Ring- En Moduultheorie

Total Page:16

File Type:pdf, Size:1020Kb

Ring- En Moduultheorie Ring- en Moduultheorie Geoffrey Janssens Eric Jespers Vakgroep Wiskunde 2e Bachelor Wiskunde 2019–2020 Voorwoord Naast groepentheorie, vormen (commutatieve) ring- en moduultheorie onmisbare hoofd- stukken in de algebrakennis van een bachelor in de wiskunde. Kennis van deze onderde- len is onontbeerlijk in zowat elke (gevorderde) algebracursus. In het eerste hoofdstuk in deze cursus worden groeprepresentaties bestudeerd. Deze theorie is waardevol voor de studie van eindige groepen. In de cursus groepentheorie hebben we gezien dat (abstracte) algebra ontstaan is uit de studie van concrete objecten. Door groepsrepresentaties te ontwikkelen, beschikken we over nieuw gereedschap om eender welke abstracte eindige groep te bestuderen door middel van een homomorfisme naar de groep van lineaire trans- formaties van een vectorruimte. Daardoor wordt als het ware de abstracte groep opnieuw geconcretiseerd. Wij zullen slechts een initi¨ele studie maken van groeprepresentaties en dit via lineaire algebra (een klassieke manier). In het twee en derde hoofdstuk wordt de basis van de ring- en moduultheorie be- handeld. Het hoofdstuk ringtheorie heeft belangrijke toepassingen zoals bijvoorbeeld de theorie van de velduitbreidingen en Galoistheorie. Modulen over ringen zijn een (verre- gaande) veralgemening van vectorruimten over velden. Naast belangrijke toepassingen die in gevorderde cursussen aan bod komen, worden modulen ook gebruikt om op een abstractere wijze groepsrepresentaties in te voeren (hetgeen de moderne manier is). Al- dus vormen de drie hoofdstukken ´e´en geheel. Tenslotte komen enkele toepassingen in het vierde hoofdstuk aan bod, die in functie van de beschikbare tijd al dan niet behandeld worden. iii Inhoudsopgave Voorwoord iii Inhoudsopgave v 1 Representatietheorie 1 1.1 Inleiding.................................... 1 1.2 Vectorruimten................................. 2 1.3 Representaties................................. 8 1.4 Voorbeeldenvanrepresentaties . 10 1.5 Deelrepresentaties............................... 13 1.6 Irreducibelerepresentaties . 16 1.7 Tensorproductvanrepresentaties . .. 17 1.8 Karaktervaneenrepresentatie. 20 1.9 HetLemmavanSchur ............................ 22 1.10 Orthogonaliteitsrelaties . 25 1.11 Dereguliererepresentatie . 28 1.12Klassefuncties ................................. 30 1.13Voorbeelden.................................. 34 1.13.1 Cyclischegroepen........................... 34 1.13.2 Di¨edergroep D6 vanorde6...................... 34 1.13.3 De quaterniongroep Q8 ........................ 36 v 1.13.4 De alternerende groep A4 ...................... 37 2 Ringen en idealen 39 2.1 Inleiding.................................... 39 2.2 Ringen: Definities en voorbeelden . 40 2.3 Deelringen................................... 47 2.4 Ringhomomorfismen ............................. 49 2.5 Idealen..................................... 52 2.6 Isomorfismestelling voor ringen . 56 2.7 Priemidealen en maximale idealen . 61 2.8 Maximaleidealen ............................... 66 2.9 NoetherseRingen............................... 68 2.10DeChinesereststelling ............................ 73 2.11 Breukenlichamen, breukenringen en lokale ringen . .. 76 2.12 Hoofdideaal- en Euclidische ringen . 80 2.13 Uniekefactorisatiedomeinen . 84 3 Modulen 91 3.1 Inleiding.................................... 91 3.2 Modulenendeelmodulen........................... 91 3.3 Homomorfismen en quoti¨entmodulen .................... 93 3.4 Modulenengroeprepresentaties . 96 3.5 VrijeModulen.................................104 3.6 Eindigvoortgebrachtemodulen . 108 3.7 Modulen over Euclidische domeinen . 110 4 Toepassingen 115 4.1 Velden en velduitbreidingen . 115 vi 4.2 De stelling van Cayley-Hamilton . 131 4.3 Exacterijenenprojectievemodulen. 