Bernhard Hermann Neumann 1909–2002

Total Page:16

File Type:pdf, Size:1020Kb

Bernhard Hermann Neumann 1909–2002 CSIRO PUBLISHING www.publish.csiro.au/journals/hras Historical Records of Australian Science, 2010, 21, 253–282 Bernhard Hermann Neumann 1909–2002 Cheryl E. Praeger School of Mathematics and Statistics, University of Western Australia, WA 6009, Australia. Email: [email protected] Bernhard Hermann Neumann was born and educated in Berlin. He held doctorates from Berlin and Cam- bridge, and mathematical positions at universities in Cardiff, Hull, Manchester, and the Australian National University (ANU) in Canberra. Whereas his move to the UK in 1933 was a result of the difficulties he faced as a Jew in finding employment in Germany, his move to Australia in 1962 was to set up a new research Department of Mathematics at the Institute of Advanced Studies at the ANU. Bernhard Neumann was famous for both his seminal research work in algebra and his strong support of all endeavours in mathematics. His scholarly publications span more than seventy years. His honours include Fellowship of the Royal Society and of the Australian Academy of Science, appointment as Companion of the Order of Australia, and numerous honorary doctorates. To Bernhard it was important to share and spread the joy of doing mathematics. Bernhard Hermann Neumann was born Early Life and Education in Berlin, Germany, on 15 October 1909. Bernhard was named after his two grand- After completing his doctorate in Berlin, fathers. His paternal grandfather Bernhard he moved to the UK to seek employment, Neumann was a hardware merchant in Karl- and undertook a second doctorate in Cam- sruhe in the south of Germany, and Bern- bridge. His academic work as a mathe- hard’s father Richard was the youngest matician in the UK was interrupted by a of four children, born on 15 January period of internment, and then service in 1876. Bernhard’smaternal grandfather Her- the British army, during the Second World mann Aronstein had a large farm, called War. Bernhard Neumann was head-hunted a Rittergut, in Westphalia, and Bernhard’s from his position in Manchester to become, mother Else was Hermann’s third daughter. in 1962, foundation professor and head of Both sides of Bernhard Neumann’s family a new research mathematics department were thus solidly middle-class. at the Australian National University. He Richard Neumann married Else in 1905 had an enormous positive influence on the in Berlin. He studied engineering, spent two development of mathematics in Australia years in the USA as an engineer and then and the Asia-Pacific region, not only during held a job until the late 1930s in Berlin, his time as departmental head at the ANU in the AEG—Allgemeine Elektrizitätsge- but also in the decades following his retire- sellschaft. Bernhard was the second child ment in 1975. Bernhard died suddenly on and only son. His elder sister Edel-Agathe 21 October 2002, in Canberra, Australia, (known as Eta) was born in 1906 in Berlin, shortly after his 93rd birthday. He is sur- studied physics in Berlin, worked in patent vived by his second wife Dorothea and the law and patent physics in north-east Eng- five children of his first marriage (to Hanna, land until she married Gösta Lindskog, a also a mathematician and a Fellow of the Swedish pastor and school teacher, and then Australian Academy of Science at the time lived in Sweden with Gösta until her death of her death in 1971). from cancer in 1958. Both of Bernhard’s © Australian Academy of Science 2010 10.1071/HR09021 0727-3061/10/020253 254 Historical Records of Australian Science, Volume 21 Number 2 Bernhard Hermann Neumann 1909–2002 255 parents were Jewish. Richard was not prac- Professor of Mathematics at the University tising, while Else went to synagogue for the of California, Berkeley.Throughout his life, important festivals. Bernhard was also not Bernhard made friends quickly and easily, practising, but despite this he and his first and kept in contact with a large number wife Hanna sat on the Council of Jews and of people. His remarkable memory was no Christians in their Manchester days in the doubt aided by his famous pocket diary late 1950s, wishing to bring reconciliation in which he recorded birthdays and other between the two religions. significant details. Bernhard was four years old when Bernhard left the Herderschule with the the First World War began. The blockade Abitur, the qualification that was an enti- against Germany caused severe shortages tlement to university entrance. His univer- and strict rationing, and Bernhard remem- sity education began with two semesters bered feeling very hungry for much of the at Freiburg University in 1928–29, study- war. Thus he knew privation of a type not ing under Alfred Loewy, Gustav Mie often met with in Europe today. Bernhard and Lothar Heffter. Heffter, Bernhard’s remembered with some affection the arrival favourite teacher, was mathematically of Quakers immediately after