IEEE Paper Template in A4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Code of Ethics for Robotics Engineers
A CODE OF ETHICS FOR ROBOTICS ENGINEERS An Interactive Qualifying Project Report Submitted to the faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science By: Brandon Ingram Daniel Jones Andrew Lewis Matthew Richards Advisors: Professor Lance Schachterle Professor Charles Rich 3/6/2010 Code of Ethics for Robotics Engineers 2 Abstract This project developed a draft code of ethics for professional robotics engineers by researching into the fields of robotics, ethics and roboethics to develop the necessary understanding. The code was drafted and presented to students, professors and professionals for feedback and revision. The code is now hosted at the Illinois Institute of Technology’s Center for the Study of Ethics in the Professions website (ethics.iit.edu), and is open for discussion at (rbethics.lefora.com). It is being proposed for adoption to the WPI Robotics Program faculty and the WPI Robotics Engineering Honors Fraternity, Rho Beta Epsilon. Acknowledgements In addition to our advisors, we would like to thank all have helped in researching and developing this code of ethics, either by providing feedback or information. Those that helped on campus include: John Sanbonmatsu, Kent Rissmiller, Michael Gennert, Brad Miller, Aaron Holroyd, Brian Benson, Elizabeth Alexander, Ciarán Murphy, Phi Sigma Kappa, Phi Kappa Theta, the WPI Robotics Faculty and Rho Beta Epsilon. Those off campus include: P.W. Singer, Martin Sklar, Jim Mail, Ronald Arkin, and Kelly Laas. Code of Ethics -
44 Th Series of SPP (2020
KARNATAKA STATE COUNCIL FOR SCIENCE AND TECHNOLOGY Indian Institute of Science Campus, Bengaluru – 560 012 Website: http://www.kscst.iisc.ernet.in/spp.html || Email: [email protected] || Phone: 080-23341652, 23348840/48/49 44th Series of Student Project Programme: 2020-21 List of Student Project Proposals Approved for Sponsorship 1. A.C.S. COLLEGE OF ENGINEERING, BENGALURU Sl. PROJECT PROJECT TITLE BRANCH COURSE NAME OF THE NAME OF THE STUDENT(S) SANCTIONED No. REFERENCE No. GUIDE(S) AMOUNT (IN Rs.) 1. 44S_BE_1382 FACE MASK DETECTION SYSTEM FOR THE ERA OF COVID-19 USING MACHINE COMPUTER B.E. Prof. POONAM Ms. BHAVANA G 2500.00 LEARNING TECHNIQUES SCIENCE AND KUMARI Ms. CHAITANYASHREE ENGINEERING Ms. KEERTHI L N 2. 44S_BE_1385 IOT BASED UNIT FOR COPD TREATMENT BIOMEDICAL B.E. Dr. ANITHA S Ms. RASHMI S 5500.00 ENGINEERING Ms. POOJA D 3. 44S_BE_1386 PILLBOT: A NONCONTACT MEDICINE DISPENSING ROBOT FOR PATIENTS IN BIOMEDICAL B.E. Prof. NANDITHA Ms. SHEETAL RAMESH 5000.00 QUARANTINE ENGINEERING KRISHNA Ms. R NAVYA SREE Ms. RAJESHWARI SAJITH Mr. S KOSAL RAMJI 4. 44S_BE_3064 PAIN RELIEF DEVICE FOR THE TREATMENT OF MIGRAINE BIOMEDICAL B.E. Prof. HEMANTH Ms. SHREYA CHAKRAVARTHY 5000.00 ENGINEERING KUMAR G Ms. M VAGDEVI Ms. SHREE GOWRI M H Ms. SPOORTHI N K 5. 44S_BE_3066 FABRICATION OF SHEET METAL CUTTING MACHINE AND FOOT STEP POWER MECHANICAL B.E. Prof. SUNIL RAJ B A Mr. LOHITH M C 7000.00 GENERATION ENGINEERING Mr. NITISH G Mr. VINOD KUMAR K Mr. ANIL KUMAR 6. 44S_BE_4243 INTEGRATION OF BIODEGRADABLE COMPOSITES IN AIRCFART STRUCTURES AERONAUTICAL B.E. -
Ph. D. Thesis Stable Locomotion of Humanoid Robots Based
Ph. D. Thesis Stable locomotion of humanoid robots based on mass concentrated model Author: Mario Ricardo Arbul´uSaavedra Director: Carlos Balaguer Bernaldo de Quiros, Ph. D. Department of System and Automation Engineering Legan´es, October 2008 i Ph. D. Thesis Stable locomotion of humanoid robots based on mass concentrated model Author: Mario Ricardo Arbul´uSaavedra Director: Carlos Balaguer Bernaldo de Quiros, Ph. D. Signature of the board: Signature President Vocal Vocal Vocal Secretary Rating: Legan´es, de de Contents 1 Introduction 1 1.1 HistoryofRobots........................... 2 1.1.1 Industrialrobotsstory. 2 1.1.2 Servicerobots......................... 4 1.1.3 Science fiction and robots currently . 