Movements in Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stenospermocarpy Biological Mechanism That Produces Seedlessness in Some Fruits (Many Table Grapes, Watermelon)
Phytohormones The growth and development of a plant are influenced by: •Gene:c factors •External environmental factors •Chemical hormones inside the plant Secondary messengers 1. Involve in the transfer informaon from sources to targets 2. Amplify the signal produced by the phytohormone Phytohormones Plant hormones are organic compounds that are effec:ve at very low concentraon (1g 20,000 tons-1) They interact with specific target :ssues to cause physiological responses •Growth •Fruit ripening Phytohormones •Hormones s:mulate or inhibit plant growth Major groups of hormones: 1. Auxins 2. Gibberellins 3. Ethylene 4. Cytokinins 5. Abscisic acid 6. Brassinostereoids 7. Salicylic acid 8. Polyaminas 9. Jasmonates 10. Systemin 11. Nitric oxide Arabidopsis thaliana Phytohormones EARLY EXPERIMENTS ON PHOTROPISM SHOWED THAT A STIMULUS (LIGHT) RELEASED CHEMICALS THAT INFLUENCED GROWTH Auxins Auxin causes several responses in plants: * Phototropism * Geotropism * Promo:on of apical dominance * Flower formaon * Fruit set and growth * Formaon of adven::ous roots * Differen:aon of vascular :ssues (de novo or repairing existent vascular :ssue) Auxins Addi:on of auxins produce parthenocarpic fruit. Stenospermocarpy Biological mechanism that produces seedlessness in some fruits (many table grapes, watermelon) diploid + tetraploid parent = triploid seeds vegetave parthenocarpy Plants that do not require pollinaon or other s:mulaon to produce parthenocarpic fruit (cucumber) Auxins Synthe:c auxins Widely used in agriculture and hor:culture • prevent leaf abscission • prevent fruit drop • promote flowering and frui:ng • control weeds Agent Orange - 1:1 rao of 2,4-D and 2,4,5-T Dioxin usually contaminates 2,4,5-T, which is linked to miscarriages, birth defects, leukemia, and other types of cancer. -
A Framework for Plant Behavior Author(S): Jonathan Silvertown and Deborah M
A Framework for Plant Behavior Author(s): Jonathan Silvertown and Deborah M. Gordon Reviewed work(s): Source: Annual Review of Ecology and Systematics, Vol. 20 (1989), pp. 349-366 Published by: Annual Reviews Stable URL: http://www.jstor.org/stable/2097096 . Accessed: 10/02/2012 12:56 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Annual Reviews is collaborating with JSTOR to digitize, preserve and extend access to Annual Review of Ecology and Systematics. http://www.jstor.org Annu. Rev. Ecol. Syst. 1989. 20:349-66 Copyright ? 1989 by Annual Reviews Inc. All rights reserved A FRAMEWORKFOR PLANT BEHAVIOR Jonathan Silvertown' and Deborah M. Gordon2 'BiologyDepartment, Open University, Milton Keynes MK7 6AA, UnitedKingdom 2Departmentof Zoology,University of Oxford,South Parks Rd, Oxford,OXI 3PS, UnitedKingdom INTRODUCTION The language of animalbehavior is being used increasinglyto describecertain plant activities such as foraging (28, 31, 56), mate choice (67), habitatchoice (51), and sex change (9, 10). Furthermore,analytical tools such as game theory, employed to model animal behavior, have also been applied to plants (e.g. 42, 54). There is some question whetherwords used to describe animal behavior, such as the word behavior itself, or foraging, can be properly applied to the activities of plants. -
Plant Physiology
PLANT PHYSIOLOGY Vince Ördög Created by XMLmind XSL-FO Converter. PLANT PHYSIOLOGY Vince Ördög Publication date 2011 Created by XMLmind XSL-FO Converter. Table of Contents Cover .................................................................................................................................................. v 1. Preface ............................................................................................................................................ 1 2. Water and nutrients in plant ............................................................................................................ 2 1. Water balance of plant .......................................................................................................... 