the war; they active until his 100th year. Bernhard ded- went around schools in Germany feeding icated his paper B68 for Heffter’s 100th the children. birthday. However on submitting the paper Bernhard attended the Herderschule in Bernhard learned from the editor ‘by return’ Berlin-Charlottenburg from 1916 to 1928. that Heffter had just died, less than six He claims that he was dull as a young months before his 100th birthday (B120, child to the extent that an aunt consoled p. 587). So the paper is dedicated to his his mother with the words, ‘he might yet memory. Bernhard was always keenly inter- make an artisan of sorts!!’1 A tonsillec- ested in people who continued to be very tomy that happened at about the time he active academically after retirement, and entered the Herderschule changed this per- later loved the fact that his own life was so ception. From then on he took delight in long. When a mutual friend died, Bernhard sums and particularly mental arithmetic. is reported as saying, ‘but he was only 85, Bernhard’s father had a student text on cal- wasn’t he?’ The other side of the coin was culus that fascinated him. He did all the that he became one of the great supporters exercises and thus learned differential cal- of the young, as we see later. culus (then a university subject) at a very After the Freiburg experience, Bern- early age, and loved studying the beautiful hard returned home to Berlin to study at curves contained in the book. Later, in Year the Friedrich-Wilhelms-Universität, later to 10 of school, he invented three-dimensional become the Humboldt University. He was analytic geometry for himself. delighted to have a degree from both incar- At school, FelixW.Behrend taught Bern- nations of the institution, the doctorate from hard mathematics and physics. His teacher’s Humboldt being an honorary one. Bernhard son Felix A. Behrend, a life-long friend of studied under such luminaries as Erhard Bernhard, became an Associate Professor Schmidt, Issai Schur, Robert Remak and of Mathematics at the University of Mel- Heinz Hopf. He began with pure mathe- bourne (see B73). The Herderschule also matics, physics and philosophy. Later he produced G. P. Hochschild, later to become concentrated on pure mathematics. Bernhard was introduced to group the- 1 Much of the material for this part of the memoir has been drawn from the record of interview [1] and the ory in the autumn semester of the academic essays written by Bernhard in the Selected Works of year 1930–31 by Remak, who had given a B. H. Neumann and Hanna Neumann B120. course on his own (then unpublished) work 256 Historical Records of Australian Science, Volume 21 Number 2 on direct products of groups. Apparently Fitzwilliam College), Cambridge, financed the attendance started at thirty and ended at first by his parents in Germany and then up with Bernhard as the single attendee. by an uncle in South Africa. His supervi- Groups were new and exciting to him, sor was Philip Hall and weekly supervision and this excitement never wavered through- sessions took the form of dinner in King’s out his life. He came across the subject College followed by discussion in Hall’s that eventually became part of his Dr.phil. rooms in college, ‘where we would drink his dissertation while attending a seminar on sherry, smoke his cigarettes and talk about geometry and topology led by Hopf and rhizomorphs of plants and political history Georg Feigl. in Germany and everything’. At about ten Bernhard had read a paper of Jakob o’clock the discussion would drift towards Nielsen on automorphisms of free groups mathematics. After completing his PhD in (B120, p. 1); Nielsen had found a finite pre- 1935, Bernhard stayed on in Cambridge for sentation for the automorphism group of a a further two years until he was appointed free group of finite rank. Bernhard discov- in late 1937 as a temporary assistant lec- ered that he could reduce the number of turer in mathematics at University College, generators and relations. Indeed he found Cardiff. He taught in Cardiff until 1940. the minimum generating numbers for free Bernhard had met Hanna von Caem- groups of rank at least 4. He told Hopf, merer in January 1933. Hanna was born in who suggested that the proof should be writ- Berlin on 12 February 1914, the youngest of ten down; and when Hopf saw the resulting three children of Hermann and Katharina manuscript, he suggested that it might be von Caemmerer. Her father had a doctor- used as Bernhard’s doctoral dissertation. ate in history, and was well on the way to Bernhard thought that he was too young and establishing himself as an archivist and aca- the result too slim, but after comings and demic historian when he was killed in the goings involving Hopf, Schur and Schur’s first days of the 1914–18 war.As a result she assistant Alfred Brauer, Schur eventually and her mother, brother Ernst (born 1908) agreed that it was perhaps a little on the and sister Dorothea (Dora, born 1910) lived slim side.
