<<

MultipleMassDriversasanOptionforAsteroidDeflection Missions

JohnR.Olds *,A.C.Charania †,andMarkG.Schaffer ‡ SpaceWorks Engineering, Inc. (SEI), Atlanta, Georgia, 30338

Several competing techniques have been proposed for deflecting asteroids on potential collisioncourseswithEarth.Thispapersummarizesrecenteffortstodefine,ataconceptual level,aproposeddeflectiontechniqueusingmultiplemassdrivers.TheMADMENconcept (Modular Asteroid Deflection Mission Ejector Node) examined in this paper would use multiplemassdriverequippedlanderstorendezvousandattachtoathreateningasteroid, drillintoitssurface,andejectsmallamountsoftheasteroidmaterialawayathighvelocity usingamassdriver(railgunorelectromagneticlauncher).Theeffect,whenappliedovera periodofweeksor months,wouldeventuallychangetheheliocentricvelocityofthetarget asteroidandtherebyalteritsclosestapproachtoEarth.Theuseofmultiple,smalllanders provides a systemlevel redundancy against failure of individual landers and thereby improves the overall probability of successful deflection. This study extends and further developspreviousconceptualdesignworkonthistopic.Themassdriverconceptisshownto result in a deflection concept that compares favorably to other nonnuclear detonation approachesbasedonlaunchmass,whileofferinganumberofqualitativeadvantages.Key challengesandtechnicalhurdlesthatpertaintotheconceptarealsoidentifiedanddiscussed. Twodeflectioncasestudies areintroducedtoprovidespecificsizingandcostingexamples fortheproposedapproach.

Nomenclature AOA = AnalysisofAlternatives Beta = ImpactorAmplificationFactor(resultantmomentum/incomingmomentum) 2 2 C3 = Squareoftheresidualvelocityatthesphereofinfluence(km /s ) V = DeltaVelocity(m/s) DDT&E = Design,Development,TestandEvaluation Isp = EngineSpecificImpulse(s) JAT = JAVAAstrodynamicsToolkit LCC = LifeCycleCost LEO = LowEarthOrbit MADMEN = ModularAsteroidDeflectionMissionEjectorNode NASA = NationalAeronauticsandSpaceAdministration NEO = NearEarthObject NIAC = NASAInstituteforAdvancedConcepts PHA = PotentiallyHazardousAsteroid Re = EquatorialRadiusoftheEarth(6378km) ROSETTA = ReducedOrderSimulationforEvaluationTechnologiesandTransportationArchitectures SEI = SpaceWorksEngineering,Inc. SSI = SpaceStudiesInstitute TFU = TheoreticalFirstUnit TRL = TechnologyReadinessLevel

*PrincipalEngineerandCEO,1200AshwoodParkway,Suite506,AssociateFellowAIAA. †SeniorFuturist,1200AshwoodParkway,Suite506,MemberAIAA. ‡ProjectEngineer,1200AshwoodParkway,Suite506,MemberAIAA.

1 AmericanInstituteofAeronauticsandAstronautics I. Introduction iven the knowledge that asteroids and comets have the potential to impact the Earth and cause widespread Gdamage,researchersareproposingvariousmitigationtechniquesthatmightbeusedtoalterthecourseofsuch objectsandthuspreventimpact.Severaldeflectionoptionshavebeenproposed 1,2 .Someoftheseoptionsincludethe following:  NuclearDetonation(standoff)  NuclearDetonation(surfaceorsubsurface)  KineticImpactor  Tractor  MassDriver  PropulsiveTug  FocusedorPulsedLaserAblationofSurfaceMaterial  EnhancedYarkovskyEffect(albedochangingapproaches) Each proposed technique may be analytically demonstrated to offer advantages for a particular deflection scenario,butengineeringworktorefineandmatureanyoftheseconceptsremainsinitsinfancy.Whilenoactual asteroid/cometdeflectionmissioniscurrentlynecessary,researchersareusingthisleadtimetoexplorethebroad rangeofalternativeswiththegoalofproducingaconsensusforoneormoreoftheoptionstoreceivemoredetailed study. In this early study phase, the field should also remain very open to the introduction of new ideas and innovativesolutions.Furtherstudyofeachconceptisappropriateandwarrantedbeforeoneapproachisdesignated asthepreferredglobaloptionforanypotentialthreat. Theauthorsherehavechosentoconcentrateinitialinvestigationsofmitigationtechniquesontheuseofmass driversasalow,sustainedtechniquetoalterthetrajectoryofaPotentiallyHazardousAsteroid(PHA).The authors are aware of no other organization actively investigating this approach, despite some of the attractive advantagesitpotentiallyoffers.Thestudyactivityreportedinthispaperwasinitiatedin2004underPhase1study sponsorshipfromtheNASAInstituteforAdvancedConcepts(NIAC)andcontinuesatalowlevelofeffortunder SpaceWorksEngineering,Inc.(SEI)internalcompanyresources.Thegoalistoproduceareferenceconfiguration thatrepresentsthemassdriverapproachcompletewithpreliminarymass,performance,cost,andtoplevelreliability estimates.

A. MassDrivers Thebasicphysicsofusingamassdriver(i.e.electromagneticacceleratororrailgun)asapropulsivedeviceis basedinthefundamentalconceptdescribedinIsaacNewton’sThirdLawofMotion:Foreveryaction,thereisan equalandoppositereaction.Applyingaforceinonedirectiontoaccelerateasmallbitofejectamaterialwillhave theeffectofapplyinganequalreactiveforceintheoppositedirection.Momentumisconservedinthisexchange. Massdriversthen,maybethoughtofas“propellantless”rocketengines(albeitwithasmallerexitvelocity),using onlyinertinsitumaterialastheejecta.Ifthepowerandinfrastructureoftheejectionsystemsaresufficientlysmall, thenthisapproachcouldofferadvantagesforsustainedapplicationofthrustversusastandardrocketthatisnaturally limitedbyitsonboardpropellantmass. Massdriversuseringsof,sequentiallyenergized,toacceleratematerialstohighvelocityalonga trackortube.Ferrousmaterialscanbeaccelerateddirectly.Nonferrousmaterialsrequireashuttlebuckettointeract withthemagneticfieldsproducedbythemagnets.Thislatterapproachalsorequiresadecelerationsegmentoftrack ifthebucketistoberecoveredandreused.Massdrivertechnologyhasbeendevelopedforterrestrialapplications and is frequently suggested or used as the basis for ballistic accelerators, long range artillery, space launch, and supercolliders 3,4,5,6,7. Aswithmanyspaceinnovations,massdriverswereconceivedofinsciencefiction,laterbeingenvisionedto solverealfuturespaceproblems.Massdriversinspaceappearinearlysciencefictionstoriesintheearlytwentieth century and continue to pervade contemporary science fiction television shows and movies 8. In the 1970’s, AmericanscientistDr.GerardO’NeillandhiscolleaguesattheSpaceStudiesInstitute(SSI)proposedseveraluses for large mass drivers in space including launching raw materials from the lunar surface and using the aforementioned momentumexchangeeffecttoslowlyalterthecourseofanasteroid(seeFigure1).Inonecase, O’Neil proposed capturing a small asteroid into Earth orbit to be used as a source of precious metals and other materials 9,10 .

2 AmericanInstituteofAeronauticsandAstronautics In O’Neill’s vision, the mass driver is usually depicted as a large, high power device requiring significant infrastructureemplacement.Intheopinionoftheauthors,theuseofsmaller,modularmassdrivers,deployedinan intelligentswarm,offersadvantagesintermsofincreasedmissionflexibility,lowermanufacturingcosts,reduced individuallaunchmass,improvedoverallmissionreliability,andhigherdutycyclesurfaceoperations.

Figure1. Dr.GerardO’Neill(center)withSpaceStudiesInstitute(SSI)Colleagues,DemonstrationMass 9,10 Driverat1979PrincetonConference,andLunarMassDriverIllustration .

B. ComparisontoCompetingDeflectionConcepts Relative to competing deflection concepts, the use of multiple small mass driverequipped landers may offer practical advantages. At a toplevel, the relative advantages of this approach can be introduced and discussed qualitatively.Quantitativeperformancedataisintroducedinsubsequentsectionsofthepaper. First,thetechniquedoesnot requiretheproliferationof nuclear weaponsintospace.Whilenuclear warheads carryanextremelyhighenergytomassratio,issuesrelatedtointernationaltreaties,publicacceptance,andstockpile safetywillcontinuetocastdoubtoveroptionsdependingonnuclearwarheads. Comparedtokineticimpactors,massdriversolutionsofferacontrolled,meteredapplicationofperturbingforce. Thereforethereisanexpectationthattheapproachwillbemorepreciseandregulatedthanthenearinstantaneous impulseappliedwhenahighspeedimpactorisslammedintoatargetasteroid.Uncertaintiesinimpactlocationand timing,asteroidinternalstructureandmassdistribution,andcrateringphysicsareaconcernforanykineticimpactor solution.Overtheperiodofaboutoneyear,thelowerthrustmassdriversolutionisabletoachievethesameVasa kineticimpactorofequivalentlaunchmass,butwithmuchmoreprecisionandpotentialcontrollability. Comparedtootherlowthrusttechniquessuchasthegravitytractorandthelaserablator,themassdriversolution providessignificantlymoreimpulseforagivenactiontimeandlaunchmass.Directattachmentobviatestheneed for station keeping and proximity control above a gravitational complex and physically irregular rotating body. Comparedtoothermethodsthatdependonattachmenttothetargetasteroidlikeapropulsivetug,thepropellantless approachofamassdrivercanyieldsignificantlylongeractiontimesforagivenlaunchmass.

