Ph. D. Thesis Stable Locomotion of Humanoid Robots Based
Total Page:16
File Type:pdf, Size:1020Kb
Ph. D. Thesis Stable locomotion of humanoid robots based on mass concentrated model Author: Mario Ricardo Arbul´uSaavedra Director: Carlos Balaguer Bernaldo de Quiros, Ph. D. Department of System and Automation Engineering Legan´es, October 2008 i Ph. D. Thesis Stable locomotion of humanoid robots based on mass concentrated model Author: Mario Ricardo Arbul´uSaavedra Director: Carlos Balaguer Bernaldo de Quiros, Ph. D. Signature of the board: Signature President Vocal Vocal Vocal Secretary Rating: Legan´es, de de Contents 1 Introduction 1 1.1 HistoryofRobots........................... 2 1.1.1 Industrialrobotsstory. 2 1.1.2 Servicerobots......................... 4 1.1.3 Science fiction and robots currently . 10 1.2 Walkingrobots ............................ 10 1.2.1 Outline ............................ 10 1.2.2 Themes of legged robots . 13 1.2.3 Alternative mechanisms of locomotion: Wheeled robots, tracked robots, active cords . 15 1.3 Why study legged machines? . 20 1.4 What control mechanisms do humans and animals use? . 25 1.5 What are problems of biped control? . 27 1.6 Features and applications of humanoid robots with biped loco- motion................................. 29 1.7 Objectives............................... 30 1.8 Thesiscontents ............................ 33 2 Humanoid robots 35 2.1 Human evolution to biped locomotion, intelligence and bipedalism 36 2.2 Types of researches on humanoid robots . 37 2.3 Main humanoid robot research projects . 38 2.3.1 The Humanoid Robot at Waseda University . 38 2.3.2 Hondarobots......................... 47 2.3.3 TheHRPproject....................... 51 2.4 Other humanoids . 54 2.4.1 The Johnnie project . 54 2.4.2 The Robonaut project . 55 2.4.3 The COG project . 56 2.4.4 The Einstein-HUBO humanoid project . 57 2.4.5 Toyota Partner Robots . 58 2.4.6 The Rh-1 humanoid project . 60 2.4.7 Humanoid entertainment robots . 61 3 Human locomotion study. The stabilily of biped locomotion 65 3.1 Human biomechanics . 66 3.1.1 Kinematics .......................... 66 3.1.2 Human locomotion . 67 ii CONTENTS iii 3.1.3 Anthropomorphic human dimensions, volume and weight distribution .......................... 71 3.1.4 Human walking trajectories . 74 3.2 Biped locomotion stability criteria . 77 3.2.1 Zero Moment Point (ZMP) . 77 3.2.2 Foot-Rotation Indicator (FRI) Point . 84 3.2.3 Universal stability criterion of the foot contact of legged robots: Contact Wrench Cone (CWC) . 88 3.2.4 Comparison between the biped locomotion stability criteria 94 4 Study of humanoid robot gaits 96 4.1 Passive and active walking . 97 4.1.1 Passive walking . 97 4.1.2 Active walking . 98 4.2 Static and dynamic gait . 99 4.2.1 Staticgait........................... 99 4.2.2 Dynamicgait ......................... 100 4.3 Gait generation models . 100 4.3.1 Jointspacemethod. 101 4.3.2 Virtual forces model . 102 4.3.3 Mass distributed models . 103 4.3.4 Pattern generator of a humanoid robot, taking into ac- count the Contact Wrench Cone (CWC) . 105 4.3.5 Two Masses Inverted Pendulum Mode (TMIPM) . 108 4.3.6 The Multiple Masses Inverted Pendulum Mode (MMIPM) 110 4.3.7 Mass concentrated models . 112 4.3.8 The 2D Inverted pendulum model . 112 4.3.9 Laws of motion of a 3D Inverted pendulum model . 115 4.3.10 Cart-table model . 121 4.3.11 Discussion about inverted pendulum and cart-table models 125 5 Gait generation method 129 5.1 Outline ................................130 5.2 Layers of the “Gait generation” method . 130 5.3 Layer 1: Global motion . 131 5.4 Layer 2: Local motion - “Local Axis Gait” algorithm . 132 5.4.1 Swing foot motion . 132 5.4.2 Local axis gait algorithm . 135 5.5 Layer 3: Motion Patterns Generation-“COG and ZMP” references 136 5.6 Cases of applying layers 1 to 3 . 137 5.7 Layer 4: Kinematics and dynamics modelling . 139 5.7.1 Background of screw theory, Paden-Kahan subproblems andliegroups......................... 140 5.7.2 Whole-body humanoid kinematics model . 146 5.7.3 Forward kinematics . 148 5.7.4 Inverse kinematics . 150 5.7.5 Inversedynamics ....................... 153 5.8 Layer 5: Off-line control . 157 5.9 AcyclicGait.............................. 163 5.9.1 Relatedwork ......................... 164 CONTENTS iv 5.9.2 Problem Statement . 165 5.9.3 Overview of the Method . 165 5.9.4 Upperbodymotion ..................... 167 5.9.5 Whole body motion . 168 6 Results 173 6.1 Rh-1 specifications . 174 6.2 HRP-2 specifications . 176 6.3 Simulation and Experimental results . 179 6.3.1 Simulation results on the Rh-1 humanoid robot platform . 179 6.3.2 Experimental results on Rh-1 humanoid robot platform . 184 6.3.3 Simulation and Experimental results on HRP-2 humanoid robotplatform ........................ 