9.0 BACKGROUND “What Do I Do First?” You Need to Research a Card (Thruster Or 9.1 DESIGNER’S NOTES Robonaut) with a Low Fuel Consumption

Total Page:16

File Type:pdf, Size:1020Kb

9.0 BACKGROUND “What Do I Do First?” You Need to Research a Card (Thruster Or 9.1 DESIGNER’S NOTES Robonaut) with a Low Fuel Consumption 9.2 TIPS FOR INEXPERIENCED ROCKET CADETS 9.0 BACKGROUND “What do I do first?” You need to research a card (thruster or 9.1 DESIGNER’S NOTES robonaut) with a low fuel consumption. A “1” is great, a “4” The original concept for this game was a “Lords of the Sierra Madre” in is marginal. The PRC player*** can consider an dash to space. With mines, ranches, smelters, and rail lines all purchased and claim Hellas Basin on Mars, using just his crew card. He controlled by different players, who have to negotiate between them- needs 19 fuel steps (6 WT) along the red route to do this. selves to expand. But space does not work this way. “What does my rocket need?” Your rocket needs 4 things: Suppose you have a smelter on one main-belt asteroid, powered by a • A card with a thruster triangle (2.4D) to act as a thruster. • A card with an ISRU rating, if its mission is to prospect. beam-station on another asteroid, and you discover platinum on a third • A refinery, if its mission is to build a factory. nearby asteroid. Unfortunately for long-term operations, next year these • Enough fuel to get to the destination. asteroids will be separated by 2 to 6 AUs.* Furthermore, main belt Decide between a small rocket able to make multiple claims, Hohmann transfers are about 2 years long, with optimal transfer opportu- or a big rocket including a refinery and robonaut able to nities about 7 years apart. Jerry Pournelle in his book “A Step Farther industrialize the first successful claim. The big rocket will be Out” argues that a “belter civilization” is impossible for these reasons. more expensive to boost and to fuel. From a given asteroid, it’s easier to get to and from Earth than from another asteroid (unless the asteroids are in the same Hirayama family). “I need funds!” Researching a card and selling on the Free So, the game design had to make travel between asteroids take a long Market is almost always superior to the Income Operation. time, but not cost so much fuel (low delta-v). “OK, I have a rocket boosted, where do I go to prospect?” Space travel is extraordinarily inefficient compared to surface travel. Both Look at unclaimed sites for their hydration (your ISRU must fuel and propellant are conspicuously missing in all that emptiness. Every be at least equal to land) and size (your prospecting roll bit of mass is valuable in space. Water and dirt, both dirt-cheap on Earth, must be equal to or less for success). These are the most become expensive propellants out there. In order to husband the important rules in the game. valuable supply of propellant, it has to be expelled as fast as possible. “OK, how do I get there, and how much fuel?” The tapestry of Kinetic energy scales as the velocity squared, so all the energy squan- space is extraordinarily complex. The daunting labyrinthine dered making the propellant move fast leaves little to move your rocket. map is designed around the “interplanetary transport This is why rockets are power hogs, each needing 10X or a 100X more network” (Hohmann spirals distorted by Lagrange gravita- energy than a factory. An electric rocket in this game consumes 60 MWe tional points). Beginners should follow signpost routes, to develop barely enough thrust to lift me off the ground on Earth. And and stop at each Hohmann intersection where a turn is thus, this game centers on rocket design more than factory location. necessary. Bring steps of fuel equal to your fuel consump- Because LEO is drier than the driest desert, there is money to be made by tion times the number of burns to your destination. Unless importing water from nearby worlds. The closest hydrated body to LEO, making an aerobrake or direct landing, don’t forget to bring speaking in delta-v terms, is the moonlet Deimos (closer than the Earth, lander fuel equal to the site’s size. Or better yet, bring a 9•6 closer than Luna.) Google “The Deimos Water Company” by David Kuck thruster (like missile crews). Switching to this during the of Oracle, Arizona for details. turn of touchdown saves lander fuel. Imagine MET tugs working an asteroid mine 10 km/sec from LEO. Every “OK, what is a lander?” Interplanetary spaceships, with their gram of ore returned will need 2.718 grams of water propellant to move it unwieldy radiators and low thrust engines, seldom land on to LEO.