear expression of fve Hox genes Initially the role of Hox genes has been studied in the (hox7, hox8, hox9/10, hox11/13a and hox11/13b) in the developing embryo of Drosophila melanogaster [23], later extra-axial mesoderm [51, 53–55]. Yet another type of supplemented by the data from other insects, vertebrates the metamorphosis-related Hox genes expression shifts and nematodes [24–26]. Recent advance of molecular is found in scaphopod Antalis entalis in which only the and bioinformatic techniques allowed the investigation of mid-trochophore stage exhibits staggered Hox genes Hox gene expression in the embryos and larvae of several expression, whereas both competent larvae and postmet- non-model species, including, e.g., xenacoelomorphs [16, amorphic juveniles lack spatial collinearity [52]. Some of 27, 28], hemichordates [29], onychophorans [30], tardi- the scaphopod Hox genes partially retain their expression grades [31], rotifers [32], annelids [33–35], mollusks [36– profles throughout metamorphosis (hox2, hox5, lox5), 40], nemerteans [41] and brachiopods [19], essentially whereas other substantially changes their expression increasing knowledge on the diversity of Hox gene-based domains (hox3, lox4, post1, post2) or are expressed only patterning systems in Bilateria. before (hox1) or after (hox4) metamorphosis [52]. It is Many animals are characterized by an indirect life therefore evident that the metamorphosis-related shifts cycle in which embryos develop through a larval stage in Hox gene expression and function vary a lot from one and subsequent metamorphosis, during which the larval animal clade to another, as a result of diverse evolution- body is reshaped into the adult one (e.g., [42, 43]). As lar- ary and developmental processes, which shape the ontog- vae and adults can signifcantly difer in their morphol- eny of each particular group [56]. ogy, the transition process might be quite dramatic and One of the animal groups with a distinct metamor- hence attracted attention of many researchers as one of phosis event are rhynchonelliformean brachiopods, the pivotal moments of the animal development [44–46]. represented by T. transversa for which Schiemann et al. Although the process of metamorphosis has puzzled recently described Hox genes expression in embryos numerous developmental biologists, there are relatively and larvae [19]. Brachiopods, along with phoronids and few studies regarding shifts of Hox gene expression possibly ectoprocts, constitute the clade Lophophorata accompanying it [15, 47–52]. In some animals, both lar- (Fig. 1A, [57, 58]), which, together with, for example, vae and adults show canonical spatial collinearity, which annelids, mollusks, fatworms, nemerteans and rotifers, often correlates with the gradual type of metamorphosis. belongs to a large clade of protostome animals called Tis can be exemplifed by investigated annelid species, in Spiralia (Fig. 1A, [58–61]). Extant brachiopods are tradi- which both life stages exhibit spatial collinearity of most tionally divided into three groups: Rhynchonelliformea, Gąsiorowski and Hejnol EvoDevo (2019) 10:1 Page 3 of 19 Fig. 1 Phylogenetic
Recommended publications
  • Calcium Carbonate Biomineralisation in Disparate Systems - Common Mechanisms?