II. MADMENConceptSummary

A. Overview The concept of using small, modular mass driver landers to deflect an incoming asteroid was originally conceivedofanddefinedinlate2003andearly2004byateamatSpaceWorksEngineering,Inc.(SEI).Theoriginal concept development effort was funded under a Phase 1 study award from the NASA Institute of Advanced Concepts(NIAC)concludingwithafinalreportthatsummarizesthatstudy 11,12 .Theconceptofsmall,modularmass drivers for asteroid mitigation is referenced by the acronym MADMEN (Modular Asteroid Deflection Mission Ejector Node). Artist’s conceptions of the multiple mass driverequipped lander approach are given in Figure 2. CADlayoutsareshowninFigures3. TheoriginalMADMENconceptconsistedofatransferstageandamassdriverequippedlander.Multipleunits aredeployedtodeflecteachtargetasteroidandoperateasanintelligentswarmthatworkscollectivelytoaccomplish thedeflectionmissionwhilebeingabletotolerateandcompensateforindividualfailures.Onceputintoa rendezvouspositionbythetransferstage(matchingtheheliocentricvelocityofthetarget),thelanderhasasmall amountofonboardpropulsiontoaiditsdescentandlandingontheasteroidsurface.Mechanicalanchorbarbsatthe baseofeachlandingpadarefiredintotheasteroidandusedtosecurethelandertothesurface.Note that this

3 AmericanInstituteofAeronauticsandAstronautics approachassumesthattheasteroidcansupportmechanicalshearforcesandthattheanchoriseffectiveinsecuring the machine to the asteroid’s surface. Once attached firmly to the surface, the lander is not mobile. Given the rotating natureofanasteroidandthedustysurfaceenvironment,thelanderistobepoweredbyasmall nuclear spacereactor(<50kW e).Largeradiators(relativetothespacecraft)areemployedtorejectwasteheatoriginating fromonboardsubsystemsincludingthepowerreactor. The primary components of the lander spacecraft include the drilling/mining mechanism and the mass driver mechanism. The drill is envisioned to be a multisegment coring drill with a rotary drill bit head. The specific dimensionsofthedrillvarywiththeparticularmitigationscenario,butthecoreholediametertypicallyrangesfrom 18cm.Drilldepthalsovarieswithapplication,butistypically36m.Thedrillismountedonarotarybase allowingittorotateandradiallytranslatetoevacuatemultipleholesbeneaththebaseofthelander.Thespecific numberofholesdependsonthediameterofthelanderbase,thediameteroftheholes,andanapproximatesolution totheholepackingalgorithm.Foralargebasediameterandsmallcorehole,thetotalareaofthesmallerholesis roughly86%ofthesurfaceareacoveredbythelanderbase.Thedrillisassumedtoadvanceatarateofroughly3 cm/minute.Assumingthatdrillingpowerisroughly230Wforeachcm/minuteofdrillingrate,690Warerequired tosustainthisrate 13 . DrillingisconsideredanearconstantoperationwhiletheMADMENlanderisonthesurface.Asteroidmaterial removedfromthecoretubesisgatheredintouniformmassunitstobeconveyedtoandthenejectedbythemass driver.Thesizeandmassoftheejectedshotsvariesdependingonthespecificmitigationscenario.Inexplorationof preferred configurations throughout the design space,shotmassesbelow1kgandvelocitiesbelow750 m/s are typical. Themassdriverisadeployabletowerconsistingofaseriesofringsandasupportingstructural strongback. The mass driver is automatically erected to its full height once the lander is on the surface. The strongbackallowsthemassdrivertobepointedinanappropriatedirectionwithinroughlya30°halfangleconeof operation.Thesize(lengthanddiameter)ofthemassdriverdependsonthespecificsizingcase.Themassdriver consists of an segment for the shuttlebucketandtheejectamaterialandadeceleration segment to recoverthebucket.Theaccelerationsegmentisassumedtooccupyroughly65%ofthemassdriver’slength.This analysistypicallyconstrainedthemassdriverlengthtobenomorethan15mforpracticaldeploymentreasons. Themassdriveroperatesaccordingtoascheduleor“dutycycle”thatisdeterminedbythefrequencythatthe massdriverviewinganglecanbebroughtintoalignmentwiththefiringvectorgenerallyoppositetheasteroid’s heliocentricvelocity.Foranirregularandrotatingasteroid,adutycycleofonly15%isassumedforanyindividual lander.Whenoperating,themassdriverispoweredbyabankofcapacitorsthatarerechargedbetweenshotsbythe nuclearpowersource.Foratypicalconfiguration,thefiringtimeisextremelyshort(fractionofasecond)allowinga significantstepdowninthepowerdemandonthereactorversusthemuchhighercapacitorpowerrequiredtoshoot material(anejectashot).Powerconversionlossesof15%arereflectedinthemodelforthisrechargingprocess.For muchhighershotfrequencies,thereactorpowerrequirementapproachesthemassdriverpower,butshotfrequencies ofonly1to4shotsperminute(whenactive)werefoundtobetypical.

Figure2. Artist’sConceptionoftheMADMANProximityandSurfaceOperations 11 .

4 AmericanInstituteofAeronauticsandAstronautics Figure3. LayoutoftheMADMENMassDriverLanderontheSurfaceandStowedintheLaunchVehicle Fairing(ShownforaSingleLaunchSolution)

B. Changes/UpdatestoBaselineConcept Sincetheoriginal2004NIACsponsoredworkonthisconcept,severalrevisionsandimprovementshavebeen madetotheinitialassumptionsanddesigndecisionsregardingtheMADMENconcept.Someoftheimprovements includethefollowing: 1) Less Generous Deflection Distances: In the original concept development work, it was assumed that a deflectionmissionwouldberequiredtochangethemissdistancebetweenEarthandathreateningasteroid toonehalfoftheEarthdistance(about192,500km).Uponfurtherconsideration,fiveEarthradii(5 Re)isusedasareasonablemissdistance(about32,000kmmeasuredfromthecenteroftheEarth).Inthe future,thisperturbationdistanceshouldmoreproperlybetheresultofaprobabilisticcalculationdepending uponinitialerrorsintheasteroid’spositionanduncertaintiesinthedeflectionprocess. 2) Longer Warning Times Allow Direct Launch: The original concept assumed that a very fast response wouldbeneededtodeflectanasteroidthreatdiscoveredwithaveryshortleadtimes(ayearorless)and thereforeprestagingtheswarmofmassdriversinspacewouldberequired.AsNASAcompletesmoreof theSpaceguardsurveyandmoreoftheNEOpopulationisdocumented,itisbecomingmuchmorelikely thatalargeasteroid(140morgreater)wouldinfactbediscoveredsoonenoughtoallowmanyyearsof leadtime(advancedwarningtime)withinwhichtomountadeflectionmissiondirectlylaunchedfromthe surfaceoftheEarth. 3) SimplerCruiseStage:BylaunchingdirectlyfromEarthusinganappropriatelaunchvehicletoplacethe MADMENlanderonatransferorbit,theinspacestagevelocitychangerequirementcanbereducedtoa single arrival V and some small midcourse correction maneuvers. The previous analysis was pre deployedintoEarthMoonL4orL5,andthereforerequiredalargertotalvelocitychangetoreachatarget asteroid.UsingadirectlaunchtoprovidetheinitialEarthescapemaneuverallowsthereplacementofthe cryogenic transfer stage in the original concept with a simpler cruise stage in the current concept. The currentcruisestageisfueledbyhypergolicpropellantsandpoweredbybodymountedsolararrays.Itis discardedaftertheasteroidrendezvousVisapplied. 4) LongerSurfaceActionTimes:Theoriginal2004studysuggestedthatmassdriveroperationsattheasteroid shouldbelimitedto60daysorlessinordertosatisfypublicanxietyandyieldashortactiontimeafter whichtheoutcomeofthedeflectionmissionwouldbeknown.Itisrecognizedthatasignificantadvantage ofthisconceptisthatitcanprovideamuchlargerimpulse(foragivenlaunchmass)ifallowedtooperate foralongtime.Givennewassumptionoflongerwarningtimes,surfaceoperationsarenowallowedfor periodsuptooneyearorgreater.Ofcourse,longsurfaceoperationstimesaddadditionaldemandonthe lander’shardwarecomponentsgiventherelativelyhostileoperatingenvironment.