** Therefore, every nugget of material moved must be refined as a world. It is assumed they carry a chemical lander for that. pure as possible before freighting it, and there must be a source of water Thus, lander fuel is independent of your engine, unless you at the site. And the rocket transport itself must be as light as possible. have a modified thrust greater than the site size. If so, you Rockets with gossamer radiators and spidery trusses will glide with a can land or lift off directly for no fuel. However, the larger majesty that recalls the featherweight bulk of Zeppelins. worlds are surrounded by burns that cost fuel to escape: 1 burn for Luna, 2 for Mars and Mercury, and 4 for Venus. The High Frontier is a frontier of mysteries. Why are there no worlds of size 7 or 8? Why do the largest Trojans have the most tilted orbits? Why does “OK, I prospected. What refinery do I need to build a factory?” Hyperion rotate chaotically? Nobody knows. Phil Eklund, 2010. Any refinery can be used to build any factory. However, if you are using a factory to build new refineries, the refinery *1 AU is the average Sol-Earth distance. ***NASA and ESA players can do this as well, but risk **Calculated using the rocket equation, see the footer being claim jumped by the PRC if he is in the game. built must have a product letter matching the site spectra. on page 1. 2.718 is Euler’s number. This is the most commonly confused rule of the game. Beam-Energy – An electric rocket has a high fuel Manufactories vs. Nanofactories – The ancient Aerostat Gondola Factories – A factory floating economy but suffers from a low acceleration if it manufacturing style of engineering handles atoms and in an atmosphere can liquefy valuable gases for carries its massive powerplant and generator around. molecules in bulk. This has produced everything from propellants and fusion fuels. For instance, a If it receives its energy from a laser beam instead, it is flint chips to computer chips. The new zero-gee hydrogen-balloon factory floating just beneath the much faster. Such a beamed-power system would nanofacturing engineering handles individual atoms clouds on Venus extracts hydrogen, carbon, need: (a) the high efficiency production of megawatt and molecules. It constructs objects using sequences oxygen, nitrogen, sulfur, and possibly phospho- laser beams, (b) adaptive optics with handshake of chemical reactions directed by nonbiological rous from the “air de Venus”. Contrasted with the feedback over light-minutes of range, (c) a receiving molecular machinery. The fullerene C60 nanotubes, hellish surface, temperatures and pressures at Fresnel lens (actually a series of thin lenses, as a nicknamed “Buckytubes”, will be the most important such altitudes (50 km) are about Earth normal. normal lens would be far too heavy), and finally (d) a nanofacturing product. The space production of Humans working outside the gondola won’t need blackbody cavity or photovoltaics to convert the beam carbon nanotubes doesn’t introduce catalyst impurities space suits, only an oxygen tank and protection energy into useful electricity or thrust. High Frontier and isn’t restricted on length, as it is on Earth. from the acid rain. On Saturn, a hot air balloon assumes a 60 MW beam; currently only gas lasers Depending on their structure, diameter, and chirality, some 212 meters across would extract the rare provide such powers. The output wavelength for a nanotubes with diameters in the nanometer range have isotope Helium 3 for use in clean fusion reactors CO2 laser is 10.6 µm (infrared), which is not great either metallic or semiconducting properties. Kevlar- back on Earth. Liquefaction of 2200 ton/yr of because the longer the wavelength, the wider the coated nanotube composites and nanotube-reinforced 3He-D fusion fuel, plus 4800 ton/yr of H2 beam spread due to diffraction and the less energy plastics exhibit ultrahigh tensile strength and stiffness. propellant, requires 10 MWe, plus another 400 carried per photon. What is needed is a solid state or Nanotubes can form the backbone structures of MWe for separation processes. These sites are disk laser with blue or green light output, however so molecular machinery, or can be used as fine flexible windy (350 kph on Venus, 1440 kph on Saturn), far solid media cannot withstand the high fluences for fibers woven to fifty times the strength of an equivalent and deep in the gravity well. The escape delta-v is a continuous cw or pulsed run. mass of aluminum. Courtesy K. Eric Drexler 10 km/sec on Venus and 15 km/sec on Saturn. Personal communication, Dr.Andrew V. Pakhomov and Dr. Leik Myrabo. 12 Courtesy Peter Kokh, “Moon Miners Manifesto”, 2009. 9.3 GAME SCALE 9.4 PATENT DESCRIPTIONS The technology of High Frontier is real. • Each turn is one Earth year. Note: Temperatures are listed in degrees Kelvin (K), (where 0 K is absolute zero, and water boils at 372 • Each Crew card is an eight-man crew with life support.
