Design and Realization of a Full-Sized Anthropometrically Correct Humanoid Robot

Total Page:16

File Type:pdf, Size:1020Kb

Design and Realization of a Full-Sized Anthropometrically Correct Humanoid Robot ORIGINAL RESEARCH published: 25 June 2015 doi: 10.3389/frobt.2015.00014 Herbert: design and realization of a full-sized anthropometrically correct humanoid robot Brennand Pierce* and Gordon Cheng Institute for Cognitive Systems, Technische Universität München, Munich, Germany In this paper, we present the development of a new full-sized anthropometrically correct humanoid robot Herbert. Herbert has 33 DOFs: (1) 29 active DOFs (2 × 4 in the legs, 2 × 7 in the arms, 4 in the waist and 3 in the head) and (2) 4 passive DOFs (2 × 2 in the ankles). We present the objectives of the design and the development of our system, the hardware (mechanical, electronics) as well as the supporting software architecture that encompasses the realization of the complete humanoid system. Several key elements, that have to be taken into account in our approach to keep the costs low while ensuring high performance, will be presented. In realizing Herbert we applied a modular design for the overall mechanical structure. Two core mechanical module types make up the Edited by: Lorenzo Natale, main structural elements of Herbert: (1) small compact mechanical drive modules and (2) Istituto Italiano di Tecnologia, Italy compliant mechanical drive modules. The electronic system of Herbert, which is based Reviewed by: on two different types of motor control boards and an FPGA module with a central Giovanni Stellin, Telerobot Labs Srl, Italy controller, is discussed. The software architecture is based on ROS with a number of Kensuke Harada, sub-nodes used for the controller. All these supporting components have been important National Institute of Advanced in the development of the complete system. Finally, we present results showing our Industrial Science and Technology, Japan robot’s performances: demonstrating the behavior of the compliant modules, the ability of *Correspondence: tracking a desired position/velocity as well as a simple torque controller. We also evaluate Brennand Pierce, our custom communication system. Additionally, we demonstrate Herbert balancing and Institute for Cognitive Systems, Technische Universität München, squatting to show its performance. Moreover, we also show the simplicity of the higher Karlstrasse 45/II, Munich 80333, level supporting software framework in realizing new behaviors. All in all, we show that Germany our system is compact and able to achieve comparable human performances and has [email protected] human proportions while being low cost. Specialty section: Keywords: humanoid robot, compliant control, anthropometrically correct humanoid robot, human performance, This article was submitted to torque controllable Humanoid Robotics, a section of the journal Frontiers in Robotics and AI Received: 16 December 2014 Introduction Accepted: 19 May 2015 Published: 25 June 2015 Over the past two decades, a number of full-sized humanoid robots have been designed and realized: Citation: Hubo (Park et al., 2005), Honda P2/P3 (Hirai et al., 1998), HRP-series (Kaneko et al., 2008), CB Pierce B and Cheng G (2015) (Cheng et al., 2007), LOLA (Lohmeier et al., 2009), TORO iteOtt2010 and ARMAR-4 (Asfour et al., Herbert: design and realization of a 2013), just to name a few. All these humanoid robots are commonly human in size and achieve full-sized anthropometrically correct humanoid robot. similar or greater human performance. However, all of these humanoid robots suffer from one Front. Robot. AI 2:14. common drawback: their high costs, which are all in the hundreds of thousands of Euros (ranging doi: 10.3389/frobt.2015.00014 from AC200 K to AC1 M). This being one of the main reasons holding back humanoid robots from Frontiers in Robotics and AI | www.frontiersin.org 1 June 2015 | Volume 2 | Article 14 Pierce and Cheng Herbert: design and realisation leaving the high-end laboratories and becoming more widely dealing with impact or safety. Some examples of these humanoid used, and even 1 day being part of everyday life. The popularity robots are MACCEPA (Vanderborght et al., 2009), Blue (Enoch of the humanoid robot NAO (Gouaillier et al., 2009), which is et al., 2012a), and MABEL (Grizzle et al., 2009). The problem small at 0.57 m, weighs 4.5 kg, and is low cost, has shown that with adjustable compliances is that the mechanical complexity an inexpensive platform can help to make humanoid research still needs to be solved. Furthermore, two coupled motors, which more widely accessible to a larger audience from universities to are used to control the joint position and the stiffness of a sin- high schools. Thus, we have been designing a full-sized humanoid gle joint, add extra weight, space, and costs. This means that robot that has similar physical specifications as current full- the humanoid robot will require at least twice as many motors sized humanoid robots, but with