132 5 Oefeningen 147 5.1 Vectorruimten.................................147 5.2 Herhalingsoefeningen groepentheorie . 147 5.3 Representaties.................................149 5.4 Ringen.....................................153 5.5 Modulen....................................162 Bibliografie 165 Index 167 Some historical data 171 Representatietheorie Hoofdstuk 1 1.1 Inleiding De theorie van groeprepresentaties is die tak van de wiskunde waarin eigenschappen van abstracte groepen worden bestudeerd via hun re- presentaties als lineaire transformaties van vectorruimten. Repre- sentatietheorie is een zeer nuttige manier om groepentheoretische problemen op te lossen omdat zij problemen reduceert naar lineaire algebra, een zeer goed uitgewerkte theorie. Het is ook o.a. van be- lang in fysica. Bijvoorbeeld, representatietheorie wordt gebruikt om een beschrijving te geven van hoe de symmetriegroep van een fy- sisch systeem de oplossingen van de vergelijkingen van dat systeem be¨ınvloedt. Frobenius (1849- Representatietheorie kan ook gedefinieerd worden voor andere 1917) wiskundige structuren, zoals o.a. associatieve algebra’s, Lie en Hopf algebra’s. In meer gevorderde cursussen komt dit aan bod. De term “representatie van een groep” wordt ook in een alge- menere context gebruikt. Het is een “beschrijving” van een groep als een groep van transformaties van een wiskundig object: een re- presentatie is een homomorfisme van de groep naar de groep van automorfismen van een object. Als het object een vectorruimte is dan verkrijgen wij een lineaire representatie. In deze cursus beper- ken wij ons tot deze studie. De algemene eigenschappen van representatietheorie van een ein- dige groep G, over de complexe getallen, werden ontdekt door Fer- Brauer dinand Georg Frobenius rond de jaren 1900. Later is de modu- (1901- 1977) laire (karakteristiek niet nul) representatietheorie ontwikkeld door Richard Brauer. 1 1.2 Vectorruimten In deze paragraaf worden enkele basiseigenschappen van vectorruimten over velden her- haald. Voorts voeren wij het tensorproduct van vectorruimten in. Veronderstel dat V een vectorruimte is over een veld K. We weten uit de cursus lineaire algebra dat (i) Er bestaat steeds een deelverzameling B V die een basis is voor de vectorruimte ⊂ V . (ii) Indien B eindig is, dan is de cardinaliteit van B de dimensie van de vectorruimte, genoteerd als dim K (V ) = n. E´en van de belangrijke stellingen uit de lineaire algebra zegt precies dat indien er een basis bestaat uit een eindig aantal elementen, elke andere basis precies evenveel elementen telt. (iii) Het is mogelijk dat er geen eindige verzameling gevonden kan worden die een basis is voor V . In dat geval kan men aantonen, door het Lemma van Zorn te gebruiken, dat er steeds een basis gevonden kan worden. Merk op dat binnen deze context elke vector nog steeds als een eindige lineaire combinatie van elementen uit de basis geschreven kan worden. (iv) We zullen zo goed als steeds te maken krijgen met eindigdimensionale vectorruim- ten. Voor de invoering van het tensorproduct, hebben we echter zogenaamde vrije vectorruimten nodig die oneindigdimensionaal kunnen zijn. Voor eindigdimensionale K-vectorruimten V herhalen we de volgende begrippen. (i) De verzameling van de K-lineaire automorfismen van de vectorruimte noteren wij GL(V ). Dit is een groep voor de bewerking , de samenstelling van functies. Het ◦ eenheidselement uit de groep GL(V ) is de afbeelding die elke vector v V op ∈ zichzelf afbeeldt. Deze afbeelding noteren we als 1V . (ii) De verzameling GL(V ) is ook een K-vectorruimte is. De optelling van twee lineaire afbeeldingen f,g GL(V ) is de puntsgewijze optelling: ∈ f + g : V V ; v f(v)+ g(v) → 7→ en de scalaire vermenigvuldiging van f GL(V ) met een scalair r K is gedefi- ∈ ∈ nieerd als rf : V V ; v rf(v) → 7→ Als we het in