Recommended publications
  • Nasa Tm X-1864 *
    NASA TECHNICAL. • £HP2fKit NASA TM X-1864 * ... MEMORANDUM oo fe *' > ;ff f- •* '• . ;.*• f PROPULSION • FOR *MANN1D E30PLORATION-k '* *Of THE SOEAE " • » £ Moedkel • - " *' ' ' y Lem$ Research Center Cleveland, Qbt® NATIONAL AERONAUTICS AND SFACE ADMINISTRATION • WASHINGTON, D. €, * AUCUST 1969 NASA TM X-1864 PROPULSION SYSTEMS FOR MANNED EXPLORATION OF THE SOLAR SYSTEM By W. E. Moeckel Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and. Technical Information Springfield, Virginia 22151 - CFSTI price $3.00 ABSTRACT What propulsion systems are in sight for fast interplanetary travel? Only a few show promise of reducing trip times to values comparable to those of 16th century terrestrial expeditions. The first portion of this report relates planetary round-trip times to the performance parameters of two types of propulsion systems: type I is specific-impulse limited (with high thrust), and type n is specific-mass limited (with low thrust). The second part of the report discusses advanced propulsion concepts of both types and evaluates their limitations. The discussion includes nuclear-fission . rockets (solid, liquid, and gaseous core), nuclear-pulse propulsion, nuclear-electric rockets, and thermonuclear-fusion rockets. Particular attention is given to the last of these, because it is less familiar than the others. A general conclusion is that the more advanced systems, if they prove feasible, will reduce trip time to the near planets by factors of 3 to 5, and will make several outer planets accessible to manned exploration. PROPULSION SYSTEMS FOR MANNED EXPLORATION OF THE SOLAR SYSTEM* byW. E. Moeckel Lewis Research Center SUMMARY What propulsion systems are in sight for fast interplanetary travel? Only a few show promise of reducing trip times to values comparable to those of 16th century terrestrial expeditions.
    [Show full text]
  • Pulsed Fusion Space Propulsion: Computational Ideal Magneto-Hydro Dynamics of a Magnetic Flux Compression Reaction Chamber
    Pulsed Fusion Space Propulsion: Computational Ideal Magneto-Hydro Dynamics of a Magnetic Flux Compression Reaction Chamber G. Romanelli Master of Science Thesis Space Systems Engineering PULSED FUSION SPACE PROPULSION: COMPUTATIONAL IDEAL MAGNETO-HYDRO DYNAMICS OFA MAGNETIC FLUX COMPRESSION REACTION CHAMBER by Gherardo ROMANELLI to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Friday February 26, 2016 at 10:00 AM. Student number: 4299876 Thesis committee: Dr. A. Cervone, TU Delft, supervisor Prof. Dr. E. K. A. Gill, TU Delft Dr. Ir. E. Mooij, TU Delft Prof. A. Mignone, Politecnico di Torino An electronic version of this thesis is available at http://repository.tudelft.nl/. To boldly go where no one has gone before. James T. Kirk ACKNOWLEDGEMENTS First of all I would like to thank my supervisor Dr. A. Cervone who has always sup- ported me despite my “quite exotic” interests. He left me completely autonomous in shaping my thesis project, and still, was always there every time I needed help. Then, I would of course like to thank Prof. A. Mignone who decided to give his contribute to this seemingly crazy project of mine. His advice arrived just in time to give an happy ending to this story. Il ringraziamento più grande, però, va di certo alla mia famiglia. Alla mia mamma e a mio babbo, perché hanno sempre avuto fiducia in me e non hanno mai chiesto ragioni o spiegazioni alle mie scelte. Ai miei nonni, perché se di punto in bianco, un giorno di novembre ho deciso di intraprendere questa lunga strada verso l’Olanda, l’ho potuto fare anche per merito loro.