the main objective of making it and controllers than normal. Currently no full-sized adjustable affordable. compliant humanoid robot has been realized with similar capa- The cost of the actuation mechanism is one of the most costly bility than the more classical approach. As the extra cost of the components on any humanoid robot. For instance, in hydraulic motors and mechanical structures goes against our primary goal humanoid robots (Cheng et al., 2007; Alfayad et al., 2011), the of a low-cost humanoid robot we discounted variable compliance high costs are created by the servo valves and the high machin- actuation in our design. ing tolerances associated with the pistons; whereas in electric Most traditional humanoid robots control strategies rely on humanoid robots, the main costs are in the motors, gearboxes, very accurate knowledge about the robot’s dynamics (i.e., kine- and motor controllers. In our current approach, we have elected to matics and inertia properties) and its environment, and work with focus on electric actuated humanoid robots, as we believe that this high-gain joint position control. Since the major breakthrough approach provides us with the best opportunity of making a full- in walking control being the introduction of the “zero moment sized humanoid robot at the lowest price while at the same time point” (ZMP) (Vukobratović and Borovac, 2004), ZMP was used keeping the same physical performance that other robots possess. in the design and control of a number of high performance biped Looking over the classic design practice of some of the current robots (Hirai et al., 1998; Park et al., 2005; Kaneko et al., 2008). generation of humanoid robots, we can identify key aspects that The main principle of ZMP is that its moment of inertia should can be improved. Firstly, we set out to replace the Harmonic drives be kept in its support polygon, which is normally the supporting that are used in most high-performance electric humanoid robots, foot. Robots like the HRP-series, Hubo, or LOLA are classed as such as HUBO (Oh et al., 2006), HRP-series (Kaneko et al., 2008), stiffed fully actuated robots, where the structure and actuation TORO (Ott et al., 2010), iCub (Parmiggiani et al., 2012), and system are rigid with the only compliant element in the sole of ARMAR-4 (Asfour et al., 2013). Secondly, we need to examine the the foot. These robots all require very accurate control of the power and control electronics followed by the mechanical design joint angles and velocities. Hence, torque-controlled robots have with the aim to reduce the costs and simplify the design of the become more attractive in recent years because of the key features overall system. of safe interaction with the environment and humans (Haddadin Compliant joints have shown to be beneficial in humanoid et al., 2013), compliant behavior, and the ability to directly control robots (Tsagarakis et al., 2011; Enoch et al., 2012b), therefore the forces within the controller. CB (Cheng et al., 2007) and TORO we set out to examine the use of compliant joints in a selected (Ott et al., 2010) are two examples of full-sized humanoids robots, number of joints, primarily for the legs. The reason we believe which are both fully force-controllable. mechanical compliance is important for the humanoid’s legs is the There has been three humanoid robots that have the pri- foot placement, which is essential for absorbing the impact forces marily design goal of being anthropometrically correct. The first for actions like walking and jumping (Hurst, 2011). Controlled humanoid is HRP-4C (Kaneko et al., 2009) which is based on an compliance was also considered but that would not provide us average young Japanese female. This humanoid was designed for with the performance we needed as the latency from the sensors the entertainment industry such as a fashion model or the master detecting the impact force to the time of the joint moving would of ceremony. So the hands and head of the robot were designed to be too long (Pratt and Williamson, 1995). Typically, compliance be as life like as possible with realistic skin. The second humanoid is added to the joint using “Series Elastic Actuators” (SEA), as is WABIAN-2 (Aikawa et al., 2006). This humanoid was designed introduced by (Pratt and Williamson, 1995) where a spring is to help researchers study rehabilitation and welfare instruments. placed in-between the motor and the output. This has two advan- The WABIAN-2 researchers had three reasons that they felt an tages: (1) first, it makes measuring forces easier as the measured anthropometrically correct humanoid is beneficiary. First, they spring displacement corresponds to the force (2) second, it allows hypothesized that measuring the angle and torques at the joints, absorption of impact forces and could also be used to store energy. when the robot used a device, could be measured more easily SEA has been successfully implemented in a number of robots compared to the corresponding values from a human subject.