    England, Jennifer Katherine (2005) Calcium carbonate biomineralisation in disparate systems - common mechanisms? PhD thesis http://theses.gla.ac.uk/4024/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Calcium Carbonate Biomineralisation in Disparate Systems - Common Mechanisms? Jennifer Katherine England A thesis submitted for the degree of Doctor of Philosophy Division of Earth Sciences, Centre for Geosciences, University of Glasgow March 2005 © Jennifer England 2005 Abstract Biominerals are composite materials in which orgaruc components control mineral nucleation and structure. Calcium minerals account for over 50% of biominerals, with calcium carbonate being the most common type. This study considers the extent to which four calcium carbonate biomineral systems share common characteristics. Within the sample set, there is a range of ultrastructures and two types of calcium carbonate polymorph (calcite and aragonite). The mini survey includes three invertebrate systems: two members of the Phylum Brachiopoda; the articulated brachiopod Terebratulina retusa (Subphylum Rhynchonelliformea) and the inarticulated brachiopod Novocrania anomala (Subphylum Craniiformea), and a member of the. Mollusca, the bivalve Mytilus edulis.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • DOGAMI Open-File Report O-86-06, the State of Scientific
    "ABLE OF CONTENTS Page INTRODUCTION ..~**********..~...~*~~.~...~~~~1 GORDA RIDGE LEASE AREA ....................... 2 RELATED STUDIES IN THE NORTH PACIFIC .+,...,. 5 BYDROTHERMAL TEXTS ........................... 9 34T.4 GAPS ................................... r6 ACKNOWLEDGEMENT ............................. I8 APPENDIX 1. Species found on the Gorda Ridge or within the lease area . .. .. .. .. .. 36 RPPENDiX 2. Species found outside the lease area that may occur in the Gorda Ridge Lease area, including hydrothermal vent organisms .................................55 BENTHOS THE STATE OF SCIENTIFIC INFORMATION RELATING TO THE BIOLOGY AND ECOLOGY 3F THE GOUDA RIDGE STUDY AREA, NORTZEAST PACIFIC OCEAN: INTRODUCTION Presently, only two published studies discuss the ecology of benthic animals on the Gorda Sidge. Fowler and Kulm (19701, in a predominantly geolgg isal study, used the presence of sublittor31 and planktsnic foraminiferans as an indication of uplift of tfie deep-sea fioor. Their resuits showed tiac sedinenta ana foraminiferans are depositea in the Zscanaba Trough, in the southern part of the Corda Ridge, by turbidity currents with a continental origin. They list 22 species of fararniniferans from the Gorda Rise (See Appendix 13. A more recent study collected geophysical, geological, and biological data from the Gorda Ridge, with particular emphasis on the northern part of the Ridge (Clague et al. 19843. Geological data suggest the presence of widespread low-temperature hydrothermal activity along the axf s of the northern two-thirds of the Corda 3idge. However, the relative age of these vents, their present activity and presence of sulfide deposits are currently unknown. The biological data, again with an emphasis on foraminiferans, indicate relatively high species diversity and high density , perhaps assoc iated with widespread hydrotheraal activity.
    [Show full text]
  • Mechanics Unlocks the Morphogenetic Puzzle of Interlocking Bivalved Shells
    Mechanics unlocks the morphogenetic puzzle of interlocking bivalved shells Derek E. Moultona,1 , Alain Gorielya , and Regis´ Chiratb aMathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom; and bCNRS 5276, LGL-TPE (Le Laboratoire de Geologie´ de Lyon: Terre, Planetes,` Environnement), Universite´ Lyon 1, 69622 Villeurbanne Cedex, France Edited by Sean H. Rice, Texas Tech University, Lubbock, TX, and accepted by Editorial Board Member David Jablonski November 11, 2019 (received for review September 24, 2019) Brachiopods and mollusks are 2 shell-bearing phyla that diverged tal events causing shell injuries. Yet, in all cases the interlocking from a common shell-less ancestor more than 540 million years ago. of the 2 shell edges is tightly maintained. These observations Brachiopods and bivalve mollusks have also convergently evolved imply that the interlocking pattern emerges as the result of epi- a bivalved shell that displays an apparently mundane, yet strik- genetic interactions modulating the behavior of the secreting ing feature from a developmental point of view: When the shell mantle during shell development. is closed, the 2 valve edges meet each other in a commissure that Here, we provide a geometric and mechanical explanation forms a continuum with no gaps or overlaps despite the fact that for this morphological trait based on a detailed analysis of the each valve, secreted by 2 mantle lobes, may present antisymmet- shell geometry during growth and the physical interaction of the ric ornamental patterns of varying regularity and size. Interlock- shell-secreting soft mantle with both the rigid shell edge and ing is maintained throughout the entirety of development, even the opposing mantle lobe.