C. MADMENParametricSizingModel A ROSETTA (ReducedOrder Spreadsheet for Estimating Technologies and Transportation Architectures) model,atypeofparametric spacecraftsizing model14 ,oftheMADMENconcepthasbeencreatedinMicrosoft Excel ©andhasbeenusedtoconductaseriesofstudiestodefinekeyvariables.TheROSETTAmodelconsistsof severalinterconnectedworksheetswithinanoverallworkbook.Sizingsheetsexistforthemassdriver,thepower

5 AmericanInstituteofAeronauticsandAstronautics system, the lander spacecraft, the cruise stage, and the summary vehicle. Key input variables include the target asteroid’s mass, the required deflection V, the lander size (base diameter), the mass driver length, the shot frequency, the shot mass (per individual shot), the shot exit velocity, the drill/coring rate, the duty cycle on the surface,theVforrendezvous,thelaunchvehiclecapacitytotherequiredC 3forEarthdeparture,andthenumberof landersemployedonthemission. Keyoutputsofthemodelincludetherequiredactiontimeonthesurface,thelandergrossmass,thelanderdry mass,thecruisestagemass,thetotallaunchmass,thereactorpowerrequired,thecoringholedepth(perhole),the coringholediameter,andvarioussubsystemmassesanddimensions.Thesedataaresubsequentlyusedtoestimate the design development, test & evaluation (DDT&E) cost, Theoretical First Unit (TFU) cost, production costs, launchcosts,missionoperationscosts,andoverallmissionreliability. Lifecyclecostsareestimatedusinghistoricallybasedequationsandanalogouscostsforsimilarspacesystems. These specific equations for DDT&E and TFU cost are based upon parametric historical cost estimating relationships(CERs)thatscaleforbothmassandcomplexity.ThetopdownCERsusedforthisstudyhavebeen correlated to historical spacecraft cost data and have been proven useful to estimate the costs of future space systems.TheLifeCycleCost(LCC)consistsofoveralltechnologydevelopment,DDT&Eandacquisitioncostsfor boththeinspacecruisestageandeachMADMENlander,inspaceoperationscosts,facilitiesdevelopmentcosts, and launch costs. Overall technology development cost, the cost to bring required technologies to a Technology ReadinessLevel 15 (TRL)of6,isestimatedtobe$100M(FY2007).Thisisageneralestimateforrequiredconcept technologies such as the mass driver, small nuclearpowersource,etc.Inadditiontohardwaredevelopment and acquisitioncosts,additional“wraps”arealsoincludedinthecalculationofDDT&EandTFUcosts.Thesecostsare normallyasubstantialpartofoverallcostsandshouldnotbeexcludedinanyLCCanalysis.Forthisanalysis,these costsincludedSystemTest Hardware(STH)costs(nominally35%ofTFUcost)and overallsystems integration coststhatconsistofthefollowing(30%ofhardware+STHcosts):Integration, Assembly, &Checkout(IACO); SystemTestOperations(STO);GroundSupportEquipment(GSE);SystemEngineering&Integration(SE&I);and Program Management (PM). On top of these costs there are additional percentages to account for contingency (20%),contractorfees(5%),programsupport(5%)andstageintegration(2%).Contingencyisaddedheresincethe basehardwarecostscalculationsarebasedupondrymasswithoutmargin.Inspaceoperationscostsarebrokenout intocruisephaseandtarget operationscostsper month.ThesecostsareestimatedbaseduponNASAoperations costsaslistedinbothpreviousandprojectedNASAfiscalyearbudgetdocumentsfortheDawn,DeepImpact, Phoenix,andMarsScienceLab(MSL)missions 16 .Cruisephaseoperationscosts(approximately$0.79M/cruise month,FY2007)arebaseduponthefirstthreemissionsandsurfaceoperationscosts(assumedtobemorecomplex) are based only upon MSL operations estimates (approximately $4.78M/ mission month, FY2007), MSL being representativeofamissionwithmultiplemissionphasesandscienceinstruments.Theseestimatesaretakentobe roughbutrelevantapproximationsofsuchcosts.LaunchcostsforthestandardFalcon9launchvehicleisassumed tobe$30MwhilelaunchcostsforNASA’sAresVis assumedtobeapproximately$500M.Ancillaryfacilities development costs are estimated to be $10M. Given that the cruise stage is based upon known design and manufacturingprocesses,alearningcurveeffectpercentageof95%isassumedforthecruisestageand90%forthe mitigation(MADMEN)stage. Missionreliabilityrangesareestimatedfortheinspacesegmentsonly.Basedonpreviousworkbytheauthors, individual MADMEN spacecraft are estimated to have mission completion reliabilities in the 80% 90% range, once they are successfully launched 11 . Overall mission reliability is simply estimated based on the number of spacecraftintheswarmandthenumberoffailuresthatcanbetoleratedwhilestillensuringthatthedeflectionis successful.Thisvarieswiththespecificmitigationstrategyandthe“nominal”surfaceactiontime.Formostofthese preliminaryanalyses,itisassumedthatuptoonehalfoftheoriginallanderscanfailandthemissioncouldstillbe accomplishedsimplybyextendingthesurfaceactiontimeoftheremaininglanders. Foragivensetofuserinputs,theROSETTAmodeliteratesamongover200equationsthatestimatemassesand power requirements for individual subsystems. The ROSETTA model’s behavior is reasonably complex. For example,changingtheshotvelocitywilldirectlyincreasethemomentumimpartedwitheachshotanddecreasethe requiredactiontimeonthesurface.However,thepowerrequirementincreasesandthusthereactorandtheradiators increase.Inaddition,thedownwardloadonthemassdriverstrongbackincreasesduetotheincreasedacceleration requiredtoshootthematerial.Thisincreasesthemassofthestrongback.Alternately,adecreaseinthelengthofthe strongbackwillreduceitssizeandbucklinglength,andthereforereducethemassofthiscomponent.However,a shortermassdriverrequiresalargeraccelerationtoreachadesiredvelocityandthereforeincreasestheloadonthe mainspacecraftstructureandthelandinglegs.Inaddition,morepowerisrequired.Conversely,increasingtheshot frequencywilldecreasethesurfaceactiontimeproportionally,buthasanegativeeffectontheminingsubsystem. Foragivenshotmassandfrequency,thedrill/coreunitmustbedesignedtokeepupwiththerequiredmassflow

6 AmericanInstituteofAeronauticsandAstronautics (whilemakingproperallowancesforthedutycycleeffectthemassdriverisonlyoperatingforafractionofthe missiontime,whilethedrillisoperatingnearlycontinuously).Asarule,astheshotfrequencyincreases,thedrill diameterincreasesandthereforethemassofthedrillandcoringtubesincreases.Operatingonthesurfacelonger willincreasethecoreholedepthandthusthemassofthedrilltubing. Forasizingproblemwithconstraintsonthelaunchmass,spacecraftdiameter,andthemaximumallowablehole depth,thecomplexinteractionsamongtheindependent variablesandthesubsystemscreateadifficult nonlinear andnonsmoothoptimizationproblem.PiBlueSoftware’sOptWorks:GeneticAlgorithmhasbeencoupledtothe MADMENROSETTAmodeltoaidinfindingnearoptimalsolutionstovarioushypotheticalmissionscenarios.For agivenscenario(asteroidmass,requiredV,rendezvous date,missionconstraints),optimizationusuallytakesa fewminutesonastandardPCorMacintoshcomputer.Usingthisapproach,thisanalysishasexploredhundredsof sizingcasesfortheMADMENconceptacrossarange of various sized asteroids with different mission warning times, deflection V’s, and launch vehicle constraints. The findings indicate that, with properly selected independent sizing variables, a mass driver solution delivers as much or more change in momentum to a target asteroidthancompetingnonnuclearexplosionmethods. Figure4showshowagenericmassdriversolutionwouldscaletomeetvariousdeflectionscenarios.Effective Momentumchangeisdefinedasthemassofthetargetasteroidtimestherequiredchangeinasteroidvelocity.For comparison,datafromotherconceptsinvestigatedinNASA’sNearEarthObject(NEO)AnalysisofAlternatives (AoA)studyisalsoshown 1.Ouranalysisdidnotconductanindependentassessmentofthealternativedeflection techniquesshowonthischart.TheoptionsotherthanthemassdriversolutionaresimplytakenfromNASA’sNEO AoAStudyandplottedforcomparison 1.Onlynonnucleardetonationoptionsareshown.IntheNASANEOAoA Study, the effectiveness of a nuclear standoff optionisshowntobesuperiortoallotherchoices,but does have politicalconcerns.InFigure4,itisconsidered“better”toyieldahighereffectivemomentumchangeforagiven launchmass(higherlinesarebetter). 1.0E+11 MassDriver:3,000m/sRotatingTarget MassDriver:1,000m/sNonRotatingTarget EPTug:NonRotatingTarget EPTug:RotatingTarget GravityTractor:1Year 1.0E+10 GravityTractor:10Years KineticImpactor:10km/s,Beta=1 KineticImpactor:50km/s,Beta=10

1.0E+09

1.0E+08

1.0E+07

EffectiveMomentumChange[kgm/s] 1.0E+06

1.0E+05 1,000 10,000 100,000 DeflectionVehicleLaunchMass[kg] Figure4. TopLevelPerformanceComparisonwithAlternateDeflectionTechniques(nonnuclear). Thetwomassdrivertrendlinesshownonthisfigurereasonablyboundtheresultantdatathatweproducedinour explorationofthedesignspace.Thelowerlinerepresentsacruisestagesizedfor3km/sofarrivalVatthetarget

7 AmericanInstituteofAeronauticsandAstronautics asteroidandadutycycleof15%(ourstandardassumption).AnarrivalVof3km/sistypicalforanearEarth object, but this number is ultimately dependent on the launch date and transfer orbit geometry. The upper line representsamoreoptimisticscenariothatrequiresonly1km/sofarrivalVfromthecruisestageandhasaduty cycleof100%(anapproximationofanonrotatingasteroid).Actiontimesareoneyearonbothcases.Notethat eventhe“conservative”(lowerline)MADMENmassdriversolutionisclearlysuperiortothegravitytractorandthe propulsivetug(thelatterappliedtoamorerealisticrotatingtarget).Basedonthisanalysis,itsperformanceisalso comparable to the asteroid tug applied to a nonrotating target (perhaps an unrealistic scenario) and the kinetic impactorwitha10km/simpactvelocityandaBeta(momentumamplificationfactor)of1.0.Thehighestperforming conceptonthisscaleisthekineticimpactorwithastrikevelocityof50km/sandaBetaof10.Onecouldeasily challenge the realism and the practicality of such an approach. In the end, it is concluded that the mass driver approach has quantitative performance advantages when compared to competing alternatives in a general application.

