Design of the Upper Body of a Cost Oriented Humanoid Robot

Total Page:16

File Type:pdf, Size:1020Kb

Design of the Upper Body of a Cost Oriented Humanoid Robot Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at The approved original version of this thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng Dissertation: Design of the upper body of a Cost Oriented Humanoid Robot ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der technischen Wissenschaften unter der Leitung von em.o.Univ.Prof. Dipl.-Ing. Dr.tech. Dr.h.c.mult. Peter Kopacek E325/A6 Institut für Mechanik und Mechatronik eingereicht an der Technischen Universität Wien Fakultät für Maschinenwesen und Betriebswissenschaften von MSc ABEDIN SUTAJ Matrikelnummer 1225037 Wien, July 2017 1 Acknowledgment “Wisdom begins in wonder’’ Socrates Acknowledgment and thanks are deservedly dedicated to my supervisor, Professor Peter Kopacek, for the support he has provided me in the course of studies, with his advice, knowledge and information from many fields of science. Professor’s deep knowledge was a useful source at all times for me, his high level human behaviour will remain an inspiration and memory for me in my whole life. I thank my mother. I thank people of Austria whom I have met, I got to know and saw them, a wonderful people. 2 Table of Contents Acknowledgment ...................................................................................................................... 2 Table of Contents ..................................................................................................................... 3 Table of Figures ........................................................................................................................ 8 List of Tables ........................................................................................................................... 10 Kurzfassung............................................................................................................................. 11 Abstract .................................................................................................................................... 12 Problem formulation ............................................................................................................... 13 Overview .................................................................................................................................. 14 1 System information ................................................................................................ 15 1.1 Introduction .................................................................................................................. 15 1.2 Hardware and software.............................................................................................. 16 1.3 ELMO Controllers ....................................................................................................... 17 1.4 Information System .................................................................................................... 18 1.5 CAN BUS ..................................................................................................................... 18 1.6 Communication in CAN open ................................................................................... 20 1.7 Brushed DC Motors .................................................................................................... 21 1.8 Features of BDC Motor .............................................................................................. 23 1.9 BLDC Motor ................................................................................................................. 23 1.10 Summary ...................................................................................................................... 26 2 Interface ................................................................................................................ 27 2.1 Introduction .................................................................................................................. 27 2.2 CAN converter ............................................................................................................. 27 2.2.1 Architecture of I-7565 ......................................................................................... 30 2.2.2 Hardware connection I-7565 ............................................................................. 31 2.3 Specifications for CAN bus ....................................................................................... 32 2.4 Organization of interface ........................................................................................... 33 2.4.1 Interface CAN bus .............................................................................................. 34 2.4.2 Software Utility I-7565 ........................................................................................ 35 2.5 Connectors .................................................................................................................. 36 2.6 Summary ...................................................................................................................... 37 3 Vision system architecture ..................................................................................... 38 3 3.1 Introduction .................................................................................................................. 38 3.2 Vision sensor ............................................................................................................... 38 3.3 The hardware architecture ........................................................................................ 41 3.4 The software architecture .......................................................................................... 43 3.5 Visual Perception ........................................................................................................ 45 3.6 Summary ...................................................................................................................... 46 4 Preliminary calculations ......................................................................................... 47 4.1 Introduction .................................................................................................................. 47 4.2 A brief history of robot ................................................................................................ 47 4.3 Data Sheet 7020 Aluminium ..................................................................................... 50 4.4 AutoCAD Software for Design .................................................................................. 50 4.5 Dimensions of the design .......................................................................................... 50 4.6 Some design specifics ............................................................................................... 51 4.7 Design of Head ........................................................................................................... 52 4.8 Clarification .................................................................................................................. 52 4.9 Summary ...................................................................................................................... 53 5 Design of first prototype ......................................................................................... 54 5.1 Introduction .................................................................................................................. 54 5.2 Neck of V1 ................................................................................................................... 54 5.3 Upper limbs of V1 ....................................................................................................... 57 5.3.1 The part holding the shoulders ......................................................................... 57 5.4 Shoulder of V1 ............................................................................................................ 58 5.5 Arm of V1 ..................................................................................................................... 60 5.6 DOF Configuration of V1 ........................................................................................... 62 5.7 Marking of links ........................................................................................................... 63 5.8 Centre of mass ............................................................................................................ 64 5.9 Summary ...................................................................................................................... 66 6 Design of second prototype ................................................................................... 67 6.1 Introduction .................................................................................................................. 67 6.2 Neck/head of V2 ......................................................................................................... 69 6.3 Shoulder of V2 ............................................................................................................ 71 6.4 Arm of V2 ..................................................................................................................... 72 4 6.5 Marking links of V2 ....................................................................................................