Recommended publications
  • A Code of Ethics for Robotics Engineers
    A CODE OF ETHICS FOR ROBOTICS ENGINEERS An Interactive Qualifying Project Report Submitted to the faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science By: Brandon Ingram Daniel Jones Andrew Lewis Matthew Richards Advisors: Professor Lance Schachterle Professor Charles Rich 3/6/2010 Code of Ethics for Robotics Engineers 2 Abstract This project developed a draft code of ethics for professional robotics engineers by researching into the fields of robotics, ethics and roboethics to develop the necessary understanding. The code was drafted and presented to students, professors and professionals for feedback and revision. The code is now hosted at the Illinois Institute of Technology’s Center for the Study of Ethics in the Professions website (ethics.iit.edu), and is open for discussion at (rbethics.lefora.com). It is being proposed for adoption to the WPI Robotics Program faculty and the WPI Robotics Engineering Honors Fraternity, Rho Beta Epsilon. Acknowledgements In addition to our advisors, we would like to thank all have helped in researching and developing this code of ethics, either by providing feedback or information. Those that helped on campus include: John Sanbonmatsu, Kent Rissmiller, Michael Gennert, Brad Miller, Aaron Holroyd, Brian Benson, Elizabeth Alexander, Ciarán Murphy, Phi Sigma Kappa, Phi Kappa Theta, the WPI Robotics Faculty and Rho Beta Epsilon. Those off campus include: P.W. Singer, Martin Sklar, Jim Mail, Ronald Arkin, and Kelly Laas. Code of Ethics
    [Show full text]
  • Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Angewandte Mechanik Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion Entwurf und Realisierung eines Humanoiden Roboters für Schnelles und Autonomes Laufen Dipl.-Ing. Univ. Sebastian Lohmeier Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing. Udo Lindemann Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. habil. Heinz Ulbrich 2. Univ.-Prof. Dr.-Ing. Horst Baier Die Dissertation wurde am 2. Juni 2010 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 21. Oktober 2010 angenommen. Colophon The original source for this thesis was edited in GNU Emacs and aucTEX, typeset using pdfLATEX in an automated process using GNU make, and output as PDF. The document was compiled with the LATEX 2" class AMdiss (based on the KOMA-Script class scrreprt). AMdiss is part of the AMclasses bundle that was developed by the author for writing term papers, Diploma theses and dissertations at the Institute of Applied Mechanics, Technische Universität München. Photographs and CAD screenshots were processed and enhanced with THE GIMP. Most vector graphics were drawn with CorelDraw X3, exported as Encapsulated PostScript, and edited with psfrag to obtain high-quality labeling. Some smaller and text-heavy graphics (flowcharts, etc.), as well as diagrams were created using PSTricks. The plot raw data were preprocessed with Matlab. In order to use the PostScript- based LATEX packages with pdfLATEX, a toolchain based on pst-pdf and Ghostscript was used.