III. DeflectionCaseStudies Tworelevantcasestudiesarepresentedindetailhere.Thesecasesarechosentorepresenttypicalresponsesthat maybemountedtodeflecta“small”incomingasteroid(100m300mindiameter).Statistically,thereareordersof magnitudemoreEarthcrossingasteroidsinthissizerangethanthosehavediametersof1kmormore.Mostofthe undiscoveredasteroidslieinthesmallersizerangesaswell.Eachcasestudyincludesaselectionoflaunchvehicle, launchandarrivalconditions,andanassessmentofrequireddeflectionV.

A. CaseStudy1:D’Artagnon D’Artagnonisafictionalasteroidoriginallycreatedinsupportofthe2004PlanetaryDefenseConference 17 .Itis a130mdiametertypeSstonyasteroidwithahighrotationalperiodthatwascreatedtobeanexampleofalow warningtimeimpactor(about5yearsfromdiscoverytoimpact).Inordertomakethecaserelevantforadvanced conceptdevelopment,someoftheparametersoftheorbitalelementshavebeenadjustedtoreflectadiscoverydate of January 1, 2007 and an impact date of April 1, 2022. Semimajor axis, eccentricity, and inclination were preserved from the original dataset, but position angles were adjusted to reflect the new dates of discovery and impact.The“modified”D’Artagnonorbitalcharacteristics are given in Table 1. All data is shown in the J2000 heliocentriceclipticreferenceframe. Table1.TargetAsteroidsforSelectedCaseStudies. Parameter Values for Case Study Values for Case Study D’Artagnon (modified) Apophis MinorPlanetCenter(MPC)Designation fictitious 99942(2004MN4) Semimajoraxis(a) 0.90220435AU 0.92226142AU Eccentricity(e) 0.30245951 0.19105942 Inclination(i) 4.78620700° 3.33131464° LongitudeofAscendingNode 191.15627122° 204.45915230° ArgumentofPeriapsis 227.57988257° 126.38557131° MeanAnomalyAngle 27.28864277° 307.36307853° Epoch January1,20170.0UT April10,20070.0UT Mass 2.7x10 9kg 2.1x10 10 kg Diameter 130m(irregular) 250m(estimatedfrommagnitude) AsteroidType Stype(stony) Stype Density 3.0g/cm 3 2.6g/cm 3(assumed) AsteroidClass Aten Aten SpinPeriod 19minutes 30.54hours ImpactDate April1,2022 unknown The orbit of D’Artagnon is normally propagated forward in time using an 8th/9th order nbody numerical propagator with a variable step size. The sun, all of the planets and the Earth’s moon are considered in the gravitationalmodel.TheperturbingeffectsofthelargeasteroidbeltasteroidsCeresandVestaarebeingadded,but were not present in the current analysis. Solar pressureandtheYarkovskyeffectarenotmodeled.The standard propagatorisbasedontheJavaAstrodynamicsToolkit(JAT)originallydevelopedattheUniversityofTexas. TheoriginalJATpropagatorwasmodifiedbySpaceWorksEngineering,Inc.(SEI)andourpartnerresearchersat the Georgia Institute of Technology to accommodate a low thrust perturbation model. For a given mass driver ejectionrate,shotvelocity,andshotmass,aperturbingforceisapproximatedaslow,constantforceappliedinthe

8 AmericanInstituteofAeronauticsandAstronautics intrackvelocitydirection.Foragivenstartdate,asearchalgorithmisusedtodeterminetheminimumnumberof daysoverwhichtheforceneedstobeappliedinordertochangetheminimumEarthmissdistancebythedesired amount.ForD’Artagnon,itisassumedthatthe missdistancein2022wouldhavetobeatleastfiveEarthradii. Oncetheminimumsurfaceactiontimeiscomputedforagivenstartdate,thestartdateisincrementedby30days andtheprocessisrepeatedtocreateafamilyofsolutions.Forarangeofsolutionsoveracandidateperiodof5–10 years,thealgorithmtakesseveralhourstoexecuteonastandardPC. The“integrated”VateachpointiscalculatedbysummingtheVcreatedfromeachmassdrivershotacross thetotalnumberofshotsrequiredtoachievethenewmissdistance.Ithasbeenfoundthatthe“integrated”Visa reasonably constant parameter even when the shot velocity, shot frequency, and shot mass are varied by +25% duringtheoptimizationprocess.TheVrequirementsasafunctionofthedateofinitialsurfaceoperations are showninFigure5.Theimpulsesolution(the“instantaneous”V)isshownonthesamefigureforcomparison.For reference,fivelanders,ashotfrequencyofthreeshotsperminuteperlander,adutycycleof15%perlander,ashot mass of 0.75 kg, and a shot velocity of 750 m/s was used to produce the integrated V chart. Using these parameters,theunderlyingactiontimesresultingfromthisanalysisrangedfrom118daysatthelowendto525days atthehighendofthedaterange.

0.40 s] Instantaneous Delta-V 0.35 Integrated Delta-V Impact Date 0.30

0.25

0.20

0.15

0.10

0.05 NecessaryVfor5ReIncreaseinMissDistance[m/ 0.00 1/1/2017 1/1/2018 1/1/2019 1/1/2020 1/1/2021 1/1/2022 1/1/2023 VStartDate Figure5. IntegratedVvs.StartDateofSurfaceOperationsforD’Artagnon NotetheperiodicityinboththeintegratedVandinstantaneousVsolutions.Thisisthephysicalbiastoward applyingtheVnearperihelionofD’Artagnon’sorbit. Also worth noting is the relative advantage, in terms of reducedV,ofapplyingtheperturbationwellbeforetheimpactdate.Earlyapplicationoftheperturbationallows changes in the asteroid’s period to compound over several heliocentric revolutions and therefore increase the ultimatemissdistancewiththeEarthin2022. TheAresVlaunchvehicle,NASA’sproposedheavyliftvehiclecurrentlyunderdevelopmentinsupportofthe U.S.humanlunarexplorationmission,waschosenasthelaunchvehicleforthiscasestudy.TheAresVislarge enoughtoallowthedeflectionmissiontobeundertakenwithasinglelaunch,andthelaunchvehicleisexpectedto beveryreliable.ThemaximumpayloadperformancetoEarthescapeorbitswasestimatedusingpubliclyavailable stage weightsandpropulsionperformancedata.LaunchtrajectoriesweresimulatedfromKennedySpaceCenter, FloridaUSAfordueeastlaunches.Thevehicle’sestimatedperformanceisshowninFigure6.C 3isthesquareof themaximumresidualvelocityatescape(twicethespecificenergyoftheescapeorbit).

9 AmericanInstituteofAeronauticsandAstronautics 60,000

55,000

50,000

45,000 Payload[kg]

40,000

35,000

30,000 0 4 8 12 16 20 24 28 32 36 40 2 2 C3[km /s ] Figure6. PredictedEscapeTrajectoryPerformanceoftheAresV(C3vs.Payload). 2 2 For this case study, the launch C 3 was limited to 20 km /s or less. This corresponds to a maximum launch capacityofapproximately43,000kg.Afterasearchofpotentiallaunchdatesbetween2017and2019,atransfer 2 2 trajectory wasidentifiedthat minimizesthearrival C 3 whilelimitingthedepartureC 3to20km /s .Theselected orbitisshowninFigure7.LaunchtakesplaceonApril20,2017.ArrivalatD’ArtagnonoccursonDecember1, 2 2 2017.Thetransfertimeis225days.ThearrivalC 3is8.737km /s ,requiringanarrivalVfromeachcruisestageof approximately3,024m/s(2,960m/splusa2.5%margin).Gravityswingbytrajectorieswerenotconsideredinthis solution.Notethat withinthetimerangeconsideredforalaunchresponsetothisthreat,amoreoptimaltransfer alignmentwasnotpossible.Withalongerwarningtime,thetransfertotheasteroidmightbeachievedwithalower arrivalV.

Figure7. SelectedTransferOrbittoD’Artgnon.