vervolg spreken over de groep GL(V ), dan veronderstellen we impliciet dat de groepsbewerking de samenstelling van afbeeldingen is ( ). Waar nodig ◦ 2 zullen we echter ook lineaire combinaties van afbeeldingen uit GL(V ) beschouwen, daarbij steunen we dan op de vectorruimtestructuur. (iii) De verzameling van alle inverteerbare n n matrices over het veld K noteren we als × GLn(K). Samen met de matrixvermenigvuldiging is dit een groep. We herhalen nu het verband tussen deze groep en GL(V ), V een n-dimensionale K-vectorruimte. Kies een K-basis E = e ,...,e van V . Als f GL(V ) dan noteren wij { 1 n} ∈ f =(f ) M (K) [E,E] ij ∈ n waarbij n f(ej)= fijei . i=1 X Dan is de afbeelding ϕ : GL(V ) GL (K): f f → n 7→ [E,E] een groepsisomorfisme. Er zijn vele voorbeelden van vectorruimten die niet eindigdimensionaal zijn. Vrije vectorruimten over een oneindige verzameling zijn hiervan een voorbeeld, en zullen ge- bruikt worden om het tensorproduct te defini¨eren. Definitie 1.2.1. Zij X een willekeurige niet-ledige verzameling en K een veld. Ver- onderstel dat f : X K een functie is. De support van f is de verzameling S = x X f(x) = 0→. We noemen de support van een functie eindig als S een { ∈ | 6 } eindige deelverzameling is van X. Definitie 1.2.2. Zij X een willekeurige niet-ledige verzameling en K een veld. We defini¨eren F (X) = f : X K f heeft een eindige support . Samen met de punts- { → | } gewijze optelling van functies en de vermenigvuldiging met elementen uit K, is F (X) een vectorruimte, de vrije vectorruimte over K of ook, de vrije K-vectorruimte. Definieer voor de gegeven verzameling X en het veld K de functies δx als volgt: δ : X K, δ (y) = 1 als x = y en δ (y) = 0 als x = y. Het is duidelijk dat de x → x x 6 verzameling δx x X een basis is voor F (X). Als X een eindige verzameling is, dan is X de dimensie{ | ∈ van }F (X). | | De afbeelding ι : X F (X): ι(x) := δ → x 3 is een inbedding van de verzameling X in F (X), deze afbeelding is uiteraard
Recommended publications
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Math 126 Lecture 4. Basic Facts in Representation Theory
    Math 126 Lecture 4. Basic facts in representation theory. Notice. Definition of a representation of a group. The theory of group representations is the creation of Frobenius: Georg Frobenius lived from 1849 to 1917 Frobenius combined results from the theory of algebraic equations, geometry, and number theory, which led him to the study of abstract groups, the representation theory of groups and the character theory of groups. Find out more at: http://www-history.mcs.st-andrews.ac.uk/history/ Mathematicians/Frobenius.html Matrix form of a representation. Equivalence of two representations. Invariant subspaces. Irreducible representations. One dimensional representations. Representations of cyclic groups. Direct sums. Tensor product. Unitary representations. Averaging over the group. Maschke’s theorem. Heinrich Maschke 1853 - 1908 Schur’s lemma. Issai Schur Biography of Schur. Issai Schur Born: 10 Jan 1875 in Mogilyov, Mogilyov province, Russian Empire (now Belarus) Died: 10 Jan 1941 in Tel Aviv, Palestine (now Israel) Although Issai Schur was born in Mogilyov on the Dnieper, he spoke German without a trace of an accent, and nobody even guessed that it was not his first language. He went to Latvia at the age of 13 and there he attended the Gymnasium in Libau, now called Liepaja. In 1894 Schur entered the University of Berlin to read mathematics and physics. Frobenius was one of his teachers and he was to greatly influence Schur and later to direct his doctoral studies. Frobenius and Burnside had been the two main founders of the theory of representations of groups as groups of matrices. This theory proved a very powerful tool in the study of groups and Schur was to learn the foundations of this subject from Frobenius.