2 1.1. Water potential ......................................................................................................... 3 1.2. Absorption by roots .................................................................................................. 6 1.3. Transport through the xylem .................................................................................... 8 1.4. Transpiration ............................................................................................................. 9 1.5. Plant water status .................................................................................................... 11 1.6. Influence of extreme water supply .......................................................................... 12 2. Nutrient supply of plant ..................................................................................................... -
Phytochrome Effects in the Nyctinastic Leaf Movements of Albizzia Julibrissin and Some Other Legumes1 2 William S
Plant Physiol. (1967) 42, 1413-1418 Phytochrome Effects in the Nyctinastic Leaf Movements of Albizzia julibrissin and Some Other Legumes1 2 William S. Hillman and Willard L. Koukkari Biology Department, Brookhaven National Laboratory, Upton, New York 11973 Received June 5, 1967. Summnary. Participation of phytochrome 'is evident in the nyctinastic responise of leaves of Albizzia julibrissin (silk-tree), Albizzia lophantha, Leucaena glauca, Poinciana gilliesi and Calliandra inequilatera; closure of excised pairs of pinnules upon darkening is rapid following red illumination and slow following far-red. Under good conditions the difiference is obvious within 10 minutes. These observations conifirm a report by Fondeville, Borthwick, and Hendricks on the sensitive plant, Mimosa pudica, but indicate that the efifect bears no necessary relationship to the anomalous sensitivity of Mimosa. In A. julibrissin, phytochrome control is mnarked in experiments conducted early in the daily 12-hour light period and appears absent, or nearly so, toward the end of the light period, perhaps due to interaction with an endogenous circadian rhythm. Effects of leaf maturity and of the position of a pinnule-pair within a leaf are also evident. Tih-ese results are not easily reconciled with hypotheses of phytochrome action through gene activation and nucleic acid synthesis, but are consistent with hypothess ibased onl permeability changes and membrane properties. The mgnitude and reproducibility of the response in A. jutlibrissin suggest its use as a lajboratory exercise; this and related systems should prove valuable for eventuai identification of the mechanism of phytochrome action. Fondeville, Borthwick, and Hendricks (2) re- pinnately twice-compound leaves generally similar in ported on a role of phytochrome in the nyctinastic character to those of Mimosa pudica, (but not obviously response of the sensitive plant, Mimnosa pudica: closure sensitive to the touch. -
Arxiv:1508.05435V1 [Physics.Bio-Ph]
Fast nastic motion of plants and bio-inspired structures Q. Guo1,2, E. Dai3, X. Han4, S. Xie5, E. Chao3, Z. Chen4 1College of Materials Science and Engineering, FuJian University of Technology, Fuzhou 350108, China 2Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fuzhou 350108, China 3Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 USA 4Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, NH 03755, USA 5Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, MO 63130 USA ∗ (Dated: August 25, 2015) The capability to sense and respond to external mechanical stimuli at various timescales is es- sential to many physiological aspects in plants, including self-protection, intake of nutrients, and reproduction. Remarkably, some plants have evolved the ability to react to mechanical stimuli within a few seconds despite a lack of muscles and nerves. The fast movements of plants in response to mechanical stimuli have long captured the curiosity of scientists and engineers, but the mechanisms behind these rapid thigmonastic movements still are not understood completely. In this article, we provide