10 AmericanInstituteofAeronauticsandAstronautics Based on the arrival date and assuming a short rendezvous and landing phase at the asteroid, the required integratedVtobeappliedtoD’ArtagnoninordertoprovideamissdistanceoffiveEarthradii(32,000kmfrom thecenteroftheEarth)isconservativelytakentobe12.5cm/sfromFigure6. This data was entered into the MADMEN ROSETTA sizingmodelandtheparametersofthespacecraftand massdriverwereoptimizedinordertominimizelaunch mass(increasepayload mass margins) fora fivelander solution.Surfaceactiontimewaslimitedto365days.TheresultantsolutionforthistestcaseisgiveninTable2.For comparison,afourlandersolution forthistestcaseresultsinaslightly largerand moreexpensivelander witha fasterejectionvelocityandhighershotfrequency.Thefivelandersolutionwaspreferredbasedonprimarilyonits higherlevelofredundancy.Figure8illustratesthebreakoutofestimatedLifeCycleCost(LCC)forthisconcept. The overall LCC is over $2.3B (FY2007), with a large percentage of this cost consisting of both DDT&E and acquisitioncostsforthemitigationstage.Anothersignificantcostdriverislaunchcost(AresV). Table2.SolutionforD’ArtagnonCaseStudy. Parameter Values for Case Study NumberofMADMENLanders 5 LanderDryMass 1,470kg LanderWetMass 1,650kg CruiseStageDryMass(withoutlander) 470kg CruiseStageWetMass(withoutlander) 4,180kg TotalLaunchMass(each,withpayloadadapter) 5,830kg TotalLaunchMass(all,withpayloadadapters) 30,600kg 2 2 AresVLaunchVehicleCapacity(toC 3=20km /s ) 43,000kg LaunchMargin(allowablepayloadgrowth) 40% MassDriverShotFrequency 3shotsperminute MassDriverEjectaShotMass(pershot) 0.50kg MassDriverShotVelocity 570m/s Vpershot 1.056E07m/s SpacecraftBaseDiameter 3.5m MassDriverRailLength(Deployed) 15m AccelerationSegmentLength 65%oftotallength Drill/CoreHoleDiameter 5.64cmpercoringhole Drill/CoreHoleDepth 4.70mpercoringhole Drill/CoreRate 3cmperminute ReactorPower(kW e/KWthermal) 16.5kW e/92kW th DutyCycle(%oftimeinfiringalignment) 15% NominalSurfaceActionTime 365days IndividualLanderReliability 80%90% PostLaunchMissionReliability(assume3of5) 99.38%99.95% MADMENLanderSpacecraftDDT&ECost(mitigationstageonly) $723.2M(FY2007) MADMENLanderSpacecraftTFUCost(mitigationstageonly) $118.5M(FY2007) MissionLifeCycleCost(includinglaunch) $2,255.5M(FY2007)

Technology Development 4.4% DDT&ECruise Launch Stage 22.2% 13.1%

Operations 2.8% Facilities 0.4%

DDT&ELander 32.1% AcquisitionLander 22.8% AcquisitionCruise Stage 2.1%

Figure8.LifeCycleCost(LCC)BreakoutforD’ArtagnonCaseStudy. 11 AmericanInstituteofAeronauticsandAstronautics B. CaseStudy2:Apophis Asteroid99942ApophisisauniquePHAhavingacloseapproachtoEarthin2029.Asaresultofthatapproach, thereisasmallchancethatApophiswillhavearesonantreturntoEarthin2036thatwillresultinanimpact 18.A small keyhole, roughly 600 m long in the major axis, exists in the bplane (Earthcentered plane normal to the incoming earthrelative velocity at the edge of the gravitational sphere of influence) of the April 13, 2029 close approachpass.IfApophispassesthroughthatregionofnearEarthspace,thenthereisnearlya100%chancethatit willhittheEarthin2036 19.Conversely,ifApophis’trajectorycanbealteredtomissthekeyhole,thenthechanceof hittingEarthin2036willbezero.AstronomerscurrentlydonotknowdefinitivelywhetherApophiswillorwillnot pass through the 2029 keyhole. There is only a small probability that it will (currently 1 in 45,450), based on trajectoriespropagatedfromcurrentobservationsofitspositionatvarioustimesandtheassociateduncertaintiesin thoseobservations.Theprobabilityofpassingthroughthekeyholewillbeupdatedasnewobservationsaremade. TechnicalspecificationsoftheorbitofApophisaswellasitsphysicalcharacteristicsweregiveninTable1. ThiscasestudywascreatedundertheassumptionthatApophisisindeedpredictedtopassthroughthe2029 keyhole.ThismissionrequiresamuchsmallerandlessmassivemassdriversolutionthanthatproposedforCase Study 1. Here, a very small deflection of the asteroid’s 2029 flyby is sufficient to avoid future impact. For conservatism,itisassumedthatanincreaseof60kmintheclosestapproachtoEarthduringthisflybyissufficient tocompletelyavoidthe600mkeyholeinthebplane. Figure9showstheresultsofasweepofthedateofinitialsurfaceoperationsvs.theintegratedVrequiredto deflect the asteroid from the keyhole. The orbital propagation tool was again used at each time step to find the number of days that a surface mass driver would needtooperatetoachievetherequiredchange inEarth miss distance.AsinCaseStudy1,thisdatawasconvertedtointegratedVforplotting(sumofalloftheindividualshot Vs).Forreference,atwolandermissionsolutionwasassumedforthistrajectoryanalysiswithashotmassof0.15 kg,ashotfrequencyof2shotsperminuteperlander,anejectionvelocityof150m/s,andadutycycleof15%. BeforeconvertingtointegratedV,thenumberofdaysrequiredtodeflectApophisrangedfrom75daysatthelow endto420daysatthehighendofthedaterange. 5.0E-04

4.5E-04 Instantaneous Delta-V 4.0E-04 Integrated Delta-V Close Approach Date 3.5E-04

3.0E-04

2.5E-04 [m/s]

2.0E-04

1.5E-04

1.0E-04

5.0E-05 NecessaryVfor60kmIncreaseinMissDistance

0.0E+00 1/1/2015 1/1/2017 1/1/2019 1/1/2021 1/1/2023 1/1/2025 1/1/2027 1/1/2029

∆∆∆VStartDate Figure9.IntegratedVvs.StartDateofSurfaceOperationsforApophis(KeyholeDeflection). ThenotionalMADMENmassdriverdeflectionmissionproposedrequiresonlytwosmallerlanders.Eachlander is launched separately on a Space Exploration Technologies(SpaceX)Falcon9rocket(standardFalcon9, non heavy variant) 20 . Since the Falcon 9 is currently still under development, a launch trajectory simulation for that

12 AmericanInstituteofAeronauticsandAstronautics rocket was developed based on public information on its size, mass, and propulsion performance. The resultant payloadcapabilitytoEarthdepartureorbitsisshowninFigure10.LaunchisassumedtobefromCapeCanaveral AirForceStation,Florida,USAtoadirectdueeastdepartureorbit.Forthiscasestudy,departureC3waslimitedto nomorethan15km 2/s 2.Thiscorrespondstoalaunchcapacityofapproximately1,350kgbasedonthisanalysis. 3,000

2,500

2,000

1,500 Payload[kg]

1,000

500

0 0 4 8 12 16 20 24 28 32 36 40 2 2 C3[km /s ] Figure10.PredictedEscapeTrajectoryPerformanceoftheSpaceXFalcon9(C 3vs.Payload). ForApophis,therearetwogoodopportunitiesforefficienttransferfromEarthtothetargetasteroidinthe decade or so. One opportunity exists in the 2012/2013 timeframe. The other exists in the 2022/2023 timeframe. DespitetherelativelylowerdeflectionVrequirementavailablefromanearlierrendezvous,thelaterwindowwas selectedinordertoallowalongerperiodoverwhichtomaturethetechnologiesandtechniquesrequiredforthis 2 2 concept. A transfer trajectory was chosen that minimizes arrival V (or C 3) subject to a 15 km /s limitation on departureC 3.Onlydirectmissionswithoutgravityflybyswereconsidered.Transfertimeswerelimitedto450days orless.

Figure11.SelectedTransferOrbittoApophis.