Recommended publications
  • A Code of Ethics for Robotics Engineers
    A CODE OF ETHICS FOR ROBOTICS ENGINEERS An Interactive Qualifying Project Report Submitted to the faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science By: Brandon Ingram Daniel Jones Andrew Lewis Matthew Richards Advisors: Professor Lance Schachterle Professor Charles Rich 3/6/2010 Code of Ethics for Robotics Engineers 2 Abstract This project developed a draft code of ethics for professional robotics engineers by researching into the fields of robotics, ethics and roboethics to develop the necessary understanding. The code was drafted and presented to students, professors and professionals for feedback and revision. The code is now hosted at the Illinois Institute of Technology’s Center for the Study of Ethics in the Professions website (ethics.iit.edu), and is open for discussion at (rbethics.lefora.com). It is being proposed for adoption to the WPI Robotics Program faculty and the WPI Robotics Engineering Honors Fraternity, Rho Beta Epsilon. Acknowledgements In addition to our advisors, we would like to thank all have helped in researching and developing this code of ethics, either by providing feedback or information. Those that helped on campus include: John Sanbonmatsu, Kent Rissmiller, Michael Gennert, Brad Miller, Aaron Holroyd, Brian Benson, Elizabeth Alexander, Ciarán Murphy, Phi Sigma Kappa, Phi Kappa Theta, the WPI Robotics Faculty and Rho Beta Epsilon. Those off campus include: P.W. Singer, Martin Sklar, Jim Mail, Ronald Arkin, and Kelly Laas. Code of Ethics
    [Show full text]
  • Boletin Septiembre
    Boletín Electrónico Rama de Estudiantes de la UNED Septiembre-2011 EDITOR AGRADECIMIENTOS Miguel Latorre Vicerrectorado de Investigación UNED ([email protected]) Vicerrectorado de Estudiantes y Desarrollo Profesional UNED Escuela Técnica Superior de Ingenieros REVISORES Industriales UNED Manuel Castro Escuela Técnica Superior de Ingenieros Miguel Latorre Informáticos UNED Germán Carro Sección Española del IEEE Departamento de Ingeniería Eléctrica, Electrónica y de Control (DIEEC) UNED DISEÑO PORTADA IEEE Women In Engineering (WIE) Sergio Martín AGRADECIMIENTO ESPECIAL AUTORES Agradecemos a nuestro Catedrático de Germán Carro Tecnología Electrónica y Profesor Núria Girbau Consejero de la Rama, Manuel Castro, Francisco J. Caneda todo el tiempo y la dedicación que nos Miguel Latorre presta, así como, el habernos dado la Mohamed Tawfik posibilidad de colaborar con el Capítulo Español de la Sociedad de Educación del IEEE para la elaboración del mismo. Agradecemos a todos los autores, y a aquellos que han colaborado para hacer posible este Boletín Electrónico. BOLETÍN DESARROLLADO EN COLABORACIÓN CON EL CAPÍTULO ESPAÑOL DE LA SOCIEDAD DE EDUCACIÓN DEL IEEE Junta Directiva 2010-2012 Germán Carro Fernández. Actualmente, también colabora con Presidente de la Rama de el departamento de ingeniería Estudiantes del IEEE-UNED. eléctrica electrónica y de control Economista, Ingeniero Técnico en (DIEEC) de la UNED en proyectos Informática de Sistemas y relacionados con objetos de Estudiante del Master en el aprendizaje. Departamento de IEEC en la ETSII [email protected] de la UNED. En años anteriores ha colaborado con la Junta Directiva Ramón Carrasco. Vicepresidente de como Vicepresidente y como zona - A Coruña.. Licenciado en Coordinador de Actividades Ciencias Física, especialidad Generales.