204 7 Conclusions, contributions and future works 218 7.1 Conclusions .............................. 218 7.2 Contributions............................. 223 7.3 Futurework.............................. 225 Appendices 228 A Human COG projection and ZMP Measure system 229 B Distribution of masses and inertias of medium human 239 List of Figures 1.1 Industrial robots working in a factory. 3 1.2 Estimated yearly supply of industrial robots at year’s end in the world by main industries 2005 - 2006. 4 1.3 Someservicerobots. ......................... 5 1.4 Chart of service robots in Japan. 6 1.5 Examples of services robots. University Carlos III of Madrid, some Roboticslab service robots: ROMA 2 (climbing robot for inspection), Manfred (mobile manipulator), ASIBOT (Portable assistive robot), Maggie (Personal social robot). 7 1.6 Service robots in space. 8 1.7 The General Electric Walking Truck and Hirose Lab walking robots. 13 1.8 The General Electric Hardiman. 14 1.9 Humanoid robot cooperating with human in open-air tasks. 16 1.10 Wheels and tracks with external spokes. 16 1.11 Triangular clusters of wheels for stair climbing. 17 1.12 Variable geometry tracked vehicles. 17 1.13 Virtual K9 driving over a synthetic rock. 17 1.14 Artist’s simulation of a Mars Exploration Rover at work on Mars. 18 1.15 The WorkPartner robot, with hybrid wheel-leg locomotion system. 19 1.16 Active Cord Mechanism - Revision 1 (ACM-R1), which is a wire- less controlled snake-like robot. 20 1.17 Relative leg-length and maximum relative speed of various planar biped robots. (A) A copy of McGeer’s planar passive biped robot walking down a slope. (B) “Mike”, similar to McGeer’s robot, but equipped with pneumatic actuators at its hip joints. Thus it can walk half-passively on level ground. (C) “Spring Flamingo”, a powered planar biped robot with actuated ankle joints. (D) “Rabbit”, a powered biped with four degree-of-freedom and point feet. (E) “RunBot”. (F) The world record for the fastest human’s walking speed ( c Manoonpong et. al. [81]). 26 1.18 The human-like shape of a humanoid robot affords emotional feelings useful for friendly communication with humans. 29 1.19 A humanoid robot can work in an environment designed for hu- mans. It can do dirty and demanding jobs, dangerous jobs (Bio- terror, SARS, etc.) . 30 1.20 A humanoid can expand its ability by using machines and equip- mentthatweusenow......................... 30 1.21 Some applications of humanoid robots. 31 v LIST OF FIGURES vi 2.1 Metropolis and the Bicentennial Man. 36 2.2 The main humanoid robot research groups. 38 2.3 The bipeds WL-1 and WL-3. 39 2.4 The bipeds WAP-1, WAP-2 and WAP-3. 40 2.5 The bipeds WL-1, WL-5, WL-9 and WL-10. 41 2.6 The arms WAM-1, WAM-2 and WAM-4. 42 2.7 ThearmsWAM-7andWAM-8L. 42 2.8 Computer-Aided Design System for Link Mechanisms, Artificial LimbsandRobotics. ......................... 43 2.9 The WABOT-1 and WABOT-2 humanoid robots. 44 2.10 The WABIAN and WABIAN RV humanoid robots. 46 2.11 The WABIAN 2R humanoid robot. 47 2.12 The ASIMO humanoid robot history [58]. 48 2.13 A Honda humanoid robot P1 (1.820m and 210 Kg). 50 2.14 The New ASIMO humanoid robot. 51 2.15 The HRP-2P humanoid robot [3]. 52 2.16 The HRP-2, HRP-3 and HRP-3P humanoid robots. 53 2.17 The Johnnie humanoid robot. 55 2.18 a) COG and b) Robonaut humanoid robots. 57 2.19 The Einstein-Hubo humanoid robot, the HUBO Lab humanoid. 58 2.20 The Toyota Partner Robots concept. 59 2.21 The Toyota humanoid robots. 59 2.22 The Rh-1 humanoid robot, the University Carlos III of Madrid humanoid................................ 61 2.23 The QRIO robot, the SONY humanoid, and HOAP-3, the Fujitsu humanoid................................ 62 2.24 The evolution of HONDA humanoid robots. 63 2.25 The evolution of the Kawada-AIST humanoid robots. 64 2.26 The evolution of the WASEDA humanoid robots. 64 3.1 Human motion planes c NASA[90]. ................ 66 3.2 The gait cycle, (Reprinted, with permission, from a chapter by V.T. Inman et al., which appeared on page 26 of Human Walking, edited by Rose and Gamble and published by Williams Wilkins, Baltimore, MD; 1981.)........................ 67 3.3 The gait cycle has two phases: about 60-percent stance phase and about 40-percent swing phase with two periods of double support which occupy a total of 25 to 30 percent of the gait cycle. 68 3.4 Relationship between the tasks of gait and the phases of gait. 69 3.5 The vertical force shows the five phases of gait at stance event. Normally it exceeds body weight at two intervals, [21]. 70 3.6 (a) Pelvic rotation effectively extends the trailing and advancing support points. (b) Pelvic tilt reduces vertical displacement of thecenterofmass,[21].