an overview of such thigmonastic movements in several representative plants, including Dionaea, Utricularia, Aldrovanda, Drosera, and Mimosa. In addition, we review a series of studies that present biomimetic structures inspired by fast moving plants. We hope that this article will shed light on the current status of research on the fast movements of plants and bioinspired struc- tures and also promote interdisciplinary studies on both the fundamental mechanisms of plants’ fast movements and biomimetic structures for engineering applications, such as artificial muscles, multi-stable structures, and bioinspired robots. -
Smithsonian Miscellaneous Collections
SMITHSONIAN MJSCELLANEOUS COLLECTIONS VOLUME 81, NUMBER 10 TROPISMS AND SENSE ORGANS OF LEPIDOPTERA BY N. E. McINDOO Senior Entomologist, Deciduous-I'"i nit Insect Investigations, Bureau of Entomology, U. S. Department of Agriculture WMW (Publication 3013) t APR5-k CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION APRIL 4, 1929 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 81, NUMBER 10 TROPISMS AND SENSE ORGANS OF LEPIDOPTERA BY N. E. McINDOO Senior Entomologist, Deciduous-Fruit Insect Investigations, Bureau of Entomology, U. S. Department of Agriculture (Publication 3013) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION APRIL 4, 1929 Z^c Bovb (^aPfttnorc (preee BALTIMORE, MD., O. 8. A, TROPISMS AND SENSE ORGANS OF LEPIDOPTERA By N. E. McIndoo senior entomologist, deciduous-fruit insect investigations, bureau of entomology, u. s. department of agriculture CONTENTS PAGE Introduction 2 A. Tropisins 2 I. Phototaxis 3 1. Review of literature : 3 (a) Definitions and problems in the study of light reactions... 3 (b) Are light reactions adaptive ? 4 (c) Is orientation accomplished by selection of trial movements? 5 (d) How do light rays bring about orientation? 5 (e) Do circus movements support Loeb's theory? 5 (f ) What wave lengths stimulate insects most? 6 (g) Light traps are not yet considered successful 9 2. Phototactic experiments on codling-moth larvae 10 II. Chemotaxis 14 1. Review of literature 14 2. Chemotactic experiments on codling-moth larvae 17 III. Geotaxis 19 1. Review of literature 19 2. Geotactic experiments on codling-moth larvae 20 IV. Thigmotaxis 21 1. Review of literature 21 2. Thigmotactic experiments on codling-moth larvae 22 B. -
Ovary Signals for Directional Pollen Tube Growth
Sex Plant Reprod (2001) 14:3–7 © Springer-Verlag 2001 REVIEW M. Herrero Ovary signals for directional pollen tube growth Received: 15 December 2000 / Accepted: 13 June 2001 Abstract In angiosperms, the female gametophyte has a work has focussed on pollen tube growth along the stig- secluded life; it is protected by several concentric layers ma and style, the ovary has been neglected; it has often that envelop each other. The embryo sac is surrounded been assumed that once the pollen tubes arrive at the by the nucellus, which in turn is wrapped by the integu- base of the style fertilisation occurs. However, informa- ments forming the ovule, which is nested in the ovary. tion is converging toward the concept (Herrero 2000) These wrappings are not hermetic, but contain little that the process is far from straightforward, and that in “gates” the pollen tube must traverse on its way towards the ovary, also, an interesting male-female interaction the embryo sac. Information is emerging that shows that occurs. the ovary and ovule provide signals orienting and direct- A close look at the ovary shows that the female game- imng the pollen tube on the right course. There are three tophyte has a secluded life, protected by a number of main bodies of evidence supporting this hypothesis. One concentric layers that consecutively envelop each other. relates to developmental changes in the female tissues Thus, the embryo sac is surrounded by the nucellus, and how they affect pollen tube growth. The second re- which in turn is wrapped by the integuments forming the fers to defective ovule mutants, which induce defective ovule, which is nested in the ovary. -
Phototactic Purple Bacteria Extinction Or Miscalculation?