    [Show full text]
  • Development of a Series Elastic Actuator and a Distributed Computational Platform for Robotics
    Development of a Series Elastic Actuator and a Distributed Computational Platform for Robotics Gonçalo Patrício Luís Thesis to obtain the Master of Science Degree in Mechanical Engineering Supervisor: Prof. Jorge Manuel Mateus Martins Examination Committee Chairperson: Prof. João Rogério Caldas Pinto Supervisor: Prof. Jorge Manuel Mateus Martins Member of the Committee: Prof. Carlos Baptista Cardeira November 2015 i ii To my Parents iii iv Acknowledgments I would like to thank Professor Jorge Martins for believing in my ideas on building a new computational platform from scratch in detriment of using the old platform. The first task he gave me was to play arround with the old platform until I felt confortable with it, not all teachers believe in loosing time on learning things that are supposed to work and should only be used instead of studied. In the end the freedom he gave me turned into finding gross mistakes in the old platform and ultimately building a new, more capable one. I would like to thank Professor Carlos Cardeira for clearing some questions I had about electronics regarding the circuit board for voltage conversion. I would also like to thank Professor Paulo Oliveira and Professor Alexandra Moutinho for showing me the power and beauty of control systems engineering in the lecture I had with them on that topic. Their practical and clear explanations ultimately made me choose Systems as my Masters area, a choice I couldn’t be happier about. I am also deeply grateful to all the other teachers on the systems department and Eng. Camilo for creating and maintaining a friendly environment during classes and at the laboratory.
    [Show full text]
  • Then and Now: Servos
    NOW Then and SERVOS by Tom Carroll ervos? Just what is a servo (or a servo hack one to see what I could do with it. beginner’s kits from Parallax and others Smotor or servo mechanism, as they I believe that first thing I made was use similar servos in small robots. are sometimes called)? Is that a year’s a linear actuator. Pulling the 4.7K pot Tabletop robots can make use of collection of this magazine? Most of us out, cutting off the stops from the the little motor/gearbox to drive a who have built robots have used one or output gear, I attached a 25 turn lead set of wheels and the associated more of these in our creations, but not all screw and a 25 turn 5K trim pot (in the electronics to receive the pulse trains robots use servos. Most of the larger vari- place of the other one) to the output from a microcontroller and convert eties of robots don’t use servos though shaft and had an amazingly powerful them to drive signals. This is a cheap they might employ shaft encoders to push-pull actuator. Other experi- and effective way to get a robot design provide some sort of positional feedback menters in our robotics group were from a few sketches to a working to a controlling microcontroller or attaching them to arm and leg joints, machine in a few hours. computer. Most combat robots (like the and driving the servos with 555/556 As robot experimenters, we think ones that seem out of control) don’t use timer circuits or 6502 microprocessors, of those little black boxes that any form of them, so why do so many and a few started to use them as drive were originally developed for model experimenters utilize them? motors for small robot’s wheels.
    [Show full text]
  • Ph. D. Thesis Stable Locomotion of Humanoid Robots Based
    Ph. D. Thesis Stable locomotion of humanoid robots based on mass concentrated model Author: Mario Ricardo Arbul´uSaavedra Director: Carlos Balaguer Bernaldo de Quiros, Ph. D. Department of System and Automation Engineering Legan´es, October 2008 i Ph. D. Thesis Stable locomotion of humanoid robots based on mass concentrated model Author: Mario Ricardo Arbul´uSaavedra Director: Carlos Balaguer Bernaldo de Quiros, Ph. D. Signature of the board: Signature President Vocal Vocal Vocal Secretary Rating: Legan´es, de de Contents 1 Introduction 1 1.1 HistoryofRobots........................... 2 1.1.1 Industrialrobotsstory. 2 1.1.2 Servicerobots......................... 4 1.1.3 Science fiction and robots currently . 10 1.2 Walkingrobots ............................ 10 1.2.1 Outline ............................ 10 1.2.2 Themes of legged robots . 13 1.2.3 Alternative mechanisms of locomotion: Wheeled robots, tracked robots, active cords . 15 1.3 Why study legged machines? . 20 1.4 What control mechanisms do humans and animals use? . 25 1.5 What are problems of biped control? . 27 1.6 Features and applications of humanoid robots with biped loco- motion................................. 29 1.7 Objectives............................... 30 1.8 Thesiscontents ............................ 33 2 Humanoid robots 35 2.1 Human evolution to biped locomotion, intelligence and bipedalism 36 2.2 Types of researches on humanoid robots . 37 2.3 Main humanoid robot research projects . 38 2.3.1 The Humanoid Robot at Waseda University . 38 2.3.2 Hondarobots......................... 47 2.3.3 TheHRPproject....................... 51 2.4 Other humanoids . 54 2.4.1 The Johnnie project . 54 2.4.2 The Robonaut project . 55 2.4.3 The COG project .