10 1.2 Walkingrobots ............................ 10 1.2.1 Outline ............................ 10 1.2.2 Themes of legged robots . 13 1.2.3 Alternative mechanisms of locomotion: Wheeled robots, tracked robots, active cords . 15 1.3 Why study legged machines? . 20 1.4 What control mechanisms do humans and animals use? . 25 1.5 What are problems of biped control? . 27 1.6 Features and applications of humanoid robots with biped loco- motion................................. 29 1.7 Objectives............................... 30 1.8 Thesiscontents ............................ 33 2 Humanoid robots 35 2.1 Human evolution to biped locomotion, intelligence and bipedalism 36 2.2 Types of researches on humanoid robots . 37 2.3 Main humanoid robot research projects . 38 2.3.1 The Humanoid Robot at Waseda University . 38 2.3.2 Hondarobots......................... 47 2.3.3 TheHRPproject....................... 51 2.4 Other humanoids . 54 2.4.1 The Johnnie project . 54 2.4.2 The Robonaut project . 55 2.4.3 The COG project . -
Assistive Humanoid Robot MARKO: Development of the Neck Mechanism
MATEC Web of Conferences 121, 08005 (2017) DOI: 10.1051/ matecconf/201712108005 MSE 2017 Assistive humanoid robot MARKO: development of the neck mechanism Marko Penčić1,*, Maja Čavić1, Srđan Savić1, Milan Rackov1, Branislav Borovac1, and Zhenli Lu2 1Faculty of Technical Sciences, University of Novi Sad, TrgDositejaObradovića 6, 21000 Novi Sad, Serbia 2School of Electrical Engineering and Automation, Changshu Institute of Technology, Hushan Road 99, 215500 Changshu, People's Republic of China Abstract.The paper presents the development of neck mechanism for humanoid robots. The research was conducted within the project which is developing a humanoid robot Marko that represents assistive apparatus in the physical therapy for children with cerebral palsy.There are two basic ways for the neck realization of the robots. The first is based on low backlash mechanisms that have high stiffness and the second one based on the viscoelastic elements having variable flexibility. We suggest low backlash differential gear mechanism that requires small actuators. Based on the kinematic-dynamic requirements a dynamic model of the robots upper body is formed. Dynamic simulation for several positions of the robot was performed and the driving torques of neck mechanism are determined.Realized neck has 2 DOFs and enables movements in the direction of flexion-extension 100°, rotation ±90° and the combination of these two movements. It consists of a differential mechanism with three spiral bevel gears of which the two are driving and are identical, and the third one which is driven gear to which the robot head is attached. Power transmission and motion from the actuators to the input links of the differential mechanism is realized with two parallel placed gear mechanisms that are identical.Neck mechanism has high carrying capacity and reliability, high efficiency, low backlash that provide high positioning accuracy and repeatability of movements, compact design and small mass and dimensions. -
30 Nov Hires Report
Hire Heroes USA Confirmed Hires 2017 Through November 30 Service (Last) Branch Service Rank Other Hiring Company Name Position Hired For Army CW-2 Special Security Officer Navy CW-4 Black Knight Financial Services IT Production Manager Army CW-4 ASM Research Benefits Lead Army 0-1 General Dynamics Manufacturing Engineer Army 0-1 Scribe America Medical Scribe Gwinnett County Office of Strategy & Army 0-1 Performance Mgmt. Business Analyst Marines 0-1 Campus Hollywood Instructor- Theater History and Acting Air Force 0-1 Global Threat & Risk Analyst Navy 0-1 Advanced Systems Development Help Desk Specialist Army W-5 United Airlines Pilot Marines W-5 San Diego Passport Agency Passport Support Associate Army W-5 Selective Service System Program Analyst Marines W-5 Ulta Beauty Warehouse Manager Army W-5 DOD Pilot Military Program Analyst-Organization and Personnel Force Development Army W-5 US