    [Show full text]
  • Gazette 35 Vol 2
    Volume 36 Number 5 2009 The Australian Mathematical Society Gazette Rachel Thomas and Birgit Loch (Editors) Eileen Dallwitz (Production Editor) Dept of Mathematics and Computing E-mail: [email protected] The University of Southern Queensland Web: http://www.austms.org.au/Gazette Toowoomba, QLD 4350, Australia Tel: +61 7 4631 1157; Fax: +61 7 4631 5550 The individual subscription to the Society includes a subscription to the Gazette. Libraries may arrange subscriptions to the Gazette by writing to the Treasurer. The cost for one volume consisting of five issues is AUD 99.00 for Australian customers (includes GST), AUD 114.00 (or USD 110.00) for overseas customers (includes postage, no GST applies). The Gazette seeks to publish items of the following types: • Reviews of books, particularly by Australian authors, or books of wide interest • Classroom notes on presenting mathematics in an elegant way • Items relevant to mathematics education • Letters on relevant topical issues • Information on conferences, particularly those held in Australasia and the region • Information on recent major mathematical achievements • Reports on the business and activities of the Society • Staff changes and visitors in mathematics departments • News of members of the Australian Mathematical Society Local correspondents are asked to submit news items and act as local Society representatives. Material for publication and editorial correspondence should be submitted to the editor. Notes for contributors Please send contributions to [email protected]. Submissions should be fairly short, easy to read and of interest to a wide range of readers. We ask authors to typeset technical articles using LATEX2ε, AMS-LATEX or variants.
    [Show full text]
  • Bernhard Hermann Neumann 1909–2002
    CSIRO PUBLISHING www.publish.csiro.au/journals/hras Historical Records of Australian Science, 2010, 21, 253–282 Bernhard Hermann Neumann 1909–2002 Cheryl E. Praeger School of Mathematics and Statistics, University of Western Australia, WA 6009, Australia. Email: [email protected] Bernhard Hermann Neumann was born and educated in Berlin. He held doctorates from Berlin and Cam- bridge, and mathematical positions at universities in Cardiff, Hull, Manchester, and the Australian National University (ANU) in Canberra. Whereas his move to the UK in 1933 was a result of the difficulties he faced as a Jew in finding employment in Germany, his move to Australia in 1962 was to set up a new research Department of Mathematics at the Institute of Advanced Studies at the ANU. Bernhard Neumann was famous for both his seminal research work in algebra and his strong support of all endeavours in mathematics. His scholarly publications span more than seventy years. His honours include Fellowship of the Royal Society and of the Australian Academy of Science, appointment as Companion of the Order of Australia, and numerous honorary doctorates. To Bernhard it was important to share and spread the joy of doing mathematics. Bernhard Hermann Neumann was born Early Life and Education in Berlin, Germany, on 15 October 1909. Bernhard was named after his two grand- After completing his doctorate in Berlin, fathers. His paternal grandfather Bernhard he moved to the UK to seek employment, Neumann was a hardware merchant in Karl- and undertook a second doctorate in Cam- sruhe in the south of Germany, and Bern- bridge.
    [Show full text]
  • A Calendar of Mathematical Dates January
    A CALENDAR OF MATHEMATICAL DATES V. Frederick Rickey Department of Mathematical Sciences United States Military Academy West Point, NY 10996-1786 USA Email: fred-rickey @ usma.edu JANUARY 1 January 4713 B.C. This is Julian day 1 and begins at noon Greenwich or Universal Time (U.T.). It provides a convenient way to keep track of the number of days between events. Noon, January 1, 1984, begins Julian Day 2,445,336. For the use of the Chinese remainder theorem in determining this date, see American Journal of Physics, 49(1981), 658{661. 46 B.C. The first day of the first year of the Julian calendar. It remained in effect until October 4, 1582. The previous year, \the last year of confusion," was the longest year on record|it contained 445 days. [Encyclopedia Brittanica, 13th edition, vol. 4, p. 990] 1618 La Salle's expedition reached the present site of Peoria, Illinois, birthplace of the author of this calendar. 1800 Cauchy's father was elected Secretary of the Senate in France. The young Cauchy used a corner of his father's office in Luxembourg Palace for his own desk. LaGrange and Laplace frequently stopped in on business and so took an interest in the boys mathematical talent. One day, in the presence of numerous dignitaries, Lagrange pointed to the young Cauchy and said \You see that little young man? Well! He will supplant all of us in so far as we are mathematicians." [E. T. Bell, Men of Mathematics, p. 274] 1801 Giuseppe Piazzi (1746{1826) discovered the first asteroid, Ceres, but lost it in the sun 41 days later, after only a few observations.
