Lesson 4: History of Saturn Discoveries

Total Page:16

File Type:pdf, Size:1020Kb

Lesson 4: History of Saturn Discoveries GETTING TO KNOW SATURN LESSON History of Saturn Discoveries 4 Students use History of Discovery cards and 3 hrs interpretive skits to examine how scientists throughout history have explored Saturn. The lesson enables students to discern the multicul- tural nature of scientific inquiry and to see how the improvement of technology increases our ability to solve scientific mysteries. 1610------------------------2010 MEETS NATIONAL The lesson also prepares students to create and SCIENCE EDUCATION interpret their own timelines spanning the years STANDARDS: 1610 to 2010. The timelines depict scientists, History and technologies, and discoveries. Nature of Science • Science as a human endeavor • History of PREREQUISITE SKILLS BACKGROUND INFORMATION science Science and Measuring in centimeters Background for Lesson Discussion, page 96 Technology • Understandings Reading science content Questions, page 99 about science Recording key information Answers in Appendix 1, page 225 and technology Creating timelines 35–50: Moons 56–63: The Cassini–Huygens Mission EQUIPMENT, MATERIALS, AND TOOLS For the teacher Materials to reproduce Photocopier (for transparencies & copies) Figures 1–14 are provided at the end of Overhead projector this lesson. Chalkboard, whiteboard, or easel with FIGURE TRANSPARENCY COPIES paper; chalk or markers 11 1-meter (or 2-meter) strip of adding- machine tape or butcher paper 2–11 1 card per group 12 1 per group For each of 10 student groups 13 1 per student Chart paper (18" × 22"); markers 14 1 for teacher For each student 1-meter (or 2-meter) strip of adding- machine tape or butcher paper Markers Notebook paper; pencil 95 Saturn Educator Guide • Cassini Program website — http://www.jpl.nasa.gov/cassini/educatorguide • EG-1999-12-008-JPL Background for Lesson Discussion LESSON wander across the starry background. In History of discovery 4 fact, the name given by early Greek astrono- (See Procedures & Activities, Part II, Step 6) mers to these points of light was “planetes,” Here are some questions (with answers) to help which meant “wandering stars.” students in interpreting the data they collect on their History of Discovery tables. People all over the world have given their • What do you notice about technology own names to the Sun, the Moon, the stars, over time? and the planets. The Greeks named one of Answer — The type of technology changed from the bright “planetes” after their god Cronos. small refracting telescopes to larger reflecting tele- The Romans considered Cronos to be the scopes, then to spacecraft that flew by Saturn, and same as their god Saturn. Almost 1,500 finally, to a spacecraft (Cassini–Huygens) that will years after the ancient Roman culture flour- orbit Saturn and tour the Saturn system. ished, European astronomers explained the motions of the wandering lights in terms • What do you notice about the dates of of a system with planets orbiting the Sun — discoveries? a Solar System. European astronomers gen- Answer — There were long periods of time be- erally accepted the Roman names for the tween discoveries. More discoveries have been made planets and selected Roman names for in recent years. new celestial objects found with the aid • What do you notice about the discoveries as of telescopes. technology improves? Answer — The discoveries are more numerous and According to the National Science Education Standards, more detailed as technology improves. Technology students should know that: improved dramatically within the last century, so • People of all backgrounds — with diverse interests, talents, the discoveries increased dramatically as well. qualities, and motivations — engage in science and engi- neering. Some of these people work in teams and others Ancient astronomers work alone, but all communicate extensively with others. (See Procedures & Activities, Part II, Step 3) • Throughout history, many scientific innovators have had Students may want to know more about ancient difficulty breaking through accepted ideas of their times astronomers. Here is some background infor- to reach conclusions that are now accepted as common mation: People in ancient cultures — as long as knowledge. 