SCIENTIFIC CORRESPONDENCE the light source through the gradient of Phototactic purple decreasing light intensity; on the other Extinction or hand, if their movement is scotophobic, bacteria the colony should move in the opposite miscalculation? direction. R. centenum swarm colonies SIR - In 1883 T. Engelmann! discovered irradiated laterally with infrared light in SIR - Heywood et al. I have discussed that purple photosynthetic bacteria re fact moved rapidly towards the light uncertainties in modelling rates. One way verse their swimming direction when the source, as for positive phototaxis. to check a predictive model's validity is to light intensity is suddenly reduced. He Anoxygenic photosynthetic bacteria see how well it predicts past events. In this described this photosensory effect as and the oxygenic cyanobacteria and algae case, the species-area relation model does "Schreckbewegung" ('movement of share several similar physiological re fairly well in predicting the number of fright'), but it is more properly designated quirements, so it is not surprising that bird and mammal extinctions during the as a scotophobic response, past 500 years in the United States and that is, a fear of darkness. a Canada .. Scotophobic behaviour is Time (min) Infrared Here I consider species extirpated fol typical of motile purple bac lowing habitat destruction initiated by 2 teria, is independent of the o Europeans in North America , combined direction of illumination, with currently endangered or threatened 3 and does not occur if the 30 species , to check if species loss is con light intensity is reduced ..'Q" gruent with habitat loss. Although exact only gradually. By contrast, 60 figures are difficult to come by, I take as oxygenic cyanobacteria and 20% the amount of land removed from algae exhibit phototactic re- 120 native North American mammal and bird 4 sponses, that is, oriented habitats . -
Motion in Plants and Animals SMPK Penabur Jakarta Motion
Motion in Plants and Animals SMPK Penabur Jakarta Motion What is that? Which part? Have you ever see the flying bird? Why they can do stable flying? What affects them? Let’s learn! Plant’s motion Animal’s motion in water, on air, and on land Why so important?? To know and explain motion in living things Important Terms Motion Stimulation Inertia Elasticity Surface Tension Mimosa pudica Have you ever see? Mimosa pudica Response to stimulation If the leaves got stimulation, the water flow will keep away from stimulated area Stimulated area water less, turgor tension less leaves will closed Turgor tension= tension affected by cell contents to wall cell in plant Movement Movement in living system they can change chemical energy to mechanical energy Human and animal active movement Plants have different movement Motion in Plant Growth Reaction to respond stimuli (irritability) Endonom Hygroscopic Etionom PHOTOTROPISM HYDROTROPISM TROPISM GEOTROPISM THIGMOTROPISM ENDONOM RHEOTROPISM PLANT MOTION HYGROSCOPIC ETIONOM PHOTOTAXIS TAXIS CHEMOTAXIS NICTINASTY THIGMONASTY/ NASTIC SEISMONASTY PHOTONASTY COMPLEX A. Endogenous Movement Spontaneusly Not known yet its cause certainly Predicted it caused by stimulus from plant itself Ex: ◦ Movement of cytoplasm in cell ◦ Bending movement of leaf bid because of different growth velocity ◦ Movement of chloroplast Chloroplast movement B. Hygroscopic Movement Caused by the influence of the change of water level from its cell non-homogenous wrinkling Ex: ◦ The breaking of dried fruit of leguminous fruit, such as kacang buncis (Phaseolus vulgaris), kembang merak (Caesalpinia pulcherrima), and Impatiens balsamina (pacar air) and other fruits ◦ The opening of sporangium in fern ◦ Rolled of peristomal gear in moss’ sporangium C. -
Phototaxis and Membrane Potential in the Photosynthetic Bacterium Rhodospirillum Rubrum