13 AmericanInstituteofAeronauticsandAstronautics LaunchofbothmissionsisassumedtobeapproximatelyMarch31,2022.RendezvouswithApophistakesplace onMarch15,2023afteronefullrevolutionaboutthesun(seeFigure11).Transfertimeis349days.ArrivalC 3is only1.611km 2/s 2requiringarendezvousVfromeachcruisestageofapproximately1,265m/s.Assumingashort phaseforrendezvous,landingandsetupofsurfaceoperations,therequiredVtobeappliedtoApophisistakento be1.3E04m/s(only0.13mm/s)fromFigure9. For this case study, the required deflection V is very small and easily within the capability of a single MADMEN lander operating over a period of one year. However, the MADMEN mission philosophy favors solutionswithnaturalredundancy.Therefore,atwolandersolutionisproposedasabetteralternative.Forthiscase, aGeneticAlgorithmcoupledwiththeMADMENROSETTAmodelwasusedtooptimizetheconfigurationsothat thereisareasonablyshortsurfaceactiontimerequirement,whilemaintainingagenerouspayloadweightgrowth marginfortheselectedFalcon9launchvehicle.TheresultantsolutionisgiveninTable3.FortheApophiscase study, the low cost Falcon launchers provide significant savings to the overall mission. Figure 12 illustrates the breakoutofestimatedLifeCycleCost(LCC)forthisconcept.TheoverallLCCisapproximately$815M(FY2007), withalargepercentageofthiscostconsistingofDDT&Ecostsforthe mitigationand transfer/rendezvousstage. ThesecostsaresubstantiallylessthanthefirstcasestudygiventhelowernumberofrequiredMADMENlander spacecraft(twoversusfive),thelowerdrymassofeachlanderspacecraft(405kgversus1,470kg),and lower launch costs ($60M for two Falcon 9 launches versus$500Mforone Ares Vlaunch).ThetotalLCC forthe MADMENspacecraftforanApophiscasestudyisapproximatelyequivalenttothecostofthetwoMarsExploration Rovers(MERs). Table3.SolutionforApophisCaseStudy. Parameter Values for Case Study NumberofMADMENLanders 2 LanderDryMass 405kg LanderWetMass 455kg CruiseStageDryMass(withoutlander) 155kg CruiseStageWetMass(withoutlander) 485kg TotalLaunchMass(each,withpayloadadapter) 940kg TotalLaunchMass(all,withpayloadadapters) N/A(singlelanderlaunch) 2 2 Falcon9LaunchVehicleCapacity(toC 3=15km /s ) 1,350kg LaunchMargin(allowablepayloadgrowth) 37% MassDriverShotFrequency 2shotsperminute MassDriverEjectaShotMass(pershot) 0.15kg MassDriverShotVelocity 150m/s Vpershot 1.0714E09m/s SpacecraftBaseDiameter 1.25m MassDriverRailLength(Deployed) 3m AccelerationSegmentLength 65%oftotallength Drill/CoreHoleDiameter 2.52cmpercoringhole Drill/CoreHoleDepth 2.85mpercoringhole Drill/CoreRate 3cmperminute ReactorPower(kW e/KWthermal) 1.5kW e/8.6kW th DutyCycle(%oftimeinfiringalignment) 15% NominalSurfaceActionTime(bothlanders) 140days IndividualLanderReliability 80%90% PostLaunchMissionReliability(assume1of2) 96%99% MADMENLanderSpacecraftDDT&ECost(mitigationstageonly) $317.7M(FY2007) MADMENLanderSpacecraftTFUCost(mitigationstageonly) $48.8M(FY2007) MissionLifeCycleCost(includinglaunches) $815.2M(FY2007)

14 AmericanInstituteofAeronauticsandAstronautics Technology Launch Development Operations 7.4% 12.3% 3.8% Facilities 1.2%

AcquisitionLander DDT&ECruise 11.4% Stage 19.9% AcquisitionCruise Stage 5.1%

DDT&ELander 39.0%

Figure12.LifeCycleCost(LCC)BreakoutforApophisCaseStudy.

C. CaseStudyObservations UseoftheROSETTAmodelyieldsvaluableinsightsintothenatureofthebaselinedesignsolutions.Notethat forbothcasestudies,arelativelylowdutycycleof15%wasassumedinordertoaccountfortheeffectsofarotating asteroid.Thedutycycleisdefinedasthepercentageoftimethatthemassdriverisinalignmenttofireshots(recall thatminingoperationstakeplacenearlycontinuously).Dependingonthespinrateandspinaxis,thismayormay notbeproventobeagoodassumption.Asnoted,thesteerablemassdriverstrongbackmovestobringthefiring directionintoalignmentwiththenegativevelocityvector.Furthergeometricanalysisisnecessarytobetterdefine thisvariable.Asageneralrule,theuseofmoreMADMENlandersonaparticulartargetreducedtheirindividual mass,butnotnecessarilythetotallaunchmass.Theuseofmorelandersreducesthenominalworkloadoneach lander, enabling it to use a lower shot velocity and/or a lower shot mass. Hole depths are shallower, thereby reducingdrill/corerequirements.Exceptaslimitedbypackaging,longermassdriverlengthsaregenerallypreferred bytheoptimizer.Thisreducespowerrequirementsanddownwardloadeffectsonthelanderstructure,albeitatthe expenseofhigherstructuralloadsonthemassdriverstrongbackduetoincreasedcharacteristicbucklinglength.A largerbasediameteronthespacecraftwillincreasethespacecraftbusmass,butwillallowthedrilltoaddressmore surfaceareaoftheasteroid.Recallthatthedrillisabletomoveradiallyandcircumferentiallyonarotatingplatform under the base of the mass driver lander. For aproblem where the hole depth is constrained (as in these case studies), the ability to drill more holes will reduce the depth of each individual hole. However, this effect must obviouslybelimitedbythelaunchvehiclefairingdiameterandotherpracticallimitations. Asmightbeexpected,thereisatradeoffbetweenshotvelocity,shotmass,andshotfrequency.Agivenincrease in the change in asteroid momentum can be achieved by raising any one of the three. However, each has its penalties. Increased shot velocity impacts the mass of the mass driver. Increased shot mass and/or frequency increases demands on the mass driver, the power system, and the drilling system. Increasing shot mass and/or frequencyalsoresultsinadeepercorehole(perhole),whichmaybeundesirable.Ouranalyseshaveidentifieda broadandrelativelyflatdesignspacewithonlyasmallsensitivityoflanderwetmasswithrespecttothesethree interdependentvariables,iftheyareselectedjudiciously.Thatis,asonewasincreasedandanothersimultaneously decreased,theresultanteffectonthelanderwetmasscouldbeminimized.Typicalshotfrequenciesrangedfrom1to 4shotsperminute.Shotmassestypicallyrangedfrom0.15kgto1kg.Preferredshotvelocitieswerefoundtoliein therangeof150m/sto750m/s.Thesesolutionsareobviouslydependentonthesettingsoftheothervariables. Thereisalsoastrongcouplingbetweenthelaunchvehiclepayloadcapability,thetransfertrajectory,andthe launchmassofthedeflectiontechnique.Inthisresearch,thetotallaunchmasswasarbitrarilylimitedasaresultof selectingadepartureC 3constraint.Thesearchfortransfertrajectorieswaslimitedtothosedirecttransfersthatmeet thedepartureC 3constraintsandminimizearrivalC 3.ThisapproachminimizesVdemandonthecruisestage,but maynotbeoptimalinthemultidisciplinarysense.AlowerC 3atdeparturemayinfactallowalargerescapemass and subsequently more than make up for the additional inspace V required. This effect is expected to be dependentontheupperstageIspofthelaunchvehicle.AhigherIsponthelaunchvehicleupperstage(asinthecase oftheAresV),mayfavorahigherdepartureC 3.Givenmoretimeandresources,itmaybeusefultoexplorethis

15 AmericanInstituteofAeronauticsandAstronautics complexinteractionmore.Asanapproximation,alargerallowabledepartureC 3fortheAresVcasewasassumed versustheFalcon9case. Similarly, there is an interdisciplinary coupling that exists between the heliocentric transfer solution and the amountofVrequiredtodeflectthetargetasteroid.Ingeneral,anearlierarrivalatthetargetasteroidwillreduce therequiredVneededtoimpartagivendeflection.Itisconceivablethenthatafastertransfertrajectory,onethat doesnotminimizethearrivalC 3butarrivesattheasteroidearlier,maybeamoregloballyoptimumsolutionthan theapproachtakenhere.Thisremainsatopicforfurtherinvestigation. IntermsofoverallLifeCycleCost(LCC),thenominalassumptionstakenfortheassessmentindicatethateach casestudywillcostseveralhundredmilliontoseveralbilliondollars(US,FY2007).Themassandnumberofeach MADMENlanderspacecraftaswellasthelaunchcostaremajordriversfortheLCC.Thesechoicesarecoupled withtheparticularsofanymissiondesignobviously.FortheApophismissioncasestudyinparticular,evenusing slightlymoreconservativeassumptionsthanthoseusedforthisanalysis,apracticalNEOmitigationmissionusing multiplemassdriverscanbeaccomplishedforunder$1B(FY2007).

IV. PracticalIssuesAssociatedwithFieldingaMassDriverintheNextDecade Thetechnicalandpoliticaladvantagesassociatedwithamassdriversolutionwerediscussedearlierinthispaper. However,theconceptisnotwithoutchallengesandotherdisadvantages.Intheinterestofcompleteness,someofthe majorchallengesassociatedwiththeMADMENmultiplemassdriverconceptarediscussed.

A. Attachment Forthemassdriverconcepttobefeasible,itmustbecapableoffirmlyattachingitselftotheasteroid’ssurface. A pitonlike device with a cable is currently envisioned explosively buried several meters into the asteroid’s surface. Alternate mechanicalattachment mechanisms mightincludeanchorlikespikes orpenetratingtubes with expandingsubterraneansections.Eachofthesetechniqueswoulddependonshearforcestomaintaintheintegrityof the anchor. If the asteroid is a looselyattracted rubble pile, as some have speculated to be the case for smaller asteroids,thenitmaynotbeabletosupportanystructuralshearloadsonitssurface.Propercharacterizationofa targetasteroid’sstructuralpropertieswillberequiredtodeterminethefeasibilityofmechanicalanchoring.Loose rubblepilesmaynotatallbeanappropriatetargetforthistypeofdeflectiontechnique.Asanalternative,newand novelanchoringtechniquesshouldbeinvestigated.

B. DustEnvironment The drilling, coring, conveying of ejecta and mass driver surface operations will create a dusty operational environmentfortheMADMENlander.Anasteroid’sgravity fieldis verylow,preventingthedustfromsettling rapidly.Inaddition,thenatureofthedustparticlesmaybemoreabrasivethandustontheEarthgiventheabsenceof erodingeffects.Thespecific impactof thisdustonspacecraft mechanismsiscurrently unknown,but willsurely presentachallengetooperatingasurfacespacecraftforlongperiodsoftime.