5,000 years ago, according to the records they left us — followed the motions of the Sun, the • Technology drives science because it provides the means Moon, stars, and planets. The earliest recorded to gain access to outer space; collect and analyze samples; observations of Saturn appear to have been collect, measure, store, and compute data; and communi- made by astrologer-priests during the reign of cate information. King Esar-haddon of Assyria in about 700 B.C. • Science drives technology because it provides principles for developing improved instrumentation and techniques Early observers watched the sky for omens. and the means for addressing questions that demand more They realized that while the stars generally tra- sophisticated instruments. versed the night sky in unchanging patterns, there were some points of light that appeared to 96 Saturn Educator Guide • Cassini Program website — http://www.jpl.nasa.gov/cassini/educatorguide • EG-1999-12-008-JPL Lesson Plan (Figures 2–11). You will need to cut the pages LESSON along the dashed lines, or in half, as each page 4 Part I: How Do We Know What We Know has two cards printed on it. Give each group a about the Planets? copy of the Interview Guide (Figure 12). Tell the students to prepare an interview role-play by Ask students: How do we know all that 1 answering the questions on the Interview Guide. we know about the planets in our Solar The students should read their group’s card and System? interpret the information, focusing on the people (or space mission), the technology, and Record their responses on the chalkboard 2 the discoveries that resulted. The Glossary (or whiteboard or easel paper). (Appendix 2) provides definitions of terms. Part II: Connections to Saturn Ask the students to divide the work among 5 group members to include the following Have the students form 10 groups. Have roles: reader, interviewer, recorder, and actor 1 each group write answers to the following who represents the scientist or space mission. To question on chart paper: What do you know to prepare for the role-play, the reader reads the be true about Saturn? card to the group. The group discusses how the actor will answer the interview questions and Have the student groups post their charts agrees on the responses. During the role-play, 2 and report out. Then ask the students: How the interviewer asks the questions from the In- do we know all that we know about Saturn? terview Guide. The actor responds to the inter- (“Knowing” could be the result of observing view questions based on the group’s discussion through sky-watching, telescopes, or space mis- of the answers. The recorder writes the answers sions.) Record their answers on the chalkboard. on the Interview Guide. Display a transparency of Sky Observation Suggest that actors respond dramatically to the questions. As 3 by Ancient Cultures (Figure 1). Introduce an option, the students might use props and/or costumes that the idea that Saturn was observed by ancient fit the information on their card. cultures as a wandering point of light in the night sky. Interpret the text in the figure, and Give each student a copy of the History ask the students to look at the drawings (the 6 of Discovery Table — for Students (Fig- “sky pictures”) and determine which point of ure 13). Have each group role-play their inter- light is wandering in the pictures provided. view for the class in chronological order of their History of Discovery Card. While each group Additional material: See Appendix 3 for an illustration and role-plays their interview, have the students take accompanying table depicting Saturn’s position in the sky over notes on their History of Discovery Table. the course of the Cassini mission. The illustration and table When all discoveries have been role-played could be made into transparencies for display and discussion. 7 and recorded, ask the students what they have learned about technological advancements Tell students that they will receive informa- 4 and discoveries about Saturn. Discuss the rela- tion about different observers of Saturn — tionship between scientific discovery and tech- people or space missions. Give each of the 10 nology and how knowledge about Saturn has groups a copy of one History of Discovery Card 97 Saturn Educator Guide • Cassini Program website — http://www.jpl.nasa.gov/cassini/educatorguide • EG-1999-12-008-JPL changed over time as a result of technological What additional discoveries were made due to LESSON advancements. Guide students to see that many these advances? What do we hope to learn by the 4 kinds of people in different cultures have made year 2010, after the Cassini spacecraft has toured and continue to make contributions to science the Saturn system? and technology. (See Background for Lesson Discussion.) Assessment Criteria 1. Figure 14 is a History of Discovery Table for Part III: Assessment the teacher that includes the correct location on the timeline for each of the Saturn explorers (scientist Post a 1-meter strip of adding-machine 1 or spacecraft), plus a listing of discoveries and tape or butcher paper on the chalkboard. technologies. Measure and record dates from 1610 to 2010 on the strip of paper, as shown below. Explain 2. Each student’s timeline should have: that the 25-cm increments represent 100-year • Years properly labeled and spaced. periods. Alternately, you might use a 2-meter • Names, discoveries, and technologies properly strip having 50-cm increments. placed and labeled. Give each group a strip of paper that is 2 3. Each student’s letter to Galileo should contain an 1 meter (or 2 meters) long. Instruct the explanation about the relationship between im- students to use the data on their History of Dis- proved technology and increased discoveries.