Recommended publications
  • Cores of Symmetric Graphs
    J. Aust. Math. Soc. 85 (2008), 145–154 doi:10.1017/S1446788708000815 CORES OF SYMMETRIC GRAPHS PETER J. CAMERON ˛ and PRISCILA A. KAZANIDIS (Received 17 February 2008; accepted 1 April 2008) Communicated by Peter M. Neumann Dedicated to Cheryl Praeger for her sixtieth birthday Abstract The core of a graph 0 is the smallest graph 1 that is homomorphically equivalent to 0 (that is, there exist homomorphisms in both directions). The core of 0 is unique up to isomorphism and is an induced subgraph of 0. We give a construction in some sense dual to the core. The hull of a graph 0 is a graph containing 0 as a spanning subgraph, admitting all the endomorphisms of 0, and having as core a complete graph of the same order as the core of 0. This construction is related to the notion of a synchronizing permutation group, which arises in semigroup theory; we provide some more insight by characterizing these permutation groups in terms of graphs. It is known that the core of a vertex-transitive graph is vertex-transitive. In some cases we can make stronger statements: for example, if 0 is a non- edge-transitive graph, we show that either the core of 0 is complete, or 0 is its own core. Rank-three graphs are non-edge-transitive. We examine some families of these to decide which of the two alternatives for the core actually holds. We will see that this question is very difficult, being equivalent in some cases to unsolved questions in finite geometry (for example, about spreads, ovoids and partitions into ovoids in polar spaces).
    [Show full text]
  • Geometry, Combinatorial Designs and Cryptology Fourth Pythagorean Conference
    Geometry, Combinatorial Designs and Cryptology Fourth Pythagorean Conference Sunday 30 May to Friday 4 June 2010 Index of Talks and Abstracts Main talks 1. Simeon Ball, On subsets of a finite vector space in which every subset of basis size is a basis 2. Simon Blackburn, Honeycomb arrays 3. G`abor Korchm`aros, Curves over finite fields, an approach from finite geometry 4. Cheryl Praeger, Basic pregeometries 5. Bernhard Schmidt, Finiteness of circulant weighing matrices of fixed weight 6. Douglas Stinson, Multicollision attacks on iterated hash functions Short talks 1. Mari´en Abreu, Adjacency matrices of polarity graphs and of other C4–free graphs of large size 2. Marco Buratti, Combinatorial designs via factorization of a group into subsets 3. Mike Burmester, Lightweight cryptographic mechanisms based on pseudorandom number generators 4. Philippe Cara, Loops, neardomains, nearfields and sets of permutations 5. Ilaria Cardinali, On the structure of Weyl modules for the symplectic group 6. Bill Cherowitzo, Parallelisms of quadrics 7. Jan De Beule, Large maximal partial ovoids of Q−(5, q) 8. Bart De Bruyn, On extensions of hyperplanes of dual polar spaces 1 9. Frank De Clerck, Intriguing sets of partial quadrangles 10. Alice Devillers, Symmetry properties of subdivision graphs 11. Dalibor Froncek, Decompositions of complete bipartite graphs into generalized prisms 12. Stelios Georgiou, Self-dual codes from circulant matrices 13. Robert Gilman, Cryptology of infinite groups 14. Otokar Groˇsek, The number of associative triples in a quasigroup 15. Christoph Hering, Latin squares, homologies and Euler’s conjecture 16. Leanne Holder, Bilinear star flocks of arbitrary cones 17. Robert Jajcay, On the geometry of cages 18.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Math 126 Lecture 4. Basic Facts in Representation Theory