    [Show full text]
  • Ph. D. Thesis Stable Locomotion of Humanoid Robots Based
    Ph. D. Thesis Stable locomotion of humanoid robots based on mass concentrated model Author: Mario Ricardo Arbul´uSaavedra Director: Carlos Balaguer Bernaldo de Quiros, Ph. D. Department of System and Automation Engineering Legan´es, October 2008 i Ph. D. Thesis Stable locomotion of humanoid robots based on mass concentrated model Author: Mario Ricardo Arbul´uSaavedra Director: Carlos Balaguer Bernaldo de Quiros, Ph. D. Signature of the board: Signature President Vocal Vocal Vocal Secretary Rating: Legan´es, de de Contents 1 Introduction 1 1.1 HistoryofRobots........................... 2 1.1.1 Industrialrobotsstory. 2 1.1.2 Servicerobots......................... 4 1.1.3 Science fiction and robots currently . 10 1.2 Walkingrobots ............................ 10 1.2.1 Outline ............................ 10 1.2.2 Themes of legged robots . 13 1.2.3 Alternative mechanisms of locomotion: Wheeled robots, tracked robots, active cords . 15 1.3 Why study legged machines? . 20 1.4 What control mechanisms do humans and animals use? . 25 1.5 What are problems of biped control? . 27 1.6 Features and applications of humanoid robots with biped loco- motion................................. 29 1.7 Objectives............................... 30 1.8 Thesiscontents ............................ 33 2 Humanoid robots 35 2.1 Human evolution to biped locomotion, intelligence and bipedalism 36 2.2 Types of researches on humanoid robots . 37 2.3 Main humanoid robot research projects . 38 2.3.1 The Humanoid Robot at Waseda University . 38 2.3.2 Hondarobots......................... 47 2.3.3 TheHRPproject....................... 51 2.4 Other humanoids . 54 2.4.1 The Johnnie project . 54 2.4.2 The Robonaut project . 55 2.4.3 The COG project .
    [Show full text]
  • 2014-2015 SISD Literary Anthology
    2014-2015 SISD Literary Anthology SADDLE UP Socorro ISD Board of Trustees Paul Guerra - President Angelica Rodriguez - Vice President Antonio ‘Tony’ Ayub - Secretary Gary Gandara - Trustee Hector F. Gonzalez - Trustee Michael A. Najera - Trustee Cynthia A. Najera - Trustee Superintendent of Schools José Espinoza, Ed.D. Socorro ISD District Service Center 12440 Rojas Dr. • El Paso, TX 79928 Phn 915.937.0000 • www.sisd.net Socorro Independent School District The Socorro Independent School District does not discriminate on the basis of race, color, national origin, sex, disability, or age in its programs, activities or employment. Leading • Inspiring • Innovating Socorro Independent School District Literary Anthology 2014-2015 An Award Winning Collection of: Poetry Real/Imaginative/Engaging Stories Persuasive Essays Argumentative Essays Informative Essays Analytical Essays Letters Scripts Personal Narrative Special thanks to: Yvonne Aragon and Sylvia Gómez Soriano District Coordinators Socorro Independent School District 2014-15 Literary Anthology - Writing Round-Up 1 Board of Trustees The Socorro ISD Board of Trustees consists of seven elected citizens who work with community leaders, families, and educators to develop sound educational policies to support student achievement and ensure the solvency of the District. Together, they are a strong and cohesive team that helps the District continuously set and achieve new levels of excellence. Five of the trustees represent single-member districts and two are elected at-large. Mission Statement
    [Show full text]
  • Humanoid Robot Soccer Locomotion and Kick Dynamics
    Humanoid Robot Soccer Locomotion and Kick Dynamics Open Loop Walking, Kicking and Morphing into Special Motions on the Nao Robot Alexander Buckley B.Eng (Computer) (Hons.) In Partial Fulfillment of the Requirements for the Degree Master of Science Presented to the Faculty of Science and Engineering of the National University of Ireland Maynooth in June 2013 Department Head: Prof. Douglas Leith Supervisor: Prof. Richard Middleton Acknowledgements This work would not have been possible without the guidance, help and most of all the patience of my supervisor, Rick Middleton. I would like to thank the members of the RoboEireann team, and those I have worked with at the Hanilton institute. Their contribution to my work has been invaluable, and they have helped make my time here an enjoyable experience. Finally, RoboCup itself has been an exceptional experience. It has provided an environment that is both challenging and rewarding, allowing me the chance to fulfill one of my earliest goals in life, to work intimately with robots. Abstract Striker speed and accuracy in the RoboCup (SPL) international robot soccer league is becoming increasingly important as the level of play rises. Competition around the ball is now decided in a matter of seconds. Therefore, eliminating any wasted actions or motions is crucial when attempting to kick the ball. It is common to see a discontinuity between walking and kicking where a robot will return to an initial pose in preparation for the kick action. In this thesis we explore the removal of this behaviour by developing a transition gait that morphs the walk directly into the kick back swing pose.