C. EjectaDispersion Oneobviousquestionwiththisconceptis,wheredoestheejectago?Overatypicalmission,therearehundreds ofthousandsofshotsofsmallbitsoftheasteroidshotfromthemassdriverathighspeed.Eachbitofejectawill easily escape the asteroid’s gravity well and enter its own, slower heliocentric orbit. This debris field could conceivablycreateahazardforfuturespaceexplorationoroperatingspaceassets.Incurrentsimulationsforthis concept,theindividualshotmassesareverysmall(lessthan1kg).Naturallyoccurringpiecesofdebrisofthissize may already number in the trillions, so adding a million more pieces of manmade ejecta would not statistically affectthenanoasteroidpopulation.ThesepieceswouldnotsurviveEarthentryinanycase.Still,astudythatseeks tounderstandtheirorbitsandwhethertheyareindeedEarthcrossingwouldbewelcomed.Oneapproachmightbeto limitmassdriveroperationstoonlythosesegmentsoftheasteroid’strajectorywheretheresultantejectawouldenter anorbitlyingentirelywithinthatoftheEarth(aphelionlessthan1AU).

V. TechnologyMaturationChallenges Critics of the multiple mass driver concept often suggest that it is too technologically challenging relative to othermitigationtechniquessuchasnucleardetonation,kineticimpactor,andthegravitytractor.Thatmayindeed currentlybethecase,butgiventhepaceoftechnologydevelopmentinspaceexplorationandinotherindustries (robotics,mining,etc.)ingeneral,itisnotinconceivablethatthekeytechnologiesrequiredforthisconceptcouldbe maturedtoflightreadinessby2015withproperfundingandurgency.Progresshasalreadybeenmadeinkeyareas

16 AmericanInstituteofAeronauticsandAstronautics in spite of difficulties in obtaining monies for new technologies within the limits of the NASA and overallU.S. federalbudgets.

A. Drill Deep drilling and coring technology is mature for terrestrial applications, but unique challenges remain for application in a space environment. Cooling the drill, removing shavings, applying pressure to the drill bit, and automatically adding core tubes are difficult in a low gravity, airless environment that may have 15 minutes of round trip communications lag time between Earth and the site of operations. Nonetheless, progress on the developmentofadeepcoringdrillforroboticMarsexplorationisbeingmadebyNASAandcommercialcompanies suchasHoneybeeRobotics 21,22 .Thesedevelopmentsareastepintherightdirectiontowardanautonomousasteroid drill.

B. SmallNuclearPowerSource The key to the mass driver deflection concept is that the lander brings the power source with it, not the propellants.Asmall,lightweight,andreliablepowersourceisneededtomaketheconceptviable.Dependingonthe size of the nuclear reactor, the ROSETTA model’s nuclear reactor sizing equations predict a specific mass (includingshadowshieldingandradiator)ofbetween105kg/kW e(forsmallpowerneedsofapproximately1.6kW e) toaslowas15kg/kW e(forhigherpowerdemandsof16.5kW e).Theserangesareinlinewithcurrentpredictions fornuclearreactorspecificmass. TheU.S.DoE/LawrenceLivermoreNationalLabshasongoingresearchprogramsinvestigatingthefeasibilityof spacebasednuclearreactors.ThisworkhassignificanthistoricalprecedenceintheSNAPreactorsprogramsofthe 1960’sandthemorerecentSP100ofthe1980’sand1990’s.Twomodernconcepts,theHOMER15(Heatpipe OperatedMarsExplorationReactor)heatpipetransferreactorandtheSAFE400nuclearreactor(SafeAffordable FissionEngine400),iffullydeveloped,wouldofferspecificmasseswellwithintherangeneededforbothofthe case studies offered for this analysis 23, 24, 25 .Inaddition,thesetwopreliminarydevelopmentefforts are targeting absoluteelectricalpowerrangesof15kW eand100kW e,respectively.Thesedesignpowerlevelscouldpresumably bescaleddowntomeetthesmallerrequirementsoftheMADMENlander.

C. ArtificialIntelligenceforRoboticforSwarm Asenvisioned,theMADMENconceptwoulddeploymultiplelandersformorereliableandrobustoperations. These landers would each be autonomous, but would need to work in coordination with the other landers in the swarmtoensurethatthemissioniscompleted.Theywouldhavetobecognizantoffailureswithinmembersofthe group, offnominal performance, lower than expected V’s, etc., and respond accordingly. Intelligence among membersofaroboticgroupwilloffersignificantflexibilityandcostsavingsrelativetogroundoperatorcontrolled and coordinated surface operations. Ongoing autonomous computing and swarm logic research is underway a varietyofsoftwaredevelopmentfieldsrangingfromretailingtobankingandgaming 26 .Asthesemarketdriven,non aerospaceapplicationsmature,theresultswillbereadytobeintegratedintoafutureaerospacesystemsuchasthe oneenvisionedhere.

D. MassDriver/ShuttleBucket Electromagnetic launchers, rail guns, and mass drivers continue to receive research attention for terrestrial applications,notablyforlongrangeartilleryandsupercolliders 27 .Applicationofthistechnologytospacelaunchis alsounderinvestigation.Forinspaceapplications,researchersattheSpaceStudiesInstitute(SSI)atPrincetonand MITcreatedaprototypemassdriverforejectionoflunar material 9,10 .Thisearly workisdirectlyapplicabletoa futureasteroidmassdriver.

VI. CandidatePrecursorMission

A. Overview GiventheuncertaintyinthetypeoffuturePHAthreatandtechnologychallengesforthebaselineMADMEN concept,amitigationprecursormissionisdeemedusefultobuildingoverallmissionconfidence.Thegoalofany precursormissionwouldnotbethereturnofscientificdataperse,buttheaccumulationofdataneededpreciselyfor mitigationandtestingofrelevantmitigationtechnologies(sciencereturnwouldbesubstantialbutnotdrivemission requirements). The objective of such a precursor mission would be to observe a change in the trajectory of an asteroidthroughtheuseofmassdrivers.Thetechnologiesthatwouldbeinvolvedinsuchamissionwouldbesubset

17 AmericanInstituteofAeronauticsandAstronautics of those for the full MADMEN concept described earlier. Such technologies on a precursor mission include: attachment,drilling,massdriverejection,andswarmmultispacecraftintelligence.Somecharacteristicsofthetarget asteroid include it being small, a nonbinary, nonEarth crossing body, and available for rendezvous within a timeframe of 20112015. After a preliminary search amongst various candidates, asteroid 2002 XY38 (Aten, diameter = 70160 m) is chosen as a potential target with a potentially favorable trajectory solution for this timeframe.Suchamissionisenvisionedtoconsistoftwoasteroidlandingspacecraft.Eachspacecraftwouldtest differentattachmentmechanismsanddrills.Communicationcouldbeprovidedbyanorbiter.Asmalllaunchvehicle suchastheSpaceXFalcon1or9couldbeutilizedforsuchamission.Overallmissionlifecyclecost(LCC)would becappedatbetweenonetotwotimesthecostofanominalNASADiscoveryclassmissions($450Mto$900M).

VII. Conclusions Thispaperhaselaboratedonpreviousworkbytheauthorsonaconceptofusingmultiple,smallerlanders,each equippedwithamassdriveranddrill/coringsystem,todeflectanhazardousasteroid.Byejectingmassawayfrom theasteroidathighspeed,asmallchangeisinducedintheasteroid’svelocityresultinginachangeinitsEarth crossingtrajectory.Theuseofmassdriversisonedeflectionoptionthatisfrequentlymentionedasapossibilityfor futureasteroidimpactmitigation,butisnotcurrentlythesubjectofwidespreadconceptualinvestigation. Asenvisioned,theMADMENmassdriverconceptisfoundtohaveperformance(deflectioncapabilityperunit oflaunchmass)comparabletocompetingnonnuclearoptionssuchasthespacetug,thegravitytractor,andthe kinetic impactor. It does not depend on proliferation of nuclear weapons into space, nor longterm storage and maintenanceofnuclearstockpiles.Inaddition,theconceptoffersanumberofadvantagessuchasprecisioncontrol oftheappliedVtothetargetasteroid. Twospecificcasestudieswereexamined.ForthenotionalasteroidD’Artagnon(roughly130mindiameter),a solution was proposed to use five MADMEN landers launched on a single Ares V launch vehicle in 2017. The preferred solution was found to have a lander + cruise stage mass of 5,830 kg per lander. The selected design variableswereashotvelocityof570m/s,ashotmassof0.50kg,andashotfrequencyof3shotsperminute.The dutycycleofactualmassdriveroperationswasassumedtoby15%ofthesurfacetimeduetotherotationofthe asteroid.Thesurfaceactiontimewasconstrainedtobeoneyear.Thissolutionyielded99.38%99.95%postlaunch missionreliabilityatanestimatedLCCof$2.3B. ThesecondcasestudyconsideredasmalldeflectionappliedtoApophispriortoitsencounterwithEarthin2029. A small trajectory deflection of 60 km was assumed to be sufficient to miss the resonantreturn keyhole and thereforeavoidEarthimpactin2036.Theproposed MADMEN solution to this problem would use two landers launchedseparatelyonFalcon9launchersin2022.Eachlander+cruisestagewasestimatedtohaveamassof940 kg. For this solution, the mass driver operated withashotvelocityof150m/s,ashotmassof0.15kg, a shot frequencyof2shotsperminute,andadutycycleof15%.Thesurfaceactiontimeforthissolutionwasonly140 dayswithbothlandersoperatingnominally.Thissolutionresultedin96%99%postlaunchmissionreliabilityatan estimatedLCCof$815M. Inadditiontothestrengthsoftheconcept,weaknessesandtechnicalchallengeswerenoted.Theneedforafirm surfaceattachmentandmechanicaloperationinadustyenvironmentwerediscussedasconcerns.Inaddition,the needtounderstandtheresultantorbitoftheejectamasseswashighlighted.Themajortechnologymaturationneeds werediscussedqualitatively,withneedsidentifiedinpower,swarmintelligence,software,massdrivertechnology, anddrilling/coring. Thisworkrepresentsacompletemissionanalysisofaconceptualmassdriverasteroiddeflectionsolution,with preliminaryconsiderationoflaunchvehicle,transfertrajectory,surfaceoperations,spacecraftdesign,missioncosts, and expected mission reliability. The authors firmly believe that it is premature to downselect to a preferred mitigationtechniquewithoutproperconsiderationoftheadvantagesanddisadvantagesofawiderangeofoptions forvarioustypesofasteroidorcometplanetarythreats.Itishopedthatthispapercontributestoopenandengaging discussionwithintheasteroiddeflectioncommunity.