    Math 126 Lecture 4. Basic facts in representation theory. Notice. Definition of a representation of a group. The theory of group representations is the creation of Frobenius: Georg Frobenius lived from 1849 to 1917 Frobenius combined results from the theory of algebraic equations, geometry, and number theory, which led him to the study of abstract groups, the representation theory of groups and the character theory of groups. Find out more at: http://www-history.mcs.st-andrews.ac.uk/history/ Mathematicians/Frobenius.html Matrix form of a representation. Equivalence of two representations. Invariant subspaces. Irreducible representations. One dimensional representations. Representations of cyclic groups. Direct sums. Tensor product. Unitary representations. Averaging over the group. Maschke’s theorem. Heinrich Maschke 1853 - 1908 Schur’s lemma. Issai Schur Biography of Schur. Issai Schur Born: 10 Jan 1875 in Mogilyov, Mogilyov province, Russian Empire (now Belarus) Died: 10 Jan 1941 in Tel Aviv, Palestine (now Israel) Although Issai Schur was born in Mogilyov on the Dnieper, he spoke German without a trace of an accent, and nobody even guessed that it was not his first language. He went to Latvia at the age of 13 and there he attended the Gymnasium in Libau, now called Liepaja. In 1894 Schur entered the University of Berlin to read mathematics and physics. Frobenius was one of his teachers and he was to greatly influence Schur and later to direct his doctoral studies. Frobenius and Burnside had been the two main founders of the theory of representations of groups as groups of matrices. This theory proved a very powerful tool in the study of groups and Schur was to learn the foundations of this subject from Frobenius.
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach Emigration Of
    Mathematisches Forschungsinstitut Oberwolfach Report No. 51/2011 DOI: 10.4171/OWR/2011/51 Emigration of Mathematicians and Transmission of Mathematics: Historical Lessons and Consequences of the Third Reich Organised by June Barrow-Green, Milton-Keynes Della Fenster, Richmond Joachim Schwermer, Wien Reinhard Siegmund-Schultze, Kristiansand October 30th – November 5th, 2011 Abstract. This conference provided a focused venue to explore the intellec- tual migration of mathematicians and mathematics spurred by the Nazis and still influential today. The week of talks and discussions (both formal and informal) created a rich opportunity for the cross-fertilization of ideas among almost 50 mathematicians, historians of mathematics, general historians, and curators. Mathematics Subject Classification (2000): 01A60. Introduction by the Organisers The talks at this conference tended to fall into the two categories of lists of sources and historical arguments built from collections of sources. This combi- nation yielded an unexpected richness as new archival materials and new angles of investigation of those archival materials came together to forge a deeper un- derstanding of the migration of mathematicians and mathematics during the Nazi era. The idea of measurement, for example, emerged as a critical idea of the confer- ence. The conference called attention to and, in fact, relied on, the seemingly stan- dard approach to measuring emigration and immigration by counting emigrants and/or immigrants and their host or departing countries. Looking further than this numerical approach, however, the conference participants learned the value of measuring emigration/immigration via other less obvious forms of measurement. 2892 Oberwolfach Report 51/2011 Forms completed by individuals on religious beliefs and other personal attributes provided an interesting cartography of Italian society in the 1930s and early 1940s.