    [Show full text]
  • Assistive Humanoid Robot MARKO: Development of the Neck Mechanism
    MATEC Web of Conferences 121, 08005 (2017) DOI: 10.1051/ matecconf/201712108005 MSE 2017 Assistive humanoid robot MARKO: development of the neck mechanism Marko Penčić1,*, Maja Čavić1, Srđan Savić1, Milan Rackov1, Branislav Borovac1, and Zhenli Lu2 1Faculty of Technical Sciences, University of Novi Sad, TrgDositejaObradovića 6, 21000 Novi Sad, Serbia 2School of Electrical Engineering and Automation, Changshu Institute of Technology, Hushan Road 99, 215500 Changshu, People's Republic of China Abstract.The paper presents the development of neck mechanism for humanoid robots. The research was conducted within the project which is developing a humanoid robot Marko that represents assistive apparatus in the physical therapy for children with cerebral palsy.There are two basic ways for the neck realization of the robots. The first is based on low backlash mechanisms that have high stiffness and the second one based on the viscoelastic elements having variable flexibility. We suggest low backlash differential gear mechanism that requires small actuators. Based on the kinematic-dynamic requirements a dynamic model of the robots upper body is formed. Dynamic simulation for several positions of the robot was performed and the driving torques of neck mechanism are determined.Realized neck has 2 DOFs and enables movements in the direction of flexion-extension 100°, rotation ±90° and the combination of these two movements. It consists of a differential mechanism with three spiral bevel gears of which the two are driving and are identical, and the third one which is driven gear to which the robot head is attached. Power transmission and motion from the actuators to the input links of the differential mechanism is realized with two parallel placed gear mechanisms that are identical.Neck mechanism has high carrying capacity and reliability, high efficiency, low backlash that provide high positioning accuracy and repeatability of movements, compact design and small mass and dimensions.
    [Show full text]
  • Generation of the Whole-Body Motion for Humanoid Robots with the Complete Dynamics Oscar Efrain Ramos Ponce
    Generation of the whole-body motion for humanoid robots with the complete dynamics Oscar Efrain Ramos Ponce To cite this version: Oscar Efrain Ramos Ponce. Generation of the whole-body motion for humanoid robots with the complete dynamics. Robotics [cs.RO]. Universite Toulouse III Paul Sabatier, 2014. English. tel- 01134313 HAL Id: tel-01134313 https://tel.archives-ouvertes.fr/tel-01134313 Submitted on 23 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Christine CHEVALLEREAU: Directeur de Recherche, École Centrale de Nantes, France Francesco NORI: Researcher, Italian Institute of Technology, Italy Patrick DANÈS: Professeur des Universités, Université de Toulouse III, France Ludovic RIGHETTI: Researcher, Max-Plank-Institute for Intelligent Systems, Germany Nicolas MANSARD: Chargé de Recherche, LAAS-CNRS, France Philippe SOUÈRES: Directeur de recherche, LAAS-CNRS, France Yuval TASSA: Researcher, University of Washington, USA Abstract This thesis aims at providing a solution to the problem of motion generation for humanoid robots. The proposed framework generates whole-body motion using the complete robot dy- namics in the task space satisfying contact constraints. This approach is known as operational- space inverse-dynamics control. The specification of the movements is done through objectives in the task space, and the high redundancy of the system is handled with a prioritized stack of tasks where lower priority tasks are only achieved if they do not interfere with higher priority ones.