    [Show full text]
  • SMI 23 IFC:Layout 1
    Stirring Maritime Comms: Russia’s Under the debating spotlight insurance might Indian Shipbuilding Bypassing the global downturn How I Work: Hamburg Sud’s Julian Thomas Regional Focus - Scandinavia: Northern star shines the light of a sparkling cluster Stirring Maritime Comms: Russia’s Under the debating spotlight insurance might Indian Shipbuilding Bypassing the global downturn How I Work: Hamburg Sud’s Julian Thomas Regional Focus - Scandinavia: Northern star shines the THE MAGAZINE OF THE WORLD’S SHIPMANAGEMENT COMMUNITY ISSUE 23 JAN/FEB 2010 light of a sparkling cluster COVER STORY FIRST PERSON 12 Giuseppe Bottiglieri and Michele Bottiglieri DISPATCHES Roughly translated Torre del Greco means ‘Tower of the p52 Russian Insurance Greek’ but this Naples suburb is as best known for its prevalence of traditional family ship owners as Stirring Russia’s for its coral art and fine jewellery insurance might SHIPMANAGEMENT FEATURES 16 How I Work SMI talks to industry achievers and asks the question: How do you keep up with the rigours of the shipping industry? 27 Opinion Martin Stafford, CEO Marine Services Division, V.Ships “It is interesting if you look across the range of services we have as some were naturally formed businesses in their own right while others came out of departments operating within the shipman- agement side of the business" 81 Insider 6 STRAIGHT TALK - Learn your lessons well Andrea Costantini - Chief Financial Officer, Ishima NOTEBOOK 8 Szymanski looks to an era of 9 Ireland ‘out to attract’ more MARKET SECTOR greater
    [Show full text]
  • Assistive Humanoid Robot MARKO: Development of the Neck Mechanism
    MATEC Web of Conferences 121, 08005 (2017) DOI: 10.1051/ matecconf/201712108005 MSE 2017 Assistive humanoid robot MARKO: development of the neck mechanism Marko Penčić1,*, Maja Čavić1, Srđan Savić1, Milan Rackov1, Branislav Borovac1, and Zhenli Lu2 1Faculty of Technical Sciences, University of Novi Sad, TrgDositejaObradovića 6, 21000 Novi Sad, Serbia 2School of Electrical Engineering and Automation, Changshu Institute of Technology, Hushan Road 99, 215500 Changshu, People's Republic of China Abstract.The paper presents the development of neck mechanism for humanoid robots. The research was conducted within the project which is developing a humanoid robot Marko that represents assistive apparatus in the physical therapy for children with cerebral palsy.There are two basic ways for the neck realization of the robots. The first is based on low backlash mechanisms that have high stiffness and the second one based on the viscoelastic elements having variable flexibility. We suggest low backlash differential gear mechanism that requires small actuators. Based on the kinematic-dynamic requirements a dynamic model of the robots upper body is formed. Dynamic simulation for several positions of the robot was performed and the driving torques of neck mechanism are determined.Realized neck has 2 DOFs and enables movements in the direction of flexion-extension 100°, rotation ±90° and the combination of these two movements. It consists of a differential mechanism with three spiral bevel gears of which the two are driving and are identical, and the third one which is driven gear to which the robot head is attached. Power transmission and motion from the actuators to the input links of the differential mechanism is realized with two parallel placed gear mechanisms that are identical.Neck mechanism has high carrying capacity and reliability, high efficiency, low backlash that provide high positioning accuracy and repeatability of movements, compact design and small mass and dimensions.