    [Show full text]
  • Theory of Space Magnetic Sail Some Common Mistakes and Electrostatic Magsail
    1 Article MagSail after Cath for J 10 1 6 06 AIAA -2006 -8148 Theory of Space Magnetic Sail Some Common Mistakes and Electrostatic MagSail * Alexander Bolonkin C&R, 1310 Avenue R, #F -6, Brooklyn, NY 11229, USA T/F 718 -339 -4563, [email protected], http://Bolonki n.narod.ru Abstract The first reports on the “Space Magnetic Sail” concept appeared more 30 years ago. During the period since some hundreds of research and scientific works have been published, including hundreds of research report by professors at major famous universities. The author herein shows that all these works related to Space Magnetic Sail concept are technically incorrect because their authors did not take into consideration that solar wind impinging a MagSail magnetic field creates a particle m agnetic field opposed to the MagSail field. In the incorrect works, the particle magnetic field is hundreds times stronger than a MagSail magnetic field. That means all the laborious and costly computations in revealed in such technology discussions are us eless: the impractical findings on sail thrust (drag), time of flight within the Solar System and speed of interstellar trips are essentially worthless working data! The author reveals the correct equations for any estimated performance of a Magnetic Sail as well as a new type of Magnetic Sail (without a matter ring). Key words: magnetic sail, theory of MagSail, space magnetic sail, Electrostatic MagSail *Presented to 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference , 6 - 9 Nov 2006 National Convention Centre, Canberra, Australia. Introduction The idea of utilizing the magnetic field to aggregate matter in space, harnessing a drag from solar wind or receiving a thrust from an Earth - charged particle beam is old.
    [Show full text]
  • Magnetoshell Aerocapture: Advances Toward Concept Feasibility
    Magnetoshell Aerocapture: Advances Toward Concept Feasibility Charles L. Kelly A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics & Astronautics University of Washington 2018 Committee: Uri Shumlak, Chair Justin Little Program Authorized to Offer Degree: Aeronautics & Astronautics c Copyright 2018 Charles L. Kelly University of Washington Abstract Magnetoshell Aerocapture: Advances Toward Concept Feasibility Charles L. Kelly Chair of the Supervisory Committee: Professor Uri Shumlak Aeronautics & Astronautics Magnetoshell Aerocapture (MAC) is a novel technology that proposes to use drag on a dipole plasma in planetary atmospheres as an orbit insertion technique. It aims to augment the benefits of traditional aerocapture by trapping particles over a much larger area than physical structures can reach. This enables aerocapture at higher altitudes, greatly reducing the heat load and dynamic pressure on spacecraft surfaces. The technology is in its early stages of development, and has yet to demonstrate feasibility in an orbit-representative envi- ronment. The lack of a proof-of-concept stems mainly from the unavailability of large-scale, high-velocity test facilities that can accurately simulate the aerocapture environment. In this thesis, several avenues are identified that can bring MAC closer to a successful demonstration of concept feasibility. A custom orbit code that dynamically couples magnetoshell physics with trajectory prop- agation is developed and benchmarked. The code is used to simulate MAC maneuvers for a 60 ton payload at Mars and a 1 ton payload at Neptune, both proposed NASA mis- sions that are not possible with modern flight-ready technology. In both simulations, MAC successfully completes the maneuver and is shown to produce low dynamic pressures and continuously-variable drag characteristics.
    [Show full text]
  • Future Space Transportation Technology: Prospects and Priorities
    Future Space Transportation Technology: Prospects and Priorities David Harris Projects Integration Manager Matt Bille and Lisa Reed In-Space Propulsion Technology Projects Office Booz Allen Hamilton Marshall Space Flight Center 12 1 S. Tejon, Suite 900 MSFC, AL 35812 Colorado Springs, CO 80903 [email protected] [email protected] / [email protected] ABSTRACT. The Transportation Working Group (TWG) was chartered by the NASA Exploration Team (NEXT) to conceptualize, define, and advocate within NASA the space transportation architectures and technologies required to enable the human and robotic exploration and development of‘ space envisioned by the NEXT. In 2002, the NEXT tasked the TWG to assess exploration space transportation requirements versus current and prospective Earth-to-Orbit (ETO) and in-space transportation systems, technologies, and rcsearch, in order to identify investment gaps and recommend priorities. The result was a study nom’ being incorporatcd into future planning by the NASA Space Architect and supporting organizations. This papcr documents the process used to identify exploration space transportation investment gaps ;IS well as tlie group’s recommendations for closing these gaps and prioritizing areas of future investment for NASA work on advanced propulsion systems. Introduction investments needed to close gaps before the point of flight demonstration or test. The NASA Exploration Team (NEXT) was chartered to: Achieving robotic, and eventually, human presence beyond low Earth orbit (LEO) will Create and maintain a long-term require an agency-wide commitment of NASA strategic vision lor science-driven centers working together as “one NASA.” humanhobotic exploration Propulsion technology advancements are vital if NASA is to extend a human presence beyond the Conduct advanced concepts analym Earth’s neighhorhood.