JOURNAL OF BACTEIUOLOGY, July 1977, p. 34-41 Vol. 131, No. 1 Copyright © 1977 American Society for Microbiology Printed in U.S.A. Phototaxis and Membrane Potential in the Photosynthetic Bacterium Rhodospirillum rubrum SHIGEAKI HARAYAMA* AND TETSUO IINO Laboratory of Genetics, Faculty of Science, University of Tokyo, Hongo, Tokyo 113, Japan Received for publication 23 February 1977 Cells of the photosynthetic bacterium Rhodospirillum rubrum cultivated anaerobically in light show phototaxis. The behavior of individual cells in response to the phenomenon is reversal(s) of the swimming direction when the intensity of the light available to them abruptly decreases. The tactic response was inhibited by antimycin, an inhibitor of the photosynthetic electron transfer system. The inhibitory effect of antimycin was overcome by phenazine metho- sulfate. Motility of the cells was not impaired by antimycin under aerobic conditions. Valinomycin plus potassium also inhibited their phototactic re- sponse; however, valinomycin or potassium alone had no effect. A change in membrane potential of the cells was measured as an absorbance change of carotenoid. Changes in the membrane potential caused by "on-off' light were prevented by antimycin and by valinomycin plus potassium, but not by antimy- cin plus phenazine methosulfate nor valinomycin or potassium alone. The results indicated that the phototactic response of R. rubrum is mediated by a sudden change in electron flow in the photosynthetic electron transfer system, and that the membrane potential plays an important role in manifestation of the re- sponse. Bacterial phototaxis has been observed in systems. The chemotactic behavior of individ- photosynthetic bacteria (6, 22) and in Halobac- ual cells ofE. -
Plant-Environment Interactions: from Sensory Plant Biology to Active
Signaling and Communication in Plants Series Editors František Baluška Department of Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany Jorge Vivanco Center for Rhizosphere Biology, Colorado State University, 217 Shepardson Building, Fort Collins, CO 80523-1173, USA František Baluška Editor Plant-Environment Interactions From Sensory Plant Biology to Active Plant Behavior Editor František Baluška Department of Plant Cell Biology IZMB University of Bonn Kirschallee 1 D-53115 Bonn Germany email: [email protected] ISSN 1867-9048 ISBN 978-3-540-89229-8 e-ISBN 978-3-540-89230-4 DOI: 10.1007/978-3-540-89230-4 Library of Congress Control Number: 2008938968 © 2009 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com František Baluška dedicates this book to Prof. -
Investigating Plant Physiology with Wisconsin Fast Plants™ Investigating Plant Physiology with Wisconsin Fast Plants™
Investigating Plant Physiology with Wisconsin Fast Plants™ Investigating Plant Physiology with Wisconsin Fast Plants™ Table of Contents Introduction to Investigating Plant Physiology with Wisconsin Fast Plants™ . .4 Investigating Nutrition with Wisconsin Fast Plants™ . .4 Investigating Plant Nutrition Activity . .7 Introduction to Tropisms . .10 Investigating Tropisms with Wisconsin Fast Plants™ . .10 Materials in the Wisconsin Fast Plants™ Hormone Kit • 1 pack of Standard Wisconsin Fast Plants™ • 1 packet anti-algal square (2 squares per packet) Seeds • 8 watering pipettes • 1 pack of Rosette-Dwarf Wisconsin Fast • 1 L potting soil Plants™ Seeds • 1 package of dried bees • 100-ppm Gibberellic Acid (4 oz) • four 4-cell quads • 1oz pelleted fertilizer • 16 support stakes • 2 watering trays • 16 support rings • 2 watering mats • Growing Instructions • wicks (package of 70) For additional activities, student pages and related resources, please visit the Wisconsin Fast Plants’ website at www.fastplants.org Investigating Plant Physiology with Wisconsin Fast Plants™ Plant physiology is the study of how plants individual is the result of the genetic makeup function. The activities and background (genotype) of that organism being expressed in information in this booklet are designed to the environment in which the organism exists. support investigations into three primary areas Components of the environment are physical of plant physiology: Nutrition, Tropism, and (temperature, light, gravity), chemical (water, Hormone Response (using gibberellin). elements, salts, complex molecules), and biotic (microbes, animals and other plants). Fundamental to the study of physiology is Environmental investigations in this booklet understanding the role that environment plays focus on the influence of nutrients, gravity, and in the functioning and appearance (phenotype) a growth-regulating hormone.