    [Show full text]
  • Generation of the Whole-Body Motion for Humanoid Robots with the Complete Dynamics Oscar Efrain Ramos Ponce
    Generation of the whole-body motion for humanoid robots with the complete dynamics Oscar Efrain Ramos Ponce To cite this version: Oscar Efrain Ramos Ponce. Generation of the whole-body motion for humanoid robots with the complete dynamics. Robotics [cs.RO]. Universite Toulouse III Paul Sabatier, 2014. English. tel- 01134313 HAL Id: tel-01134313 https://tel.archives-ouvertes.fr/tel-01134313 Submitted on 23 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Christine CHEVALLEREAU: Directeur de Recherche, École Centrale de Nantes, France Francesco NORI: Researcher, Italian Institute of Technology, Italy Patrick DANÈS: Professeur des Universités, Université de Toulouse III, France Ludovic RIGHETTI: Researcher, Max-Plank-Institute for Intelligent Systems, Germany Nicolas MANSARD: Chargé de Recherche, LAAS-CNRS, France Philippe SOUÈRES: Directeur de recherche, LAAS-CNRS, France Yuval TASSA: Researcher, University of Washington, USA Abstract This thesis aims at providing a solution to the problem of motion generation for humanoid robots. The proposed framework generates whole-body motion using the complete robot dy- namics in the task space satisfying contact constraints. This approach is known as operational- space inverse-dynamics control. The specification of the movements is done through objectives in the task space, and the high redundancy of the system is handled with a prioritized stack of tasks where lower priority tasks are only achieved if they do not interfere with higher priority ones.
    [Show full text]
  • Design of Android Type Humanoid Robot Albert HUBO€
    Design of Android type Humanoid Robot Albert HUBO Jun-Ho Oh David Hanson Won-Sup Kim Il Young Han Jung-Yup Kim Ill-Woo Park Mechanical Division of Mechanical Mechanical Mechanical Engineering Industrial Engineering Engineering Engineering Design Korea Advanced Hanson Robotics Korea Advanced Korea Advanced Korea Advanced Institute of Inc Ewha Womans Institute of Science Institute of Science Institute of Science Science and University and Technology and Technology and Technology Technology Daejeon, Korea Dallas, TX, USA Seoul, Korea Daejeon, Korea Daejeon, Korea Daejeon, Korea [email protected] David@HansonRo kimws@ewha. [email protected]. [email protected]. [email protected] botics.com ac.kr kr ac.kr ist.ac.kr Abstract incompletely. But, the combination of these two factors To celebrate the 100th anniversary of the announcement brought an unexpected result from the mutual effect. of the special relativity theory of Albert Einstein, KAIST The body of Albert HUBO is based on humanoid robot HUBO team and hanson robotics team developed android ‘HUBO’ introduced in 2004[5]. HUBO, the human scale type humanoid robot Albert HUBO which may be the humanoid robot platform with simple structure, can bi-pad world’s first expressive human face on a walking biped walking and independent self stabilize controlling. The head robot. The Albert HUBO adopts the techniques of the of Albert HUBO is made by hanson robotics team and the HUBO design for Albert HUBO body and the techniques techniques of low power consumptions and full facial of hanson robotics for Albert HUBO’s head. Its height and expressions are based on famous, worldwide recognized, weight are 137cm and 57Kg.