    [Show full text]
  • Design of Android Type Humanoid Robot Albert HUBO€
    Design of Android type Humanoid Robot Albert HUBO Jun-Ho Oh David Hanson Won-Sup Kim Il Young Han Jung-Yup Kim Ill-Woo Park Mechanical Division of Mechanical Mechanical Mechanical Engineering Industrial Engineering Engineering Engineering Design Korea Advanced Hanson Robotics Korea Advanced Korea Advanced Korea Advanced Institute of Inc Ewha Womans Institute of Science Institute of Science Institute of Science Science and University and Technology and Technology and Technology Technology Daejeon, Korea Dallas, TX, USA Seoul, Korea Daejeon, Korea Daejeon, Korea Daejeon, Korea [email protected] David@HansonRo kimws@ewha. [email protected]. [email protected]. [email protected] botics.com ac.kr kr ac.kr ist.ac.kr Abstract incompletely. But, the combination of these two factors To celebrate the 100th anniversary of the announcement brought an unexpected result from the mutual effect. of the special relativity theory of Albert Einstein, KAIST The body of Albert HUBO is based on humanoid robot HUBO team and hanson robotics team developed android ‘HUBO’ introduced in 2004[5]. HUBO, the human scale type humanoid robot Albert HUBO which may be the humanoid robot platform with simple structure, can bi-pad world’s first expressive human face on a walking biped walking and independent self stabilize controlling. The head robot. The Albert HUBO adopts the techniques of the of Albert HUBO is made by hanson robotics team and the HUBO design for Albert HUBO body and the techniques techniques of low power consumptions and full facial of hanson robotics for Albert HUBO’s head. Its height and expressions are based on famous, worldwide recognized, weight are 137cm and 57Kg.
    [Show full text]
  • 1 Robot Visions
    1 Robot Visions Our dream is to create a society where it is nothing special for people to live together with robots. Akifumi Tamaoki beginnings For much of my childhood in Kodaira, a suburban community west of Tokyo,1 I had to watch television at our neighbors’ homes. We only acquired a black-and-white set in 1964 to watch the Summer Olympics, by which time the fields and chestnut orchards surrounding our house were being razed by tract-home developers and the gravel roads paved. Our neighbors had bought their sets to watch the wedding of Crown Prince (now Emperor) Akihito (b. 1933) and Sho–da Michiko (b. 1934) in April 1959. By 1964, nearly half of the roughly 25 million households in Japan owned a television, the wealthier among them a color model.2 Once we had a TV, I began to watch two cartoons that starred robots: Tetsuwan Atomu (Astro Boy) and Tetsujin 28 [Niju–hachi]-go (Ironman 28, aka Gigantor) (figure 1).3 Both were preceded by comic book versions and broadcast on Fuji TV from 1963 to 1966. Gigantor is remotely con- trolled by a ten-year-old boy detective whose father created the robot. The boy and the robot share a deep emotional bond that underscores the familial aspects of real-world human–robot relations in Japan, a theme I will reiterate in each chapter. I discuss Astro Boy at length in chapters 4 1 Robertson-Robo Sapiens japanicus.indd 1 17/07/17 3:54 PM 2 robot visions Figure 1. Tetsuwan Atomu (Astro Boy).
    [Show full text]
  • HBS-1: a Modular Child-Size 3D Printed Humanoid
    robotics Article HBS-1: A Modular Child-Size 3D Printed Humanoid Lianjun Wu, Miles Larkin, Akshay Potnuru and Yonas Tadesse * Received: 6 November 2015; Accepted: 4 January 2016; Published: 13 January 2016 Academic Editor: Huosheng Hu Humanoid, Biorobotics and Smart Systems Laboratory (HBS Lab), Department of Mechanical Engineering, The University of Texas at Dallas, Richardson TX 75080, USA; [email protected] (L.W.); [email protected] (M.L.); [email protected] (A.P.) * Correspondence: [email protected]; Tel.: +1-972-883-4556; Fax: +1-972-883-4659 Abstract: An affordable, highly articulated, child-size humanoid robot could potentially be used for various purposes, widening the design space of humanoids for further study. Several findings indicated that normal children and children with autism interact well with humanoids. This paper presents a child-sized humanoid robot (HBS-1) intended primarily for children’s education and rehabilitation. The design approach is based on the design for manufacturing (DFM) and the design for assembly (DFA) philosophies to realize the robot fully using additive manufacturing. Most parts of the robot are fabricated with acrylonitrile butadiene styrene (ABS) using rapid prototyping technology. Servomotors and shape memory alloy actuators are used as actuating mechanisms. The mechanical design, analysis and characterization of the robot are presented in both theoretical and experimental frameworks. Keywords: humanoid; mechanical design; actuators; manufacturing; 3D printing 1. Introduction Humanoid robots have great potential for use in our daily life by accompanying or working together with people. Growing interest in humanoid robots has spurred a substantial increase in their development over the past decade.
