Journal of Experimental Botany, Vol. 71, No. 22 pp. 7316–7330, 2020 doi:10.1093/jxb/eraa409 Advance Access Publication 9 September 2020 RESEARCH PAPER Comparative analysis reveals gravity is involved in the MIZ1-regulated root hydrotropism Ying Li1,*, Wei Yuan1,*, Luocheng Li1, Hui Dai1, Xiaolin Dang1, Rui Miao1, František Baluška2, , Herbert J. Kronzucker3,4, , Congming Lu5, Jianhua Zhang6 and Weifeng Xu1,†, Downloaded from https://academic.oup.com/jxb/article/71/22/7316/5903408 by 59662000 user on 03 January 2021 1 Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China 2 Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany 3 School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia 4 Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 5 State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China 6 Department of Biology, Hong Kong Baptist University, Stake Key Laboratory of Agrobiotechnology and Chinese University of Hong Kong, Hong Kong * These authors contributed equally to this work. † Correspondence:
[email protected] Received 4 March 2020; Editorial decision 20 August 2020; Accepted 7 September 2020 Editor: Ian Dodd, Lancaster University, UK Abstract Hydrotropism is the directed growth of roots toward the water found in the soil. However, mechanisms governing interactions between hydrotropism and gravitropism remain largely unclear.