    [Show full text]
  • 1 Robot Visions
    1 Robot Visions Our dream is to create a society where it is nothing special for people to live together with robots. Akifumi Tamaoki beginnings For much of my childhood in Kodaira, a suburban community west of Tokyo,1 I had to watch television at our neighbors’ homes. We only acquired a black-and-white set in 1964 to watch the Summer Olympics, by which time the fields and chestnut orchards surrounding our house were being razed by tract-home developers and the gravel roads paved. Our neighbors had bought their sets to watch the wedding of Crown Prince (now Emperor) Akihito (b. 1933) and Sho–da Michiko (b. 1934) in April 1959. By 1964, nearly half of the roughly 25 million households in Japan owned a television, the wealthier among them a color model.2 Once we had a TV, I began to watch two cartoons that starred robots: Tetsuwan Atomu (Astro Boy) and Tetsujin 28 [Niju–hachi]-go (Ironman 28, aka Gigantor) (figure 1).3 Both were preceded by comic book versions and broadcast on Fuji TV from 1963 to 1966. Gigantor is remotely con- trolled by a ten-year-old boy detective whose father created the robot. The boy and the robot share a deep emotional bond that underscores the familial aspects of real-world human–robot relations in Japan, a theme I will reiterate in each chapter. I discuss Astro Boy at length in chapters 4 1 Robertson-Robo Sapiens japanicus.indd 1 17/07/17 3:54 PM 2 robot visions Figure 1. Tetsuwan Atomu (Astro Boy).
    [Show full text]
  • HBS-1: a Modular Child-Size 3D Printed Humanoid
    robotics Article HBS-1: A Modular Child-Size 3D Printed Humanoid Lianjun Wu, Miles Larkin, Akshay Potnuru and Yonas Tadesse * Received: 6 November 2015; Accepted: 4 January 2016; Published: 13 January 2016 Academic Editor: Huosheng Hu Humanoid, Biorobotics and Smart Systems Laboratory (HBS Lab), Department of Mechanical Engineering, The University of Texas at Dallas, Richardson TX 75080, USA; [email protected] (L.W.); [email protected] (M.L.); [email protected] (A.P.) * Correspondence: [email protected]; Tel.: +1-972-883-4556; Fax: +1-972-883-4659 Abstract: An affordable, highly articulated, child-size humanoid robot could potentially be used for various purposes, widening the design space of humanoids for further study. Several findings indicated that normal children and children with autism interact well with humanoids. This paper presents a child-sized humanoid robot (HBS-1) intended primarily for children’s education and rehabilitation. The design approach is based on the design for manufacturing (DFM) and the design for assembly (DFA) philosophies to realize the robot fully using additive manufacturing. Most parts of the robot are fabricated with acrylonitrile butadiene styrene (ABS) using rapid prototyping technology. Servomotors and shape memory alloy actuators are used as actuating mechanisms. The mechanical design, analysis and characterization of the robot are presented in both theoretical and experimental frameworks. Keywords: humanoid; mechanical design; actuators; manufacturing; 3D printing 1. Introduction Humanoid robots have great potential for use in our daily life by accompanying or working together with people. Growing interest in humanoid robots has spurred a substantial increase in their development over the past decade.
    [Show full text]
  • A First Approach to a Proposal of a Soft Robotic Link Acting As a Neck
    Actas de las XXXIX Jornadas de Automática, Badajoz, 5-7 de Septiembre de 2018 https://doi.org/10.17979/spudc.9788497497565.0522 A First Approach to a Proposal of a Soft Robotic Link Acting as a Neck Luis Nagua, Jorge Mu~noz,Concepci´onA. Monje and Carlos Balaguer Systems Engineering and Automation Department , RoboticsLab University Carlos III of Madrid Madrid, Spain [email protected], [email protected], [email protected], [email protected] Abstract form, a fixed base, several identical active chains and a passive backbone, if necessary. This type of The purpose of this paper is to design a soft mechanism is interesting for the following reasons: robotic neck prototype with two Degrees of Free- the number of actuators is minimal; the number dom (DOF) and propose a control system based of sensors necessary for the closed-loop control of on a fractional order PD controller (FPD). The the mechanism is also minimal; when the actua- neck will be able to perform movements of flex- tors are locked, the manipulator remains in its po- ion, extension and lateral bending. To achieve sition, which is an important safety aspect for cer- these movements, the design is made based on a tain applications, such as medical robotics. The cable-driven mechanism, with components easy to SAYA head has a structure composed of a central manufacture in a 3D printer. Simulations are per- spring and several pneumatic artificial muscles [6]. formed to validate the feasibility of the developed In this paper a soft robotic neck is proposed based parallel robot prototype and the robustness of the on a cable-driven parallel mechanism.
    [Show full text]