    [Show full text]
  • Regular Hypermaps Over Projective Linear Groups
    J. Aust. Math. Soc. 85 (2008), 155–175 doi:10.1017/S1446788708000827 REGULAR HYPERMAPS OVER PROJECTIVE LINEAR GROUPS MARSTON CONDER ˛, PRIMOZˇ POTOCNIKˇ and JOZEF SIRˇ A´ Nˇ (Received 23 December 2007; accepted 17 May 2008) Communicated by Peter M. Neumann Dedicated to Cheryl Praeger for her sixtieth birthday Abstract An enumeration result for orientably regular hypermaps of a given type with automorphism groups isomorphic to PSL.2; q/ or PGL.2; q/ can be extracted from a 1969 paper by Sah. We extend the investigation to orientable reflexible hypermaps and to nonorientable regular hypermaps, providing many more details about the associated computations and explicit generating sets for the associated groups. 2000 Mathematics subject classification: primary 57M15; secondary 05C25, 20F05. Keywords and phrases: hypermap, regular hypermap, triangle group, projective linear group. 1. Introduction A regular hypermap H is a pair .r; s/ of permutations generating a regular permutation group on a finite set, and provides a generalization of the geometric notion of a regular map on a surface, by allowing edges to be replaced by ‘hyperedges’. The cycles of r; s and rs correspond to the hypervertices, hyperedges and hyperfaces of H, which determine the embedding of the underlying (and connected) hypergraph into the surface, and their orders give the type of H, say fk; l; mg. The group G generated by r and s induces a group of automorphisms of this hypergraph, preserving the embedding, and acting transitively on the flags (incident hypervertex-hyperedge pairs) of H. When one of the parameters k; l; m is 2, the hypergraph is a graph, and the hypermap is a regular map.
    [Show full text]
  • WIMSIG Annual Report 2016
    Women in Mathematics Special Interest Group (WIMSIG) 2015/2016 Annual Report to the Australian Mathematical Society November 7, 2016 Contents 1 Executive Committee 3 2 Events 3 2.1 Women in Maths Gatherings . 3 2.2 Embedded events . 3 2.3 Endorsed events . 4 3 Advocacy 4 3.1 Written submissions . 4 3.2 Presentations . 5 3.3 Media Interviews . 6 4 WIMSIG Delegates 7 4.1 Connections with other organisations . 7 4.2 Newsletter . 8 4.3 Website . 8 5 Projects 9 5.1 Travel Awards . 9 5.2 WIMSIG Conference 2017: Celebration of Women in Mathe- matics . 10 5.3 Proposed online archive of Hanna Neumann's work . 11 6 Membership 11 7 Elections 11 8 Funds 12 9 ? Future funding source for Women in Maths Events at AustMS and ANZIAM annual meetings ? 12 1 Women in Mathematics Special Interest Group 10 ? Good Practice Scheme ? 13 11 Appendix: Travel Award Reports, Rounds 1{4 14 2 7 November 2016 Women in Mathematics Special Interest Group This report includes activities from September 2015 to October 2016. 1 Executive Committee • Lesley Ward, Chair • Giang Nguyen, Treasurer • Joanne Hall, Secretary • Lynn Batten, Committee Member • Deborah Cromer, Committee Member • Asha Rao, Immediate Past Chair 2 Events WIMSIG currently supports three types of events: Women in Maths Gath- erings, Embedded Events, and Endorsed Events. 2.1 Women in Maths Gatherings WIMSIG organised nine Women in Maths Gatherings around the country in the last year. Funding was provided by the host organisations. • November 2015 Gatherings were hosted by UAdelaide, QUT, Monash and USyd. • June 2016 Gatherings were hosted by Flinders University, UTS, UQ, UCanberra and UTas.