    [Show full text]
  • Title Study on Propulsive Characteristics of Magnetic Sail And
    Study on Propulsive Characteristics of Magnetic Sail and Title Magneto Plasma Sail by Plasma Particle Simulations( Dissertation_全文 ) Author(s) Ashida, Yasumasa Citation 京都大学 Issue Date 2014-01-23 URL https://doi.org/10.14989/doctor.k17984 Right Type Thesis or Dissertation Textversion ETD Kyoto University Acknowledgment I would like to acknowledge many people supporting my doctorate study. My supervisor, Professor Hiroshi Yamakawa of Research Institute for Sustainable Humanosphere (RISH) of Kyoto University, supported my research throughout my master’s and doctor’s course. His valuable suggestions and advises indicated the guideline of my study, and especially, I learned the attitude toward researches. In addition, his work as the member of Strategic Headquarters for Space Policy has aroused my enthusiasm about the further evolution of the space exploration industry and a desire to contribute to it. I am deeply grateful for him. I am most grateful to Associate Professor Ikkoh Funaki of The Institute of Space and Astro- nautical Science (ISAS) of Japan Aerospace Exploration Agency (JAXA) for his advice. I am thankful for giving me a chance to start the study on the propulsion system making use of the solar wind. He had helped me since the beginning of my study. I would like to express my deep gratitude to him. I want to thank Associate Professor Hirotsugu Kojima of RISH/Kyoto University. He taught me various knowledge about plasma physics, the experimental studies and so on. I greatly appreciate Professor Tetsuji Matsuo of Kyoto University for our fruitful discussions and for reviewing this thesis. I also sincerely thank him for his many helpful comments and astute suggestions.
    [Show full text]
  • Humanity and Space
    10/17/2012!! !!!!!! Project Number: MH-1207 Humanity and Space An Interactive Qualifying Project Submitted to WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment for the Degree of Bachelor of Science by: Matthew Beck Jillian Chalke Matthew Chase Julia Rugo Professor Mayer H. Humi, Project Advisor Abstract Our IQP investigates the possible functionality of another celestial body as an alternate home for mankind. This project explores the necessary technological advances for moving forward into the future of space travel and human development on the Moon and Mars. Mars is the optimal candidate for future human colonization and a stepping stone towards humanity’s expansion into outer space. Our group concluded space travel and interplanetary exploration is possible, however international political cooperation and stability is necessary for such accomplishments. 2 Executive Summary This report provides insight into extraterrestrial exploration and colonization with regards to technology and human biology. Multiple locations have been taken into consideration for potential development, with such qualifying specifications as resources, atmospheric conditions, hazards, and the environment. Methods of analysis include essential research through online media and library resources, an interview with NASA about the upcoming Curiosity mission to Mars, and the assessment of data through mathematical equations. Our findings concerning the human aspect of space exploration state that humanity is not yet ready politically and will not be able to biologically withstand the hazards of long-term space travel. Additionally, in the field of robotics, we have the necessary hardware to implement adequate operational systems yet humanity lacks the software to implement rudimentary Artificial Intelligence. Findings regarding the physics behind rocketry and space navigation have revealed that the science of spacecraft is well-established.