    [Show full text]
  • Download PDF Version
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Novocrania anomala, Dendrodoa grossularia and Sarcodictyon roseum on variable salinity circalittoral rock MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review John Readman 2016-03-31 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/264]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Readman, J.A.J., 2016. [Novocrania anomala], [Dendrodoa grossularia] and [Sarcodictyon roseum] on variable salinity circalittoral rock. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.264.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based
    [Show full text]
  • Analysis of the Complete Mitochondrial DNA Sequence of the Brachiopod Terebratulina Retusa Places Brachiopoda Within the Protostomes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/12415870 Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes Article in Proceedings of the Royal Society B: Biological Sciences · November 1999 DOI: 10.1098/rspb.1999.0885 · Source: PubMed CITATIONS READS 83 50 2 authors, including: Martin Schlegel University of Leipzig 151 PUBLICATIONS 2,931 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Rare for a reason? Scale-dependence of factors influencing rarity and diversity of xylobiont beetles View project Bat diversity and vertical niche activity in the fluvial flood forest Leipzig View project All content following this page was uploaded by Martin Schlegel on 22 May 2014. The user has requested enhancement of the downloaded file. Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes Alexandra Stechmann* and Martin Schlegel UniversitÌt Leipzig, Institut fÏr Zoologie/Spezielle Zoologie,Talstr. 33, 04103 Leipzig, Germany Brachiopod phylogeny is still a controversial subject. Analyses using nuclear 18SrRNA and mitochondrial 12SrDNA sequences place them within the protostomes but some recent interpretations of morphological data support a relationship with deuterostomes. In order to investigate brachiopod a¤nities within the metazoa further,we compared the gene arrangement on the brachiopod mitochondrial genome with several metazoan taxa. The complete (15 451bp) mitochondrial DNA (mtDNA) sequence of the articulate brachiopod Terebratulina retusa was determined from two overlapping long polymerase chain reaction products. All the genes are encoded on the same strand and gene order comparisons showed that only one major rearrangement is required to interconvert the T.retusa and Katharina tunicata (Mollusca: Polyplaco- phora) mitochondrial genomes.
    [Show full text]
  • Lithology Could Affect Benthic Communities Living Below Boulders
    Journal of the Marine Lithology could affect benthic communities Biological Association of the United Kingdom living below boulders 1 1 2 2 1 cambridge.org/mbi M. Canessa , G. Bavestrello , E. Trainito , A. Navone and R. Cattaneo-Vietti 1Dipartimento di Scienze della Terra dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa, 26 −16132 Genova, Italy and 2Tavolara-Punta Coda Cavallo MPA, Via San Giovanni, 14 – 07026 Olbia, Italy Review Abstract Cite this article: Canessa M, Bavestrello G, Structure and diversity of sessile zoobenthic assemblages seem to be driven not only by chem- Trainito E, Navone A, Cattaneo-Vietti R (2020). ical-physical constraints and biological interactions but also by substrate lithology and its sur- Lithology could affect benthic communities face features. Nevertheless, broadly distributed crustose epilithic corallines could mask the role living below boulders. Journal of the Marine of substrate on animal settling. To evaluate the direct influence of different rocky substrates, Biological Association of the United Kingdom occurrence and coverage of several sessile species, growing on the dark (i.e. coralline-free) face 100, 879–888. https://doi.org/10.1017/ S0025315420000818 of sublittoral limestone and granite boulders were compared in the Tavolara MPA (Mediterranean Sea). The analysis of photographic samples demonstrated significant differ- Received: 9 January 2020 ences in terms of species composition and coverage, according to lithology. Moreover, lime- Revised: 30 July 2020 stone boulders were widely bare, while the cover per cent was almost total on granite. The Accepted: 10 August 2020 First published online: 11 September 2020 leading cause of observed patterns could be the different level of dissolution of the two types of rocks, due to their different mineral composition and textural characteristics.