    [Show full text]
  • General Kofi A. Annan the United Nations United Nations Plaza
    MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF PHYSICS CAMBRIDGE, MASSACHUSETTS O2 1 39 October 10, 1997 HENRY W. KENDALL ROOM 2.4-51 4 (617) 253-7584 JULIUS A. STRATTON PROFESSOR OF PHYSICS Secretary- General Kofi A. Annan The United Nations United Nations Plaza . ..\ U New York City NY Dear Mr. Secretary-General: I have received your letter of October 1 , which you sent to me and my fellow Nobel laureates, inquiring whetHeTrwould, from time to time, provide advice and ideas so as to aid your organization in becoming more effective and responsive in its global tasks. I am grateful to be asked to support you and the United Nations for the contributions you can make to resolving the problems that now face the world are great ones. I would be pleased to help in whatever ways that I can. ~~ I have been involved in many of the issues that you deal with for many years, both as Chairman of the Union of Concerne., Scientists and, more recently, as an advisor to the World Bank. On several occasions I have participated in or initiated activities that brought together numbers of Nobel laureates to lend their voices in support of important international changes. -* . I include several examples of such activities: copies of documents, stemming from the . r work, that set out our views. I initiated the World Bank and the Union of Concerned Scientists' examples but responded to President Clinton's Round Table initiative. Again, my appreciation for your request;' I look forward to opportunities to contribute usefully. Sincerely yours ; Henry; W.
    [Show full text]
  • Neurosciences and the Human Person
    00_PRIMA PARTE SV 121_pp_1-18.QXD_Layout 1 24/09/13 15:18 Pagina 1 Neurosciences and the Human Person: New Perspectives on Human Activities 00_PRIMA PARTE SV 121_pp_1-18.QXD_Layout 1 24/09/13 15:18 Pagina 2 00_PRIMA PARTE SV 121_pp_1-18.QXD_Layout 1 24/09/13 15:18 Pagina 3 Pontificiae Academiae Scientiarvm Scripta Varia 121 The Proceedings of the Working Group on Neurosciences and the Human Person: New Perspectives on Human Activities 8-10 November 2012 Edited by Antonio M. Battro Stanislas Dehaene Marcelo Sánchez Sorondo Wolf J. Singer EX AEDIBVS ACADEMICIS IN CIVITATE VATICANA • MMXIII 00_PRIMA PARTE SV 121_pp_1-18.QXD_Layout 1 24/09/13 15:18 Pagina 4 The Pontifical Academy of Sciences Casina Pio IV, 00120 Vatican City Tel: +39 0669883195 • Fax: +39 0669885218 Email: [email protected] • Website: www.pas.va The opinions expressed with absolute freedom during the presentation of the papers of this meeting, although published by the Academy, represent only the points of view of the participants and not those of the Academy. ISBN 978-88-7761-106-2 © Copyright 2013 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means, electronic, mechanical, recording, photocopying or otherwise without the expressed written permission of the publisher. PONTIFICIA ACADEMIA SCIENTIARVM • VATICAN CITY 00_PRIMA PARTE SV 121_pp_1-18.QXD_Layout 1 24/09/13 15:18 Pagina 5 Man’s greatness lies in his capacity to think of God. And this means being able to live a conscious and responsible relationship with Him.