    [Show full text]
  • A New Vision for Fusion Energy Research: Fusion Rocket Engines for Planetary Defense Abstract We Argue That It Is Essential Fo
    LA-UR-15-23198 A New Vision for Fusion Energy Research: Fusion Rocket Engines for Planetary Defense G. A. Wurden1, T. E. Weber1, P. J. Turchi2, P. B. Parks3, T. E. Evans3, S. A. Cohen4, J. T. Cassibry5, E. M. Campbell6 1Los Alamos National Laboratory 2Santa Fe, NM 3General Atomics 4Princeton Plasma Physics Laboratory 5University of Alabama, Huntsville 6Sandia National Laboratory Abstract We argue that it is essential for the fusion energy program to identify an imagination- capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible. The US Department of Energy’s magnetic fusion research program, based in its Office of Science, focuses on plasma and fusion science1 to support the long term goal of environmentally friendly, socially acceptable, and economically viable electricity production from fusion reactors.2 For several decades the US magnetic fusion program has had to deal with a lack of urgency towards and inconsistent funding for this ambitious goal. In many American circles, fusion isn’t even at the table3 when it comes to discussing future energy production. Is there another, more urgent, unique, and even more important application for fusion? Fusion’s unique application As an on-board power source and thruster for fast propulsion in space,4 a fusion reactor would provide unparalleled performance (high specific impulse and high specific power) for a spacecraft.
    [Show full text]
  • Advanced Ion Propulsion Using Krypton Isotope for Rocket Engine
    Special Issue - 2019 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 CONFCALL - 2019 Conference Proceedings Advanced Ion Propulsion using Krypton Isotope for Rocket Engine R. Saro C. Madeshwaran Dept of AERO-PITS Dept of AERO-PITS Mr. V. Keerthivasan Mr. T. Anbarasan Assistant Professor Head of the Department Dept of AERO-PITS Dept of AERO-PITS Abstract:- A Rocket engine is a storage device of rocket propellant which forms a high speed propulsive jet of fluid with a high temperature gas. Krypton isotope are used for producing hot positrons. Isotopes are obtained using neutron that produce reactors. The positrons were generated and directed towards action which on further obtain fusion propulsion. Positron dynamics reduce the speed of positron that are generated. It consists of moderator device with several layers of silicon carbide film which provide individual positrons. An electric field makes the particle to move towards each layers where the particles are cooled. The catalysed fusion reaction of positron is in a block of deuterium. When the particle triggers with deuterium, it produces thrust. FIG .1.1-ROCKET ENGINE Keywords – Positrons, Silicon carbide layer, Deuterium, Neutron capture. ADVANCED PROPULSION INTRODUCTION Spacecraft has been slow down due to chemical The word propulsion refers push forward or to move an rocket speed over years. Only speed over 1 million object forward. A propulsion system has a mechanical miles per hour is possible over the year 2050. New power which converts power to propulsive force. ion drives as being developed to provide ten times Normally, this system consists of two classifications – air better than ISP.
    [Show full text]
  • 9Th Annual & Final Report 2006 2007
    NASA Institute for Advanced Concepts 9th Annual & 2006 Final Report 2007 Performance Period July 12, 2006 - August 31, 2007 NASA Institute for Advanced Concepts 75 5th Street NW, Suite 318 Atlanta, GA 30308 404-347-9633 www.niac.usra.edu USRA is a non-profit corpora- ANSER is a not-for-profit pub- tion under the auspices of the lic service research corpora- National Academy of Sciences, tion, serving the national inter- with an institutional membership est since 1958.To learn more of 100. For more information about ANSER, see its website about USRA, see its website at at www.ANSER.org. www.usra.edu. NASA Institute for Advanced Concepts 9 t h A N N U A L & F I N A L R E P O R T Performance Period July 12, 2006 - August 31, 2007 T A B L E O F C O N T E N T S 7 7 MESSAGE FROM THE DIRECTOR 8 NIAC STAFF 9 NIAC EXECUTIVE SUMMARY 10 THE LEGACY OF NIAC 14 ACCOMPLISHMENTS 14 Summary 14 Call for Proposals CP 05-02 (Phase II) 15 Call for Proposals CP 06-01 (Phase I) 17 Call for Proposals CP 06-02 (Phase II) 18 Call for Proposals CP 07-01 (Phase I) 18 Call for Proposals CP 07-02 (Phase II) 18 Financial Performance 18 NIAC Student Fellows Prize Call for Proposals 2006-2007 19 NIAC Student Fellows Prize Call for Proposals 2007-2008 20 Release and Publicity of Calls for Proposals 20 Peer Reviewer Recruitment 21 NIAC Eighth Annual Meeting 22 NIAC Fellows Meeting 24 NIAC Science Council Meetings 24 Coordination With NASA 27 Publicity, Inspiration and Outreach 29 Survey of Technologies to Enable NIAC Concepts 32 DESCRIPTION OF THE NIAC 32 NIAC Mission 33 Organization 34 Facilities 35 Virtual Institute 36 The NIAC Process 37 Grand Visions 37 Solicitation 38 NIAC Calls for Proposals 39 Peer Review 40 NASA Concurrence 40 Awards 40 Management of Awards 41 Infusion of Advanced Concepts 4 T A B L E O F C O N T E N T S 7 LIST OF TABLES 14 Table 1.