Recommended publications
  • Exomars Schiaparelli Direct-To-Earth Observation Using GMRT
    TECHNICAL ExoMars Schiaparelli Direct-to-Earth Observation REPORTS: METHODS 10.1029/2018RS006707 using GMRT S. Esterhuizen1, S. W. Asmar1 ,K.De2, Y. Gupta3, S. N. Katore3, and B. Ajithkumar3 Key Point: • During ExoMars Landing, GMRT 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, 2Cahill Center for Astrophysics, observed UHF transmissions and California Institute of Technology, Pasadena, CA, USA, 3National Centre for Radio Astrophysics, Pune, India Doppler shift used to identify key events as only real-time aliveness indicator Abstract During the ExoMars Schiaparelli separation event on 16 October 2016 and Entry, Descent, and Landing (EDL) events 3 days later, the Giant Metrewave Radio Telescope (GMRT) near Pune, India, Correspondence to: S. W. Asmar, was used to directly observe UHF transmissions from the Schiaparelli lander as they arrive at Earth. The [email protected] Doppler shift of the carrier frequency was measured and used as a diagnostic to identify key events during EDL. This signal detection at GMRT was the only real-time aliveness indicator to European Space Agency Citation: mission operations during the critical EDL stage of the mission. Esterhuizen, S., Asmar, S. W., De, K., Gupta, Y., Katore, S. N., & Plain Language Summary When planetary missions, such as landers on the surface of Mars, Ajithkumar, B. (2019). ExoMars undergo critical and risky events, communications to ground controllers is very important as close to real Schiaparelli Direct-to-Earth observation using GMRT. time as possible. The Schiaparelli spacecraft attempted landing in 2016 was supported in an innovative way. Radio Science, 54, 314–325. A large radio telescope on Earth was able to eavesdrop on information being sent from the lander to other https://doi.org/10.1029/2018RS006707 spacecraft in orbit around Mars.
    [Show full text]
  • Aerothermodynamic Analysis of a Mars Sample Return Earth-Entry Vehicle" (2018)
    Old Dominion University ODU Digital Commons Mechanical & Aerospace Engineering Theses & Dissertations Mechanical & Aerospace Engineering Summer 2018 Aerothermodynamic Analysis of a Mars Sample Return Earth- Entry Vehicle Daniel A. Boyd Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds Part of the Aerodynamics and Fluid Mechanics Commons, Space Vehicles Commons, and the Thermodynamics Commons Recommended Citation Boyd, Daniel A.. "Aerothermodynamic Analysis of a Mars Sample Return Earth-Entry Vehicle" (2018). Master of Science (MS), Thesis, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/xhmz-ax21 https://digitalcommons.odu.edu/mae_etds/43 This Thesis is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU Digital Commons. It has been accepted for inclusion in Mechanical & Aerospace Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. AEROTHERMODYNAMIC ANALYSIS OF A MARS SAMPLE RETURN EARTH-ENTRY VEHICLE by Daniel A. Boyd B.S. May 2008, Virginia Military Institute M.A. August 2015, Webster University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE AEROSPACE ENGINEERING OLD DOMINION UNIVERSITY August 2018 Approved by: __________________________ Robert L. Ash (Director) __________________________ Oktay Baysal (Member) __________________________ Jamshid A. Samareh (Member) __________________________ Shizhi Qian (Member) ABSTRACT AEROTHERMODYNAMIC ANALYSIS OF A MARS SAMPLE RETURN EARTH-ENTRY VEHICLE Daniel A. Boyd Old Dominion University, 2018 Director: Dr. Robert L. Ash Because of the severe quarantine constraints that must be imposed on any returned extraterrestrial samples, the Mars sample return Earth-entry vehicle must remain intact through sample recovery.