    [Show full text]
  • Maverick Mathematician: the Life and Science of J.E. Moyal
    MAVERICK MATHEMATICIAN The Life and Science of J.E. Moyal MAVERICK MATHEMATICIAN The Life and Science of J.E. Moyal Ann Moyal Published by ANU E Press The Australian National University Canberra ACT 0200, Australia Email: [email protected] Web: http://epress.anu.edu.au National Library of Australia Cataloguing-in-Publication entry Moyal, Ann (Ann Mozley), 1926- . Maverick mathematician : the life and science of J.E. Moyal. Includes index. ISBN 1 920942 58 0 (pbk). ISBN 1 920942 59 9 (online) 1. Moyal, J. E. 2. Dirac, P. A. M. (Paul Adrien Maurice), 1902- - Correspondence. 3. Mathematicians - Australia - Biography. 4. Aerospace engineers - Australia - Biography. 5. Quantum theory - Mathematics. I. Title. 510.92 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Indexed by Dr Ann Moyal. Cover design by Teresa Prowse. Portrait by Linda Phillips, 1992. This edition © 2006 ANU E Press To Mimi Hurley, my sister and J.E.M.’s friend. Table of Contents Acknowledgements vii Preface xi Chapter 1. Boyhood 1 Chapter 2. The Making of a Scientific Maverick 9 Chapter 3. Battle With a Legend 19 Chapter 4. The Widening Circle 45 Chapter 5. Antipodean Winds 61 Chapter 6. Argonne National Laboratory 79 Chapter 7. Macquarie University 91 Chapter 8. The Reflective Years 103 Appendix I. Publications of J.E. Moyal 119 Appendix II. P.A.M. Dirac – J. E. Moyal: Correspondence, 1944-1946. Basser Library, Australian Academy of Science, Canberra, MS 45/3/ 123 Appendix III.
    [Show full text]
  • Portraits in SCIENCE
    Portraits IN SCIENCE Compiled and introduced by ANN MOYAL SCIENCE IS ONE of the most important intellectual and cultural forces of the twentieth century, yet surprisingly little is known in Australia of the lives of this country's key scientific men and women and of the contributions they have made to enlarging the boundaries of scientific knowledge. Among these interviews compiled and introduced by Ann Moyal there are two physicists, Sir Mark Oliphant and Professor Harry Messel, and three medical researchers in immunology, human genetics and the brain—Sir Gustav Nossal, Professor Susan Serjeantson and Professor Peter Bishop. Others interviewed include an animal geneticist, Dr Helen Newton Turner; ecologist, biologist and Chief Scientist, Professor Ralph Slatyer; Dr Elizabeth Truswell, a palynologist; Dr Paul Wild, a radiophysicist; and Professor Ted Ringwood, physicist. There are also lively interviews with science communicators, Robyn Williams and Dr Michael Gore. Together the group encompasses the innovative application of scientific knowledge since the 1930s; the foundation of scientific research institutions; high-level Australian representation in international science; and policy development and public education in science. They reveal their formative influences, diversely rewarding experiences and outstanding commitment to their demanding and challenging work. This is an impressive record offering evocative reflections and inspiring achievements. Cover: 'The Great Australian Desert by Night (with the world famous giant telescope at Parkes, NSW)', tapestry by Mathieu Mategot in the National Library of Australia. Portraits IN SCIENCE Compiled and introduced by ANN MOYAL Portraits IN SCIENCE Compiled and introduced by ANN MOYAL National Library of Australia Published with the assistance of the Morris West Trust Fund © National Library of Australia 1994 National Library of Australia Cataloguing-in-Publication entry Portraits in science.