Army DOD Directorate Army W-5 NES Associates Technical Director Army W-5 Program Manager Army W-5 AFS Army Fleet Service Test Flight Pilot Army W-5 Investigator Navy W-5 R3 Strategic support Group Manager Army W-5 AFSC/Magellan Federal Training Center Manager Navy W-5 Naval Systems Incorporated Senior Logistics Analyst Army W-5 Aviation Specialties Unlimited Aviator Marines W-5 District Manager Army W-4 TFW - Tsay Ferguson-Williams Deputy Project Manager Army W-4 CACI International Lessons Learned Analyst Army W-4 Colorado Springs Police Department Criminal Investigator Army W-4 Intel Corporation D1D Manufacturing Technician Army W-4 Erickson Air Crane -
Generation of the Whole-Body Motion for Humanoid Robots with the Complete Dynamics Oscar Efrain Ramos Ponce
Generation of the whole-body motion for humanoid robots with the complete dynamics Oscar Efrain Ramos Ponce To cite this version: Oscar Efrain Ramos Ponce. Generation of the whole-body motion for humanoid robots with the complete dynamics. Robotics [cs.RO]. Universite Toulouse III Paul Sabatier, 2014. English. tel- 01134313 HAL Id: tel-01134313 https://tel.archives-ouvertes.fr/tel-01134313 Submitted on 23 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Christine CHEVALLEREAU: Directeur de Recherche, École Centrale de Nantes, France Francesco NORI: Researcher, Italian Institute of Technology, Italy Patrick DANÈS: Professeur des Universités, Université de Toulouse III, France Ludovic RIGHETTI: Researcher, Max-Plank-Institute for Intelligent Systems, Germany Nicolas MANSARD: Chargé de Recherche, LAAS-CNRS, France Philippe SOUÈRES: Directeur de recherche, LAAS-CNRS, France Yuval TASSA: Researcher, University of Washington, USA Abstract This thesis aims at providing a solution to the problem of motion generation for humanoid robots. The proposed framework generates whole-body motion using the complete robot dy- namics in the task space satisfying contact constraints. This approach is known as operational- space inverse-dynamics control. The specification of the movements is done through objectives in the task space, and the high redundancy of the system is handled with a prioritized stack of tasks where lower priority tasks are only achieved if they do not interfere with higher priority ones. -
Design of Android Type Humanoid Robot Albert HUBO€
Design of Android type Humanoid Robot Albert HUBO Jun-Ho Oh David Hanson Won-Sup Kim Il Young Han Jung-Yup Kim Ill-Woo Park Mechanical Division of Mechanical Mechanical Mechanical Engineering Industrial Engineering Engineering Engineering Design Korea Advanced Hanson Robotics Korea Advanced Korea Advanced Korea Advanced Institute of Inc Ewha Womans Institute of Science Institute of Science Institute of Science Science and University and Technology and Technology and Technology Technology Daejeon, Korea Dallas, TX, USA Seoul, Korea Daejeon, Korea Daejeon, Korea Daejeon, Korea [email protected] David@HansonRo kimws@ewha. [email protected]. [email protected]. [email protected] botics.com ac.kr kr ac.kr ist.ac.kr Abstract incompletely. But, the combination of these two factors To celebrate the 100th anniversary of the announcement brought an unexpected result from the mutual effect. of the special relativity theory of Albert Einstein, KAIST The body of Albert HUBO is based on humanoid robot HUBO team and hanson robotics team developed android ‘HUBO’ introduced in 2004[5]. HUBO, the human scale type humanoid robot Albert HUBO which may be the humanoid robot platform with simple structure, can bi-pad world’s first expressive human face on a walking biped walking and independent self stabilize controlling. The head robot. The Albert HUBO adopts the techniques of the of Albert HUBO is made by hanson robotics team and the HUBO design for Albert HUBO body and the techniques techniques of low power consumptions and full facial of hanson robotics for Albert HUBO’s head. Its height and expressions are based on famous, worldwide recognized, weight are 137cm and 57Kg. -