    [Show full text]
  • A First Approach to a Proposal of a Soft Robotic Link Acting As a Neck
    Actas de las XXXIX Jornadas de Automática, Badajoz, 5-7 de Septiembre de 2018 https://doi.org/10.17979/spudc.9788497497565.0522 A First Approach to a Proposal of a Soft Robotic Link Acting as a Neck Luis Nagua, Jorge Mu~noz,Concepci´onA. Monje and Carlos Balaguer Systems Engineering and Automation Department , RoboticsLab University Carlos III of Madrid Madrid, Spain [email protected], [email protected], [email protected], [email protected] Abstract form, a fixed base, several identical active chains and a passive backbone, if necessary. This type of The purpose of this paper is to design a soft mechanism is interesting for the following reasons: robotic neck prototype with two Degrees of Free- the number of actuators is minimal; the number dom (DOF) and propose a control system based of sensors necessary for the closed-loop control of on a fractional order PD controller (FPD). The the mechanism is also minimal; when the actua- neck will be able to perform movements of flex- tors are locked, the manipulator remains in its po- ion, extension and lateral bending. To achieve sition, which is an important safety aspect for cer- these movements, the design is made based on a tain applications, such as medical robotics. The cable-driven mechanism, with components easy to SAYA head has a structure composed of a central manufacture in a 3D printer. Simulations are per- spring and several pneumatic artificial muscles [6]. formed to validate the feasibility of the developed In this paper a soft robotic neck is proposed based parallel robot prototype and the robustness of the on a cable-driven parallel mechanism.
    [Show full text]
  • One Robot at a Time Tas¸ Kin Padir Believes Robots Will Revolutionize Our Lives, and He’S Proving It Through His Innovative Research
    WPI Re search 2015 Spring Saving the World, One Robot at a Time Tas¸ kin Padir believes robots will revolutionize our lives, and he’s proving it through his innovative research. IF… WE INVEST IN FACILITIES FOR CUTTING-EDGE RESEARCH. THEN… JUST IMAGINE WHAT WE CAN ACCOMPLISH. Through the DARPA Robotics Challenge, WPI researchers are exploring how humanoid robots might one day perform the dangerous work of responding to disasters. That’s just one way the university’s pioneering program in robotics engineering is helping build a world where robots help people in areas as diverse as manufacturing and health care. WPI was the first university in the nation to offer a bachelor’s degree in robotics engineering and the first with BS, MS, and PhD degrees. Through groundbreaking academic programs and research, we are committed to advancing one of the most important emerging areas of technology. Imagine what our impact could be with your support. if… The Campaign to Advance WPI — a comprehensive, $200 million fundraising endeavor — is about providing outstanding resources for education and research. The Campaign will supply ONLINE: WPI.EDU/+GIVE the facilities to help the university’s talented faculty and students address important challenges PHONE: 508-831-4177 that matter to society and produce innovations and advances that help build a better world. EMAIL: [email protected] if… we imagine a bright future, together we can make it happen. WPI Re search Discovery and Innovation with Purpose > wpi.edu/+research 2015 Spring 2 > From the Office of the Provost Celebrating WPI’s seamless spectrum of research.
    [Show full text]