    [Show full text]
  • Coincidence of Photic Zone Euxinia and Impoverishment of Arthropods
    www.nature.com/scientificreports OPEN Coincidence of photic zone euxinia and impoverishment of arthropods in the aftermath of the Frasnian- Famennian biotic crisis Krzysztof Broda1*, Leszek Marynowski2, Michał Rakociński1 & Michał Zatoń1 The lowermost Famennian deposits of the Kowala quarry (Holy Cross Mountains, Poland) are becoming famous for their rich fossil content such as their abundant phosphatized arthropod remains (mostly thylacocephalans). Here, for the frst time, palaeontological and geochemical data were integrated to document abundance and diversity patterns in the context of palaeoenvironmental changes. During deposition, the generally oxic to suboxic conditions were interrupted at least twice by the onset of photic zone euxinia (PZE). Previously, PZE was considered as essential in preserving phosphatised fossils from, e.g., the famous Gogo Formation, Australia. Here, we show, however, that during PZE, the abundance of arthropods drastically dropped. The phosphorous content during PZE was also very low in comparison to that from oxic-suboxic intervals where arthropods are the most abundant. As phosphorous is essential for phosphatisation but also tends to fux of the sediment during bottom water anoxia, we propose that the PZE in such a case does not promote the fossilisation of the arthropods but instead leads to their impoverishment and non-preservation. Thus, the PZE conditions with anoxic bottom waters cannot be presumed as universal for exceptional fossil preservation by phosphatisation, and caution must be paid when interpreting the fossil abundance on the background of redox conditions. 1 Euxinic conditions in aquatic environments are defned as the presence of H2S and absence of oxygen . If such conditions occur at the chemocline in the water column, where light is available, they are defned as photic zone euxinia (PZE).
    [Show full text]
  • Clustered Brachiopod Hox Genes Are Not Expressed Collinearly and Are
    Clustered brachiopod Hox genes are not expressed PNAS PLUS collinearly and are associated with lophotrochozoan novelties Sabrina M. Schiemanna,1, José M. Martín-Durána,1, Aina Børvea, Bruno C. Vellutinia, Yale J. Passamaneckb, and Andreas Hejnol1,a,2 aSars International Centre for Marine Molecular Biology, University of Bergen, Bergen 5006, Norway and bKewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI 96822 Edited by Sean B. Carroll, Howard Hughes Medical Institute and University of Wisconsin–Madison, Madison, WI, and approved January 19, 2017 (received for review August 30, 2016) Temporal collinearity is often considered the main force preserving viding spatial information (29). They also are involved in Hox gene clusters in animal genomes. Studies that combine patterning different tissues (30), and often have been recruited genomic and gene expression data are scarce, however, particularly for the evolution and development of novel morphological traits, in invertebrates like the Lophotrochozoa. As a result, the temporal such as vertebrate limbs (31, 32), cephalopod funnels and arms collinearity hypothesis is currently built on poorly supported foun- (28), and beetle horns (33). dations. Here we characterize the complement, cluster, and expres- Thus, it is not surprising that Hox genes show diverse ar- sion of Hox genes in two brachiopod species, Terebratalia transversa rangements regarding their genomic organization and expression and Novocrania anomala. T. transversa has a split cluster with 10 profiles in the Spiralia (34), a major animal clade that includes lab pb Hox3 Dfd Scr Lox5 Antp Lox4 Post2 Post1 genes ( , , , , , , , , ,and ), highly disparate developmental strategies and body organizations N. anomala Post1 whereas has 9 genes (apparently missing ).
    [Show full text]
  • Ground Plan of the Larval Nervous System in Phoronids: Evidence from Larvae of Viviparous Phoronid
    DOI: 10.1111/ede.12231 RESEARCH PAPER Ground plan of the larval nervous system in phoronids: Evidence from larvae of viviparous phoronid Elena N. Temereva Department of Invertebrate Zoology, Biological Faculty, Moscow State Nervous system organization differs greatly in larvae and adults of many species, but University, Moscow, Russia has nevertheless been traditionally used for phylogenetic studies. In phoronids, the organization of the larval nervous system depends on the type of development. With Correspondence Elena N. Temereva, Department of the goal of understanding the ground plan of the nervous system in phoronid larvae, the Invertebrate Zoology, Biological Faculty, development and organization of the larval nervous system were studied in a viviparous Moscow State University, Moscow 119991, phoronid species. The ground plan of the phoronid larval nervous system includes an Russia. Email: [email protected] apical organ, a continuous nerve tract under the preoral and postoral ciliated bands, and two lateral nerves extending between the apical organ and the nerve tract. A bilobed Funding information Russian Foundation for Basic Research, larva with such an organization of the nervous system is suggested to be the primary Grant numbers: 15-29-02601, 17-04- larva of the taxonomic group Brachiozoa, which includes the phyla Brachiopoda and 00586; Russian Science Foundation, Phoronida. The ground plan of the nervous system of phoronid larvae is similar to that Grant number: 14-50-00029 of the early larvae of annelids and of some deuterostomians. The protostome- and deuterostome-like features, which are characteristic of many organ systems in phoronids, were probably inherited by phoronids from the last common bilaterian ancestor.