Acknowledgments TheauthorsgratefullyacknowledgethecontributionsofcolleaguesatSpaceWorksEngineering,Inc.(SEI)who contributedtothispaper.Mr.DougNelsondevelopedtheC 3vs.payloadcurvesfortheAresVandFalcon9launch vehiclesusingtrajectoryandmasspropertiesestimations.Mr.JonG.WallacedevelopedtheCADmodelsusedto helpdefinetheconcept.Mr.GaryMillerhelpedperformseveralofthetradestudiesusedtoexplorethedesignspace ofthekeyindependentvariablesusedtosizetheMADMENlander.

18 AmericanInstituteofAeronauticsandAstronautics Mr.BenStahl,anM.S.degreecandidateintheSchoolofAerospaceEngineeringattheGeorgiaInstitute of Technology(Atlanta,Georgia),conductedtheanalysesassociatedwiththedeflectionVrequirementsforbothcase studies.HeisalsoresponsibleformodifyingtheoriginalJATtoolstopropagateaperturbednbodytrajectoryso thattheeffectsofvariousmassdriverparametersontheresultantheliocentricorbitcouldbeexplored.Mr.Stahl’s graduateresearchissponsoredbySpaceWorksEngineering,Inc(SEI).

References 1NASA,“NearEarthObjectSurveyandDeflectionAnalysisofAlternatives:ReporttoCongress,”NationalAeronauticsand SpaceAdministration,March2007. 2Gehrels,T.,HazardsDuetoCometsandAsteroids (T.Gehrels,ed.),UniversityofArizonaPress,Tucson,Arizona,1994. 3ModernMechanicsandInventions,FawcettPublications,Inc.;Chicago,IL. 4“The Electric Gun: German Experiment with Electrically Launched ,” Intelligence Bulletin, May 1946. URL: http://www.lonesentry.com/articles/electricgun/index.html. 5Weise,T.H.,“OverviewontheGermanR&DProgramsonETCGunTechnologiesforMainBattletankWeaponization,” AccessionNumber:ADP012452.April26,2001 6ESA; “Electromagnetic technology for the deploymentofsmallsuborbitalpayloads,”ESAContract No. 13420, September2003.AccessedonMarch27,2007,URL: http://esamultimedia.esa.int/docs/gsp/completed/comp_i_03_N02.pdf 7Salustri,F.,“DesignofaMassDriverSystemConceptUsingOpenSourcePrinciples,”IAC04U.1.07,55thInternational Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the InternationalInstituteofSpaceLaw,Vancouver,Canada,Oct.48,2004. 8“TheLong,TwilightStruggle.”Babylon5.Director:JohnC.FlinnIII,Writer:J.MichaelStraczynski.Season2,Episode 20.UnitedStatesSyndication.August1,1995. 9O’ Neill, G.K, “NASA 1977 Ames Summer Study on Space Settlements and Industrialization Using Nonterrestial Materials,” Ames Research Center, Moffett Field, California. Accessed on March 27, 2007, URL: http://www.nas.nasa.gov/Services/Education/SpaceSettlement/spaceres/III3.html 10 Snively,LeslieO.,O’Neill,GerardK.,“MassDriverIII:Construction,TestingandComparisontoComputerSimulation (AAS83240)”inSpaceManufacturing1983.AdvancesintheAstronauticalSciences,JamesD.Burke,JamesD.,Whitt,April 2,ed.,Vol.53,ProceedingsofaConferenceheldatPrincetonUniversity,NewJersey,Univelt,Incorporated,May912,1983, pp.391 11 Olds,J.R.,Charania,A.,Graham,M.,Wallace,J. G., "The League of Extraordinary Machines: A Rapid and Scalable ApproachtoPlanetaryDefenseAgainstAsteroidImpactors,"Version1.0,PhaseIFinalReport,CallforProposalsCP0202, NASAInstituteforAdvancedConcepts(NIAC),April30,2004. 12 Charania,A.,Graham,M.,Olds,J.R.,"RapidandScalableArchitectureDesignforPlanetaryDefense,"AIAA20041453, 1stPlanetaryDefenseConference:ProtectingEarthfromAsteroids,OrangeCounty,California,February2427,2004. 13 Anttila, M. and Ylikorpi, T., “Defining the Technical Requirements for Subsurface Mars Driller,” Paper 3020, Sixth InternationalConferenceonMars,Pasadena,California,July20–25,2003. 14 Crocker, A., Charania, A., Olds, J., "An Introduction to the ROSETTA Modeling Process for Advanced Space TransportationTechnologyInvestment,"AIAA20014625,Space2001ConferenceandExposition,Albuquerque,NM,August 2830,2001. 15 Mankins, John C., ”Technology Readiness Levels: A White Paper”, April 6, 1995, URL: http://www.hq.nasa.gov/office/codeq/trl/trl.pdf,cited06March2007. 16 NASA, ” FY 2008 Budget Request”, URL: http://www.nasa.gov/pdf/168652main_NASA_FY08_Budget_Request.pdf, cited06March2007. 17 Lynch,D.andPeterson,G.,"Athos,Porthos,Aramis&D’Artagnan—FourPlanningScenariosforPlanetaryProtection," 2004 Planetary Defense Conference: Protecting Earthfrom Asteroids(OrangeCounty,CA,Feb.23–26,2004), AIAA Paper 20041417. 18 Asteroid 99942 Apophis (2004 MN4), Last accessed March 19, 2007, URL = http://neo.jpl.nasa.gov/cgi bin/db?name=99942,cited06March2007. 19 Chesley,StevenR.,"PotentialImpactDetectionforNearEarthAsteroids:TheCaseof99942Apophis(2004MN),"from Asteroids,Comets,Meteors ,S.FerrazMello&D.Lazzaro,eds.,ProceedingsIAUSymposiumNo.229,2005. 20 SpaceExplorationTechnologies(SpaceX),LastaccessedMarch6,2007,URL=http://www.spacex.com. 21 Rafeek,S.,elal,“SampleAcquisitionSystemsforSamplingtheSurfaceDownTo10MetersBelowtheSurfaceforMars Exploration,”Paper6239,ConceptsAndApproachesForMarsExploration,LunarandPlanetaryInstitute,Houston,Texas,July 18–20,2000. 22 Basso, B, et al, “Surface Anchoring and Deflection Concepts for Earthcrossing Comets and Asteroids,” Paper 3032, WorkshoponSpacecraftReconnaissanceofAsteroidandCometInteriors,SantaCruz,California, 23 Poston,D.I.,2002,”NucleardesignofHOMER15Marssurfacefissionreactor”,NuclearNews,Dec2001. 24 Carsey,F.D.,elal,“PalmerQuest:AFeasibleNuclearFission“VisionMission”ToTheMarsPolarCaps,”Paper1844, 36thLunarandPlanetaryScienceConference,Houston,Texas,March14–18,2005. 25 Poston,D.,”SAFE400SpaceFissionReactor”.NuclearNews,December2002,p.28.

19 AmericanInstituteofAeronauticsandAstronautics 26 Curtis,S.A.,etal,“UseofSwarmIntelligenceinSpacecraftConstellationsfortheResourceExplorationoftheAsteroid Belt,”ThirdInternationalWorkshoponSatelliteConstellationsandFormationFlying,Pisa,Italy,2426,2003. 27 Calame, J., et al, “The Design of a High Power Gyroklystron for Supercollider Applications” IEEE 1987 Particle AcceleratorConference,Paper1904,March,1987. 28 NASA's Exploration Systems Architecture Study Final Report, URL = http://www.nasa.gov/mission_pages/exploration/news/ESAS_report.html,cited06March2007.

20 AmericanInstituteofAeronauticsandAstronautics