1 Robot Visions
1 Robot Visions Our dream is to create a society where it is nothing special for people to live together with robots. Akifumi Tamaoki beginnings For much of my childhood in Kodaira, a suburban community west of Tokyo,1 I had to watch television at our neighbors’ homes. We only acquired a black-and-white set in 1964 to watch the Summer Olympics, by which time the fields and chestnut orchards surrounding our house were being razed by tract-home developers and the gravel roads paved. Our neighbors had bought their sets to watch the wedding of Crown Prince (now Emperor) Akihito (b. 1933) and Sho–da Michiko (b. 1934) in April 1959. By 1964, nearly half of the roughly 25 million households in Japan owned a television, the wealthier among them a color model.2 Once we had a TV, I began to watch two cartoons that starred robots: Tetsuwan Atomu (Astro Boy) and Tetsujin 28 [Niju–hachi]-go (Ironman 28, aka Gigantor) (figure 1).3 Both were preceded by comic book versions and broadcast on Fuji TV from 1963 to 1966. Gigantor is remotely con- trolled by a ten-year-old boy detective whose father created the robot. The boy and the robot share a deep emotional bond that underscores the familial aspects of real-world human–robot relations in Japan, a theme I will reiterate in each chapter. I discuss Astro Boy at length in chapters 4 1 Robertson-Robo Sapiens japanicus.indd 1 17/07/17 3:54 PM 2 robot visions Figure 1. Tetsuwan Atomu (Astro Boy). -
HBS-1: a Modular Child-Size 3D Printed Humanoid
robotics Article HBS-1: A Modular Child-Size 3D Printed Humanoid Lianjun Wu, Miles Larkin, Akshay Potnuru and Yonas Tadesse * Received: 6 November 2015; Accepted: 4 January 2016; Published: 13 January 2016 Academic Editor: Huosheng Hu Humanoid, Biorobotics and Smart Systems Laboratory (HBS Lab), Department of Mechanical Engineering, The University of Texas at Dallas, Richardson TX 75080, USA; [email protected] (L.W.); [email protected] (M.L.); [email protected] (A.P.) * Correspondence: [email protected]; Tel.: +1-972-883-4556; Fax: +1-972-883-4659 Abstract: An affordable, highly articulated, child-size humanoid robot could potentially be used for various purposes, widening the design space of humanoids for further study. Several findings indicated that normal children and children with autism interact well with humanoids. This paper presents a child-sized humanoid robot (HBS-1) intended primarily for children’s education and rehabilitation. The design approach is based on the design for manufacturing (DFM) and the design for assembly (DFA) philosophies to realize the robot fully using additive manufacturing. Most parts of the robot are fabricated with acrylonitrile butadiene styrene (ABS) using rapid prototyping technology. Servomotors and shape memory alloy actuators are used as actuating mechanisms. The mechanical design, analysis and characterization of the robot are presented in both theoretical and experimental frameworks. Keywords: humanoid; mechanical design; actuators; manufacturing; 3D printing 1. Introduction Humanoid robots have great potential for use in our daily life by accompanying or working together with people. Growing interest in humanoid robots has spurred a substantial increase in their development over the past decade. -
A First Approach to a Proposal of a Soft Robotic Link Acting As a Neck
Actas de las XXXIX Jornadas de Automática, Badajoz, 5-7 de Septiembre de 2018 https://doi.org/10.17979/spudc.9788497497565.0522 A First Approach to a Proposal of a Soft Robotic Link Acting as a Neck Luis Nagua, Jorge Mu~noz,Concepci´onA. Monje and Carlos Balaguer Systems Engineering and Automation Department , RoboticsLab University Carlos III of Madrid Madrid, Spain [email protected], [email protected], [email protected], [email protected] Abstract form, a fixed base, several identical active chains and a passive backbone, if necessary. This type of The purpose of this paper is to design a soft mechanism is interesting