    [Show full text]
  • Atlantic Area Eunis Habitats Adding New Habitat Types from European Atlantic Coast to the EUNIS Habitat Classification
    Atlantic Area Eunis Habitats Adding new habitat types from European Atlantic coast to the EUNIS Habitat Classification MeshAtlantic Technical Report Nº 3/2013 September 2013 Atlantic Area Eunis Habitats Adding new habitat types from European Atlantic coast to the EUNIS Habitat Classification MeshAtlantic Technical Report Nº 3/2013 September 2013 Citation: Monteiro, P., Bentes, L., Oliveira, F., Afonso, C., Rangel, M., Alonso, C., Mentxaka, I., Germán Rodríguez, J., Galparsoro, I., Borja, A., Chacón, D., Sanz Alonso, J.L., Guerra, M.T., Gaudêncio, M.J., Mendes, B., Henriques, V., Bajjouk, T., Bernard, M., Hily, C., Vasquez, M., Populus, J., Gonçalves, J.M.S. (2013). Atlantic Area Eunis Habitats. Adding new habitat types from European Atlantic coast to the EUNIS Habitat Classification. Technical Report No.3/2013 - MeshAtlantic, CCMAR-Universidade do Algarve, Faro, 72 pp.. CONTENTS SUMMARY ............................................................................................................................. 1 INTRODUCTION ..................................................................................................................... 1 OBJECTIVES ................................................................................................................... 1 CASE STUDIES ........................................................................................................................ 2 CASE STUDY 1 Portugal - Algarve ...........................................................................................2 INTRODUCTION
    [Show full text]
  • GY 112L: Earth History Lab
    UNIVERSITY OF SOUTH ALABAMA GY 112L: Earth History Lab Week 9: Paleozoic Part 3 Instructor: Dr. Douglas W. Haywick Today’s Agenda The Paleozoic Part 3 (Week 9 exercises) 1) Brachiopods 2) Molluscs 3) Alabama Stratigraphy Brachiopoda Brachiopod Facts: Taxonomy: (under review) Phylum: Brachiopoda Class: Inarticulata Class: Articulata Brachiopoda Brachiopod Facts: Taxonomy: Phylum: Brachiopoda Class: Inarticulata Class: Articulata Range: Cambrian-Recent (Inarticulates were first) Brachiopoda Brachiopod Facts: Taxonomy: Phylum: Brachiopoda Class: Inarticulata Class: Articulata Range: Cambrian-Recent Mode of Life: Marine, benthic, filter feeder Brachiopoda Brachiopod Facts: Taxonomy: Phylum: Brachiopoda Class: Inarticulata Class: Articulata Range: Cambrian-Recent Mode of Life: Marine, benthic, filter feeder Mineral composition: calcite, phosphate Brachiopoda Brachiopod Facts: Taxonomy: Phylum: Brachiopoda Class: Inarticulata Class: Articulata Range: Cambrian-Recent Mode of Life: Marine, benthic, filter feeder Mineral composition: calcite, phosphate Fossil Pres.: pristine (sometimes external molds) The Brachiopod Animal Inarticulates The Brachiopod Animal Inarticulates Brachiopod Symmetry Symmetrical across the valves (down the medial line) Brachiopod Symmetry Symmetrical across the valves (down the medial line) Brachiopod Symmetry Symmetrical across the valves (down the medial line) Articulate Brachiopods Brachiopod Symmetry Symmetrical across the valves (down the medial line) Articulate Brachiopods Brachiopod Symmetry Not symmetrical between
    [Show full text]