    [Show full text]
  • Huygens Probe Set to Detach from Cassini Orbiter Tonight 24 December 2004
    Update: Huygens Probe Set to Detach From Cassini Orbiter Tonight 24 December 2004 mission is approximately $3 billion. Many of these sophisticated instruments are capable of multiple functions, and the data that they gather will be studied by scientists worldwide. Aerosol Collector and Pyrolyser (ACP) will collect aerosols for chemical-composition analysis. After extension of the sampling device, a pump will draw the atmosphere through filters which capture aerosols. Each sampling device can collect about 30 micrograms of material. Descent Imager/Spectral Radiometer (DISR) can take images and make spectral measurements using sensors covering a wide spectral range. A few hundred metres before impact, the instrument will switch on its lamp in order to acquire spectra of the surface material. The highlights of the first year of the Cassini- Doppler Wind Experiment (DWE) uses radio Huygens mission to Saturn can be broken into two signals to deduce atmospheric properties. The chapters: first, the arrival of the Cassini orbiter at probe drift caused by winds in Titan's atmosphere Saturn in June, and second, the release of the will induce a measurable Doppler shift in the carrier Huygens probe on Dec. 24, 2004, on a path signal. The swinging motion of the probe beneath toward Titan. (read PhysOrg story) its parachute and other radio-signal-perturbing effects, such as atmospheric attenuation, may also The Huygens probe, built and managed by the be detectable from the signal. European Space Agency (ESA), is bolted to Cassini and fed electrical power through an Gas Chromatograph and Mass Spectrometer umbilical cable. It has been riding along during the (GCMS) is a versatile gas chemical analyser nearly seven-year journey to Saturn largely in a designed to identify and quantify various "sleep" mode, awakened every six months for atmospheric constituents.
    [Show full text]
  • The Microscope Parts And
    The Microscope ­ Parts and Use Name:_______________________ Period:______ Historians credit the invention of the compound microscope to the Dutch spectacle maker, Zacharias Janssen, around the year 1590. The compound microscope uses lenses and light to enlarge the image and is also called an optical or light microscope (vs./ an electron microscope). The simplest optical microscope is the magnifying glass and is good to about ten times (10X) magnification. The compound microscope has two systems of lenses for greater magnification, 1) the ocular, or eyepiece lens that one looks into and 2) the objective lens, or the lens closest to the object. Before purchasing or using a microscope, it is important to know the functions of each part. Eyepiece Lens: the lens at the top that you look through. They are usually 10X or 15X power. Tube: Connects the eyepiece to the objective lenses Arm: Supports the tube and connects it to the base. It is used along with the base to carry the microscope Base: The bottom of the microscope, used for support Illuminator: A steady light source (110 volts) used in place of a mirror. Stage: The flat platform where you place your slides. Stage clips hold the slides in place. Revolving Nosepiece or Turret: This is the part that holds two or more objective lenses and can be rotated to easily change power. Objective Lenses: Usually you will find 3 or 4 objective lenses on a microscope. They almost always consist of 4X, 10X, 40X and 100X powers. When coupled with a 10X (most common) eyepiece lens, we get total magnifications of 40X (4X times 10X), 100X , 400X and 1000X.