    [Show full text]
  • Hanna Neumann's Problems on Varieties of Groups
    PROC. SECOND INTERNAT. CONF. THEORY OF GROUPS, 20EIO CANBERRA, 1973, pp. 417-431. HANNA NEUMANN'S PROBLEMS ON VARIETIES OF GROUPS L.G. Kov~cs and M.F. Newman This is an informal report on the present status of the displayed problems in Hanna Neumann's book Varieties of groups [50]. The reader should have the book at hand, not only for notation and terminology but also because we do not re-state the problems nor repeat the comments available there, Our aim is to be up to date, not to present a complete historical survey; superseded references will be mostly ignored regardless of their significance at the time. Details of solutions will not be quoted from papers already published, unless needed to motivate further questions. The discussion and the problems highlighted in it reflect our personal interests rather than any considered value-judgement. The preparation of this report was made much easier by access to the notes Hanna Neumann had kept on these problems. We are indebted to several colleagues who took part in a seminar on this topic and especially to Elizabeth Ormerod for keeping a record of these conversations. The report has also gained a lot from the response of conference participants; in particular, Professor Kostrikin supplied much useful information. Of course, all errors and omissions are our own responsibility: we shall be very grateful for information leading to corrections or additions. PROBLEM 1 (page 6 in [50]). As Hanna Neumann wrote, "this is of no great consequence". The answer is negative; see Kov~cs and Vaughan-Lee [47].
    [Show full text]
  • Clay Lecture, Cheryl Praeger
    Codes and designs in Johnson graphs with high symmetry Cheryl E. Praeger Abstract The Johnson graph J(v; k) has, as vertices, all k-subsets of a v-set V, with two k-subsets adjacent if and only if they share k − 1 common elements of V. Subsets of vertices of J(v; k) can be interpreted as the blocks of an incidence structure, or as the codewords of a code, and automorphisms of J(v; k) leaving the subset invariant are then automorphisms of the corresponding incidence structure or code. This approach leads to interesting new designs and codes. For example, numerous actions of the Mathieu sporadic simple groups give rise to examples of Delandtsheer designs (which are both flag-transitive and anti-flag transitive), and codes with large minimum distance (and hence strong error-correcting properties). The paper surveys recent progress, explores links between designs and codes in Johnson graphs which have a high degree of symmetry, and discusses several open questions. Key-words: designs, codes in graphs, Johnson graph, 2-transitive permuta- tion group, neighbour-transitive, Delandtsheer design, flag-transitive, antiflag- transitive. Mathematics Subject Classification (2010): 05C25, 20B25, 94B60. 1 Introduction The Johnson graphs are ubiquitous in mathematics, perhaps because of their many useful properties. They are distance transitive, and indeed geodesic-transitive, they underpin the Johnson association schemes { and `everyone's favourite graph', the Petersen Graph, occurs as the complement of one of them1. Also, the class of Johnson graphs played a key role in Babai's recent breakthrough [2] to a quasipoly- nomial bound on the complexity of graph isomorphism testing2.
    [Show full text]
  • Gazette 35(3)
    Cheryl Praeger∗ Gazette: What lead you to become a mathematician? Praeger: I discovered at high school that I really liked mathematics. Of course I was scared by the examinations, but I loved problem solving and I loved seeing the applications in physics to explain what was happening in the world. I really didn’t know that someone in the then 20th century could actually be a mathematician — I didn’t know that there were any jobs [for mathematicians]. So for me it was a matter of having the luxury and privilege of continuing to learn mathematics without any expectation that I would continue to do mathematics throughout my life. So I’ve been really lucky; it was something I really enjoyed doing, and it’s turned into a career. However, I needed enough confidence to do mathematics at university. Secretly, I thought that if ‘something happened’ in a statewide mathematics competition that I entered, I would then be determined and go for it. I tied for first-place in the Queensland Mathematics Teachers competition, in the year before I started university, and that gave me the confidence to decide that I would study maths. Gazette: So there was an issue of confidence at the beginning? Praeger: Oh definitely. I felt that I was a big fish in a small pond. I wondered whether the fact that I was performing well at school would have any bearing on whether I could continue to be successful doing mathematics at university. Gazette: What area of maths do you work in? Praeger: My research interests are in algebra, specifically group theory.