    [Show full text]
  • Notices of the American Mathematical Society ISSN 0002-9920 ABCD Springer.Com
    Notices of the American Mathematical Society ISSN 0002-9920 ABCD springer.com New and Noteworthy from Springer Fundamentals of Stochastic Filtering Encyclopedia of Optimization A. Bain, BNP Paribas, London, UK C. A. Floudas , Princeton University, NJ, 2ND EDITION D. Crisan , Imperial College, London, UK USA; P. M. Pardalos , University of Florida, of the American Mathematical Society The objective of stochastic fi ltering is to determine the best Gainesville, USA (Eds.) March 2008 Volume 55, Number 3 estimate for the state of a stochastic dynamical system from The Encyclopedia of Optimization introduces the reader to a partial observations. The solution of this problem in the complete set of topic that show the wide spectra of research, linear case is the well known Kalman-Bucy fi lter which has richness of ideas, and breadth of applications. This revised and found widespread practical application. The purpose of this greatly expanded edition of a successful reference work, now book is to provide a rigorous mathematical treatment of the in seven volumes, consists of more than 150 completely new non-linear stochastic fi ltering problem using modern entries, with signifi cant attention to new areas of optimization methods. Particular emphasis is placed on the theoretical theories and techniques: e.g., in health science and transpor- analysis of numerical methods for the solution of the fi ltering tation, with such articles as “Algorithms for Genomics,” problem via particle methods. “Optimization and Radiotherapy Treatment Design,” and “Crew The book should provide suffi cient background to enable Scheduling.” study of the recent literature. While no prior knowledge of The fi rst edition (2001) was acclaimed by J.
    [Show full text]
  • Bernhard Neumann
    NZMS Newsletter 47, December 1989 CENTREFOLD Professor Bernhard Neumann The Council of the New Zealand Mathematical Society congratulates Bernhard Neumann on the occasion of his eightieth birthday, 15 October 1989. Readers who know Bernhard well may not be surprised to learn that he celebrated it in style—by joining his wife Dorothea on an early morning flight over Canberra in a hot-air, balloon! Bernhard Hermann Neumann was born in Berlin on 15 October 1909. After studying at the Herderschule in Berlin and at the University of Freiburg, he obtained his Dr.phil. degree from the University of Berlin in 1932. He emigrated to Britain in 1933 (during a time of political upheaval in Germany), and continued his studies at Cambridge, where he was awarded a Ph.D. in 1935. Meanwhile he became secretly engaged to Hanna von Caemmerer, who had been a fellow student in Berlin, and in 1938 she also left for Britain, where they married. At that time Bernhard held a temporary assistant lecturership at Cardiff, but at the beginning of the Second World War he was interned for some weeks (as an enemy alien); upon his release he joined the British Army, serving in the Intelligence Corps from 1940 to 1945. In 1946 he was appointed as a lecturer at the University of Hull, and in 1948 he accepted a position at the University of Manchester, where he stayed for the next thirteen years. Hanna and Bernhard had five children: Irene, Peter, Barbara, Walter and Daniel. Hanna was able to complete her doctorate at the University of Oxford, and after the war she became an assistant lecturer at Hull, and later (in 1958) she too obtained a position in Manchester.
    [Show full text]
  • The Role of Spike Patterns in Neuronal Information Processing
    DISS. ETH NO. 16464 The Role of Spike Patterns in Neuronal Information Processing A Historically Embedded Conceptual Clarification A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH for the degree of Doctor of Sciences (Dr. sc. ETH Z¨urich) presented by Markus Christen Lic. phil. nat., Universit¨at Bern born 07. 01. 1969 accepted on the recommendation of Prof. Dr. Rodney Douglas, Examiner PD Dr. Ruedi Stoop, Co-Examiner, Supervisor Prof. Dr. Michael Hagner, Co-Examiner 2006 ii Author: Markus Christen, lic. phil. nat. Institute of Neuroinformatics Winterthurerstrasse 190 8057 Zurich c 2006 Brainform B¨ozingenstrasse 5, 2502 Biel, Switzerland http://www.brainform.com Print: Printy, Theresienstrasse 69, 80333 M¨unchen Printed in Germany ISBN-10: 3-905412-00-4 ISBN-13: 978-3-905412-00-4 Purchase order: [email protected] This work is subject to copyright. All rights are reserved, whether the whole or part of the mate- rial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplica- tion of this publication or parts thereof is permitted only with prior permission from the current publishers. No part of this publication may be stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission from the publishers. You are not allowed to modify, amend or otherwise change this work without prior consent from the the current publishers. All copyright for this work will remain the property of the author.
    [Show full text]