    [Show full text]
  • Exomars Atmospheric Mars Entry and Landing Investigations and Analysis (AMELIA)
    ExoMars Atmospheric Mars Entry and Landing Investigations and Analysis (AMELIA) F. Ferri1, F. Forget2, S.R. Lewis3, O. Karatekin4 and the International AMELIA team 1CISAS “G. Colombo”, University of Padova, Italy 2LMD, Paris, France 3The Open University, Milton Keynes, U.K. 4Royal Observatory of Belgium, Belgium [email protected] IPPW9 Toulouse, F 16-22 June 2012 ExoMars Entry, Descent and Landing Science F. Ferri & AMELIA team ESA ExoMars programme 2016-2018 The ExoMars programme is aimed at demonstrate a number of flight and in-situ enabling technologies necessary for future exploration missions, such as an international Mars Sample Return mission. Technological objectives: • Entry, descent and landing (EDL) of a payload on the surface of Mars; • Surface mobility with a Rover; • Access to the subsurface to acquire samples; and • Sample acquisition, preparation, distribution and analysis. Scientific investigations: • Search for signs of past and present life on Mars; • Investigate how the water and geochemical environment varies • Investigate Martian atmospheric trace gases and their sources. ESA ExoMars 2016 mission: Mars Orbiter and an Entry, Descent and Landing Demonstrator Module (EDM). ESA ExoMars 2018 mission: the PASTEUR rover carrying a drill and a suite of instruments dedicated to exobiology and geochemistry research IPPW9 Toulouse, F 16-22 June 2012 ExoMars Entry, Descent and Landing Science F. Ferri & AMELIA team EDLS measurements • Entry, Descent, Landing System (EDLS) of an atmospheric probe or lander requires mesurements in order to trigger and control autonomously the events of the descent sequence; to guarantee a safe landing. • These measurements could provide • the engineering assessment of the EDLS and • essential data for an accurate trajectory and attitude reconstruction • and atmospheric scientific investigations • EDLS phases are critical wrt mission achievement and imply development and validation of technologies linked to the environmental and aerodynamical conditions the vehicle will face.
    [Show full text]
  • How Do the Lenses in a Microscope Work?
    Student Name: _____________________________ Date: _________________ How do the lenses in a microscope work? Compound Light Microscope: A compound light microscope uses light to ​ ​ transmit an image to your eye. Compound ​ deals with the microscope having more than one lens. Microscope is the ​ ​ combination of two words; "micro" meaning small and "scope" meaning view. Early microscopes, like Leeuwenhoek's, were called simple because they only had one lens. Simple scopes work like magnifying glasses that you have seen and/or used. These early microscopes had limitations to the amount of magnification no matter how they were constructed. The creation of the compound microscope by the Janssens helped to advance the field of microbiology light years ahead of where it had been only just a few years earlier. The Janssens added a second lens to magnify the image of the primary (or first) lens. Simple light microscopes of the past could magnify an object to 266X as in the case of Leeuwenhoek's microscope. Modern compound light microscopes, under optimal conditions, can magnify an object from 1000X to 2000X (times) the specimens original diameter. "The Compound Light Microscope." The Compound Light Microscope. Web. 16 Feb. 2017. ​ ​ http://www.cas.miamioh.edu/mbi-ws/microscopes/compoundscope.html Text is available under the Creative Commons Attribution-NonCommercial 4.0 ​ International (CC BY-NC 4.0) license. - 1 – Student Name: _____________________________ Date: _________________ Now we will describe how a microscope works in somewhat more detail. The first lens of a microscope is the one closest to the object being examined and, for this reason, is called the objective.
    [Show full text]
  • Binocular and Spotting Scope Basics
    Binocular and Spotting Scope Basics A good pair of binoculars is a must for most for bird monitoring projects. Certainly, you can observe birds and other wildlife without the aid of binoculars, such as at a feeder, but with them you will see more detail. Binoculars don't have to cost you a lot of money, but should adequately magnify birds for identification. Many 7 x 35 or 8 x 42 power binoculars are affordable and good for bird watching. They should be easy to use and comfortable for you. You can buy binoculars through sporting goods stores, catalogs, and the Internet. How to use binoculars Binoculars are an extension of your eyes. First, use your naked eye to find the birds you are observing. Once you have detected movement and can see the wildlife, use binoculars to see details of a bird’s “field marks.” Everyone’s eyes are different, so before you raise the binoculars, you must calibrate them for your eyes. How to Calibrate Binoculars 1. Binoculars hinge at the center between the two large “barrels,” allowing the eyepieces to fit the width of your eyes (Illustration A). Pivot the hinged barrels so you see a single circle-shaped image, rather than a double-image when looking through them. If the barrels are as close together as they go and you still see two images, you may need to find another pair. The distance between the eyepieces is called the “interpupillary distance.” It is too large if you see two images. The number on the hinge post (angle) will always be the same for your eyes, no matter which binocular you use (A).