for the following reasons: robotic neck prototype with two Degrees of Free- the number of actuators is minimal; the number dom (DOF) and propose a control system based of sensors necessary for the closed-loop control of on a fractional order PD controller (FPD). The the mechanism is also minimal; when the actua- neck will be able to perform movements of flex- tors are locked, the manipulator remains in its po- ion, extension and lateral bending. To achieve sition, which is an important safety aspect for cer- these movements, the design is made based on a tain applications, such as medical robotics. The cable-driven mechanism, with components easy to SAYA head has a structure composed of a central manufacture in a 3D printer. Simulations are per- spring and several pneumatic artificial muscles [6]. formed to validate the feasibility of the developed In this paper a soft robotic neck is proposed based parallel robot prototype and the robustness of the on a cable-driven parallel mechanism. -
Team Runswift University of New South Wales, Australia
Team rUNSWift University of New South Wales, Australia RoboCup 2017 Standard Platform League Gary Bai, Sean Brady, Kenji Brameld, Amri Chamela, Jeremy Collette, Samuel Collis-Bird, Kirsten Hendriks, Ethan Jones, Liangde Li, Alvin Prijatna, Peter Schmidt, Hayden Smith, Addo Wondo, Victor Wong, Maurice Pagnucco, Brad Hall, Timothy Wiley, and Claude Sammut School of Computer Science and Engineering University of New South Wales Sydney 2052 Australia http://www.cse.unsw.edu.au Abstract. RoboCup inspires and motivates our research interests in cognitive robotics and machine learning, especially vision, state-estimation, locomotion, layered hybrid architectures, and high-level programming languages. The 2017 rUNSWift team comprises final year undergradu- ate honours students, Master and PhD students, past RoboCup students and supervisors who have been involved in RoboCup for over a decade. New developments in 2017 include increased density foveation, a vision architecture change, a new ball and goal classifier, improved localising techniques, and development of both web-based and non-web based test- ing platforms. 1 The Team The RoboCup Standard Platform League (SPL) is an excellent training ground. Participant team members need to collaborate on the development of a highly complex software system, deliver it on time, and within budget. This year the UNSW SPL team comprises a mix of undergraduate, masters and PhD students, both past and present. By participating in RoboCup the team is engaged in a unique educational experience and makes a significant contribution towards research, as is evident from the list of references at the end of this article. The 2017 rUNSWift team members are Gary Bai, Sean Brady, Kenji Brameld, Amri Chamela, Samuel Collis-Bird, Kirsten Hendriks, Ethan Jones, Alvin Pri- jatna, Peter Schmidt, Hayden Smith, Liangde Li, Addo Wondo, Victor Wong, Brad Hall, Timothy Wiley, Maurice Pagnucco, and Claude Sammut. -
Malachy Eaton Evolutionary Humanoid Robotics Springerbriefs in Intelligent Systems
SPRINGER BRIEFS IN INTELLIGENT SYSTEMS ARTIFICIAL INTELLIGENCE, MULTIAGENT SYSTEMS, AND COGNITIVE ROBOTICS Malachy Eaton Evolutionary Humanoid Robotics SpringerBriefs in Intelligent Systems Artificial Intelligence, Multiagent Systems, and Cognitive Robotics Series editors Gerhard Weiss, Maastricht, The Netherlands Karl Tuyls, Liverpool, UK More information about this series at http://www.springer.com/series/11845 Malachy Eaton Evolutionary Humanoid Robotics 123 Malachy Eaton Department of Computer Science and Information Systems University of Limerick Limerick Ireland ISSN 2196-548X ISSN 2196-5498 (electronic) SpringerBriefs in Intelligent Systems ISBN 978-3-662-44598-3 ISBN 978-3-662-44599-0 (eBook) DOI 10.1007/978-3-662-44599-0 Library of Congress Control Number: 2014959413 Springer Heidelberg New York Dordrecht London © The Author(s) 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.