    [Show full text]
  • Mass Driver CDR March 10, 2020 Mission Profile (Mars → Phobos)
    Mass Driver CDR March 10, 2020 Mission Profile (Mars → Phobos) ● Launch windows are defined by phobos position and tether sling spin up time ○ Phobos must be -29.033° from Olympus Mons (right ascension) ○ Max turnover = 3 launches/sol ● Acceleration Profile ○ 4.77 km/s Launch Velocity ○ 4.47 km/s Velocity past atmosphere ○ 2 G’s net ● Total Orbital Flight Time 14.69 hrs Orbital Trajectory ΔV (km/s) Time (hrs) Launch 4.77 6.17 Burn 1 0.286 8.52 Burn 2 0.375 RNDVZ Total 0.661 14.69 Considerations & Deviations ● Acceleration modification ○ Make time and distance shorter ○ Launch Velocity includes drag and rotation ● Orbital analysis ○ No perturbations ○ No eccentricity/inclinations ● Risk Assessment ○ If launch fails, more ΔV is required ○ If burn 1 fails, the taxi will return to Olympus Mons ○ If burn 2 fails, no return possibility without significant ΔV Mass Driver Objectives • Handle loads of our magnitude (passenger trains) • Allows us to more easily decelerate the cradle for reusability • Located at the base of Olympus Mons • Using Null-Flux Coils for Repulsive Levitation Mass Driver Objectives • Updated battery sizing, spacing and model • Two 1x1x1 m battery banks every 409 meters down the track Mass Driver Overview Important Parameters • Track Length: 635 km (for taxi + cradle acceleration) 106 km (for cradle deceleration) • Launch Duration: 4 minutes 14 seconds • 2g constant acceleration • Force required: 6.49 MN (propulsion) 1.11 MN (levitation) • Propellant saved: 477 Mg Maglev System Diagram 0.31 m 0.55 m HTS Magnets: 80 magnets
    [Show full text]
  • Fusion Rockets for Planetary Defense
    | Los Alamos National Laboratory | Fusion Rockets for Planetary Defense Glen Wurden Los Alamos National Laboratory Exploratory Plasma Research Workshop Feb 26, 2016 LA-UR-16-21396 LA-UR-15-xxxx UNCLASSIFIED Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA April 2014 | UNCLASSIFIED | 1 | Los Alamos National Laboratory | My collaborators on this topic: T. E. Weber1, P. J. Turchi2, P. B. Parks3, T. E. Evans3, S. A. Cohen4, J. T. Cassibry5, E. M. Campbell6 . 1Los Alamos National Laboratory . 2Santa Fe, NM . 3General Atomics . 4Princeton Plasma Physics Laboratory . 5University of Alabama, Huntsville . 6LLE, University of Rochester, Rochester Wurden et al., Journal of Fusion Energy, Vol. 35, 1, 123 (2016) UNCLASSIFIED Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA April 2014 | UNCLASSIFIED | 2 | Los Alamos National Laboratory | How many ways is electricity made today? Primary Energy Source Nominally CO2 Free Current capacity (%) Expected Lifetime (yrs) Natural Gas no 100 Coal no 80.6 400 Oil no < 50 Biomass neutral 11.4 > 400 Wind yes 0.5 > 1000 Solar photovoltaic yes 0.06 > 1000 Solar thermal yes 0.17 > 1000 Hydro yes 3.3 > 1000 Wave/Tidal yes 0.001 > 1000 Geothermal yes 0.12 > 1000 Nuclear fission yes 2.7 > 400 [i] REN21–Renewable Energy Policy Network for the 21st Century Renewables 2012–Global Status Report, 2012, http://www.map.ren21.net/GSR/GSR2012.pdf , http://en.wikipedia.org/wiki/Energy_development UNCLASSIFIED Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA April 2014 | UNCLASSIFIED | 3 | Los Alamos National Laboratory | What is the most important product that fusion could deliver? .
    [Show full text]