    [Show full text]
  • Its Founding and Early Years Ewen A. Whitaker
    The University of Arizona's LUNAR AND PLANETARY LABORATORY Its Founding and Early Years Ewen A. Whitaker Set in Varityper Times Roman and printed at the University of Arizona Printing-Reproductions Department Equal Employment Opportunity· Affirmative Action Employer CONTENTS THE PRE-TUCSON ERA Historical background ........................................ I Enter Gerard P. Kuiper ....................................... 2 The Moon enters the picture ................................... 3 A call for suggestions ......................................... 5 The Harold Urey affair ....................................... 6 Preliminaries for the Lunar Atlas ............................... 7 1957 - a dream begins to take shape ............................. 7 The shot that was seen (and heard) around the world ............... 8 Other irons in the fire ......................................... 9 Kuiper seeks full-time help for the Lunar Project .................. 9 1959 - the Lunar Project gathers momentum ..................... 11 A new factor in the Lunar Project LPL story ................... 12 The Air Force enters the lunar cartography business ............... 13 The Lunar Atlas published at last .............................. 14 Big problems with the Yerkes set-up ............................ : 6 The southwestern U.S. begins to beckon ........................ 17 "There is a tide in the affairs of men ..." ....................... 18 Preparing for the move ...................................... 23 THE TUCSON ERA The Lunar Project makes the transfer
    [Show full text]
  • Based Observations of Titan During the Huygens Mission Olivier Witasse,1 Jean-Pierre Lebreton,1 Michael K
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, E07S01, doi:10.1029/2005JE002640, 2006 Overview of the coordinated ground-based observations of Titan during the Huygens mission Olivier Witasse,1 Jean-Pierre Lebreton,1 Michael K. Bird,2 Robindro Dutta-Roy,2 William M. Folkner,3 Robert A. Preston,3 Sami W. Asmar,3 Leonid I. Gurvits,4 Sergei V. Pogrebenko,4 Ian M. Avruch,4 Robert M. Campbell,4 Hayley E. Bignall,4 Michael A. Garrett,4 Huib Jan van Langevelde,4 Stephen M. Parsley,4 Cormac Reynolds,4 Arpad Szomoru,4 John E. Reynolds,5 Chris J. Phillips,5 Robert J. Sault,5 Anastasios K. Tzioumis,5 Frank Ghigo,6 Glen Langston,6 Walter Brisken,7 Jonathan D. Romney,7 Ari Mujunen,8 Jouko Ritakari,8 Steven J. Tingay,9 Richard G. Dodson,10 C. G. M. van’t Klooster,11 Thierry Blancquaert,11 Athena Coustenis,12 Eric Gendron,12 Bruno Sicardy,12 Mathieu Hirtzig,12,13 David Luz,12,14 Alberto Negrao,12,14 Theodor Kostiuk,15 Timothy A. Livengood,16,15 Markus Hartung,17 Imke de Pater,18 Mate A´ da´mkovics,18 Ralph D. Lorenz,19 Henry Roe,20 Emily Schaller,20 Michael Brown,20 Antonin H. Bouchez,21 Chad A. Trujillo,22 Bonnie J. Buratti,3 Lise Caillault,23 Thierry Magin,23 Anne Bourdon,23 and Christophe Laux23 Received 17 November 2005; revised 29 March 2006; accepted 24 April 2006; published 27 July 2006. [1] Coordinated ground-based observations of Titan were performed around or during the Huygens atmospheric probe mission at Titan on 14 January 2005, connecting the momentary in situ observations by the probe with the synoptic coverage provided by continuing ground-based programs.