    [Show full text]
  • Heilbronn Fellows Research Papers 2014 – 2021
    Heilbronn Fellows Research Papers 2014 – 2021 2020/2021 ** Edward Crane, Gene Kopp. Rubel’s problem: from Hayman’s list to the Chabauty method. London Mathematical Society newsletter, issue 492 (2021). Feature article. View pdf. Chris Budd, Kieran Calvert, Sam Johnson, Sam Tickle. Assessing risk in the retail environment during the COVID-19 pandemic (2020). View pdf on arxiv:2011.09277 Robert Kurinczuk, Daniel Skodlerack, Shaun Stevens. Endo-parameters for p-adic classical groups (2020). Inventiones Mathematicae. View pdf on doi:10.1007/s00222-020-00997-0 Alonso Castillo-Ramirez, Justin McInroy. Miyamoto groups of code algebras generated by small idempotents (2020). View pdf on arxiv:2001.08426 ** Benjamin Bedert, George Cooper, Thomas Oliver, Pengcheng Zhang. Twisting moduli for GL(2) (2020). View pdf on arxiv:2003.02557 Joel Klassen, Milad Marvian, Stephen Piddock, Marios Ioannou, Itay Hen, Barbara Terhal. Hardness and ease of curing the sign problem for two-local qubit Hamiltonians (2020). View pdf on arxiv:1906.08800 Jason Semeraro. A 2-compact group as a spets (2020). View pdf on arxiv:1906.00898 Chris Parker, Jason Semeraro. Algorithms for fusion systems with applications to p-groups of small order (2020). View pdf on arxiv:2003.01600 Sam Tickle, Idris Eckley, Paul Fearnhead. A computationally efficient, high-dimensional multiple changepoint procedure with application to global terrorism incidence (2020). View pdf on arxiv:2011.03599 ** Demi Allen, Sam Chow, Han Yu. Dyadic approximation in the middle-third cantor set (2020). View pdf on arxiv:2005.09300 John Cremona, Filip Najman. -curves over odd degree number fields (2020). View pdf on arxiv:2004.10054 ℚ September 2020 ** Highlighted papers Demi Allen, Edward Crane, Christopher Doris, David Abrahams et al.
    [Show full text]
  • The Australian Mathematical Society (Inc) Reports for the Sixtieth Annual
    1 The Australian Mathematical Society (Inc) Reports for the sixtieth Annual General Meeting and the one-hundred-and-twenty-first Council Meeting 2016 President's Report Secretary's Report Treasurer's Report Audited Financial Statements Editors' Reports ANZIAM Report ANZAMP Report Page 1 of 53 2 AustMS President’s Report Annual Meeting 2016 There have been many changes in the Australian higher educational sector this year, including the new research impact and engagement assessment, the ACOLA review and the new research training program (RTP), all which reinforce the government’s innovation and industry engagement agenda. The ACOLA review of Australia’s research training system has been released and the report makes recommendations regarding industry involvement in HDR training and the value of industry placements. In particular it states that every candidate who wishes to undertake an industry placement should be encouraged to do so. The Mathematical Sciences are well placed in this endeavor due to the soon to be expanded ASMI Intern and also the Mathematics in Industry Study Group. However the scale of placements under the expanded AMSI Intern is 1000 by 2020 (not all in the mathematical sciences, of course) and hence challenging to implement. For example, HDR supervisors may need to develop new industry relationships and links in order to offer suitable placements to their students. The new RTP guidelines also state that universities must report on industry experiences of their HDR students. ACEMS/AMSI recently held a one day workshop on measuring research engagement and impact in the mathematical sciences. Peter Taylor (UMel) chaired the event and the speakers were Leanne Harvey (ARC), Kerrie Mengersen (QUT), Geoff Prince (AMSI), Jacqui Ramagge (USyd) and myself.
    [Show full text]