    [Show full text]
  • A Guide to Smartphone Astrophotography National Aeronautics and Space Administration
    National Aeronautics and Space Administration A Guide to Smartphone Astrophotography National Aeronautics and Space Administration A Guide to Smartphone Astrophotography A Guide to Smartphone Astrophotography Dr. Sten Odenwald NASA Space Science Education Consortium Goddard Space Flight Center Greenbelt, Maryland Cover designs and editing by Abbey Interrante Cover illustrations Front: Aurora (Elizabeth Macdonald), moon (Spencer Collins), star trails (Donald Noor), Orion nebula (Christian Harris), solar eclipse (Christopher Jones), Milky Way (Shun-Chia Yang), satellite streaks (Stanislav Kaniansky),sunspot (Michael Seeboerger-Weichselbaum),sun dogs (Billy Heather). Back: Milky Way (Gabriel Clark) Two front cover designs are provided with this book. To conserve toner, begin document printing with the second cover. This product is supported by NASA under cooperative agreement number NNH15ZDA004C. [1] Table of Contents Introduction.................................................................................................................................................... 5 How to use this book ..................................................................................................................................... 9 1.0 Light Pollution ....................................................................................................................................... 12 2.0 Cameras ................................................................................................................................................
    [Show full text]
  • History of Space-Based Infrared Astronomy and the Air Force Infrared Celestial Backgrounds Program
    AFRL-RV-HA-TR-2008-1039 History of Space-Based Infrared Astronomy and the Air Force Infrared Celestial Backgrounds Program S. D. Price 18 April 2008 Approved for Public Release: Distribution Unlimited AIR FORCE RESEARCH LABORATORY Space Vehicles Directorate 29 Randolph Rd. Hanscom AFB, MA 01731-3010 AFRL-RV-HA-TR-2008-1039 This Technical Report has been reviewed and is approved for publication. / signed / ____________________________ Robert A. Morris, Chief Battlespace Environment Division / signed / / signed / _________________ _______________________________ Stephan D. Price Paul Tracy, Acting Chief Author Battlespace Surveillance Innovation Center This report has been reviewed by the ESC Public Affairs Office (PA) and is releasable to the National Technical Information Service. Qualified requestors may obtain additional copies from the Defense Technical Information Center (DTIC). All others should apply to the National Technical Information Service (NTIS). If your address has changed, if you wish to be removed from the mailing list, of if the address is no longer employed by your organization, please notify AFRL/VSIM, 29 Randolph Rd., Hanscom AFB, MA 01731-3010. This will assist us in maintaining a current mailing list. Do not return copies of this report unless contractual obligations or notices on a specific document require that it be returned. Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
    [Show full text]
  • The European S Pace Exploration Programme “Aurora”
    The European S pace Exploration Programme “Aurora” Accademia delle S cienze Torino, 23rd May 2008 B. Gardini - E S A E xploration Programme Manager To, 23May08 1 Aurora Programme ES A Programme (2001) for the human and robotic exploration of the S olar S ys tem time Automatic Mars Missions Cargo Elements First Human IS S of first Human Mission to Mission Mars Moon B asis Mars S ample ExoMar Return To, 23May08 s (MS R) 2 Columbus Laboratory - IS S Launched 7 Feb. 2008, with Hans Schlegel, after Node2 mission with Paolo Nespoli To, 23May08 3 Automated Transfer Vehicle (ATV) Europe’s Space Supply Vehicle ATV- Jules Verne •Docked to ISS: 3 April 2008 •First ISS Re-boost: 25 April 2008 To, 23May08 •De-orbit: ~ August 2008 4 Human Moon Mission Moon: Next destination of international human missions beyond ISS Test-bed for demonstration S urface of innovative technologies Mobility & capabilities for sustaining human life on planetary surfaces. S ustainable Energy Life Provision & S upport Management In-S itu Robotic Support Resourc e Utilisatio To, 23May08 n 5 ES A Planetary Missions Cassini / Huygens (1997-2005) sonda a Saturno y Titán Rosetta (2004-…) Encuentro con el cometa Smart 1 (2003-2006) 67P Churyumov-Cerasimenko Sonda a la luna Mars Express (2003-…) Estudio de Marte Soho (1995-…): interacción Sol-Tierra To, 23May08 6 Mars Express HRS C (3D, 2-10m res) http://www.esa.int/esa-mmg/mmg.pl? To, 23May08 7 Why Life on Mars Early in the his tory of Mars , liquid water was present on its s urface; S ome of the proces ses cons idered important for the origin of life on Earth may have als o been pres ent on early Mars; Es tablishing if there ever was life on Mars is fundamental for planning future miss ions.
    [Show full text]