Project Divinity

Total Page:16

File Type:pdf, Size:1020Kb

Project Divinity Project Divinity 1 Authors and Affiliation Instructor: KangSan Kim Students: SeungHyeon Do (Kongju High School, 12), JaeHun Jang (Korea Science Academy, 12), DongHyun Kim (Korea Science Academy, 12), YongSung Park (GwangJu Munsung High High School, 11), HwanSung Jang (Korean Minjok Leadership Academy, 11) 2 Table of Contents Authors and Affiliation .......................................................................................................................... 2 List of Figures ........................................................................................................................................ 8 List of Tables ....................................................................................................................................... 10 Abbreviations and Terminology .......................................................................................................... 11 1. Introduction .................................................................................................................................. 12 1.1. Executive Summary .............................................................................................................. 12 1.2. Background ........................................................................................................................... 13 1.2.1. Location ........................................................................................................................ 13 1.2.1.1. Orbit....................................................................................................................... 13 1.2.1.2. Radiation Protection .............................................................................................. 13 1.2.2. Time .............................................................................................................................. 15 1.2.3. Background ................................................................................................................... 15 1.2.3.1. Propulsion Technologies ....................................................................................... 15 1.2.3.2. Resource Development .......................................................................................... 16 1.3. Acknowledgements ............................................................................................................... 16 2. Structural Design .......................................................................................................................... 18 2.1. Structural Overview .............................................................................................................. 18 2.2. The Torus .............................................................................................................................. 20 2.3. Spokes ................................................................................................................................... 25 2.4. Central Hub ........................................................................................................................... 26 2.5. Industrial Complex ............................................................................................................... 26 2.6. Microgravity Complex .......................................................................................................... 26 2.6.1. Wall Materials ............................................................................................................... 26 2.6.2. Rotation Mechanism ..................................................................................................... 27 2.7. Assembly Yard ..................................................................................................................... 27 2.8. Docking Port ......................................................................................................................... 28 2.8.1. Docking Mechanism - Railway ..................................................................................... 28 2.8.2. Docking Mechanism – Gears ........................................................................................ 31 2.9. Debris Shield ........................................................................................................................ 32 3. Supporting Infrastructure ............................................................................................................. 36 3.1. Terrestrial Infrastructure ....................................................................................................... 36 3.1.1. Launch Vehicles ............................................................................................................ 36 3 3.1.1.1. Background ........................................................................................................... 36 3.1.1.2. Staging ................................................................................................................... 37 3.1.1.3. Massive Earth Transfer Vehicle System ............................................................... 38 3.1.2. Space Cannon ................................................................................................................ 40 3.2. Lunar Infrastructure .............................................................................................................. 42 3.2.1. Lunar Mass Driver ........................................................................................................ 43 3.2.2. Lunar Space Elevator Infrastructure ............................................................................. 44 3.3. Asteroidal Infrastructure ....................................................................................................... 47 4. Operations .................................................................................................................................... 49 4.1. Spokes ................................................................................................................................... 49 4.1.1.1. Fluid & Energy Transfer ....................................................................................... 49 4.1.1.2. Passenger Transfer ................................................................................................ 49 4.1.1.3. Cargo Transfer ....................................................................................................... 49 4.2. Central Hub ........................................................................................................................... 50 4.2.1. Transport Pods .............................................................................................................. 50 4.2.2. Transport Arms ............................................................................................................. 50 4.3. Industrial Complex ............................................................................................................... 50 4.3.1.1. External Robot Arms ............................................................................................. 51 4.3.1.2. Compartmentalization ........................................................................................... 51 4.3.1.3. Offices and Airlocks .............................................................................................. 51 4.4. Microgravity Complex .......................................................................................................... 52 4.4.1. Sector I .......................................................................................................................... 52 4.4.1.1. Transport Center .................................................................................................... 52 4.4.1.2. Low-g Sports Center ............................................................................................. 52 4.4.1.3. Starward Hotel ....................................................................................................... 53 4.4.1.4. Oxygen Supply ...................................................................................................... 53 4.4.1.5. Food Supply .......................................................................................................... 53 4.4.2. Sector II ......................................................................................................................... 55 4.4.2.1. Sports Quarter ........................................................................................................ 55 4.4.2.2. Culture Quarters .................................................................................................... 55 4.4.2.3. Tourism Quarter .................................................................................................... 55 4.4.3. Sector III ....................................................................................................................... 55 4.4.4. Assembly Yard .............................................................................................................. 56 4 4.4.4.1. Control Deck ......................................................................................................... 56 4.4.4.2. External Robotic Arm ........................................................................................... 57 4.4.4.3. Airlock ................................................................................................................... 57 4.5. Transportation Complex
Recommended publications
  • Lunar Space Elevator Infrastructure
    Lunar Space Elevator Infrastructure A Cost Saving Approach to Human Spaceflight within a 15-year Constrained NASA Budget White Paper Submitted at the Open Invitation of the National Research Council 2013 Lunar Space Elevator Infrastructure In Response to the National Research Council’s Study on the Benefits, Challenges and Ramifications of America’s Human Spaceflight Program. LiftPort Group presents a Cost-Effective Approach to Human Spaceflight within a 15-year Constrained NASA Budget. | MICHAEL LAINE – PRESIDENT, LIFTPORT GROUP | CHARLES RADLEY MSC., – ADVISOR, LIFTPORT GROUP | MARSHALL EUBANKS MSC., – ADVISOR, LIFTPORT GROUP | JEROME PEARSON MSC., – ADVISOR, LIFTPORT GROUP | PETER SWAN PHD., – ADVISOR, LIFTPORT GROUP | LEE GRAHAM (NASA – HIS VIEWS DO NOT REFLECT HIS EMPLOYER) | | 8 JULY 2013 | LIFTPORT GROUP | 1307 Dogwood Hill RD SW, Port Orchard, WA, 98366 | www.liftport.com | (862) 438-5383 | [email protected] LiftPort’s Lunar Space Elevator Infrastructure: Affordable Response to Human Spaceflight What are the important benefits provided to the United States and other countries by human spaceflight endeavors? The ability to place humans in space is exciting to the public, and demonstrates the technological maturity and stature of each spacefaring nation. Such a visible and peaceful demonstration of cutting edge technology fosters foreign policy by showing Page | 1 strength without engaging in conflicti. Human spaceflight sparks the imagination and serves an instinctive need to explore. Astronauts are ambassadors for all of humanity in a very personal way. Men and women in space suits inspire people – of all cultures and demographics – to achieve excellence, to believe in a common cause and to pursue a noble goal.
    [Show full text]
  • Ask Astronaut Alexander Anything
    Ask astronaut Alexander anything 11 March 2014 German European Space Agency (ESA) astronaut Alexander Gerst is all set for the 'Blue Dot' mission to the International Space Station in May. Crewmates NASA astronaut Reid Wiseman and commander-cosmonaut Maxim Surayev will hold a media conference on Tuesday 18 March 2014 and ESA is inviting you to ask questions via Twitter. Alexander is putting the finishing touches to his training before he heads to the Baikonur launch site in Kazakhstan in May. There, he will enter quarantine with his crewmates to make sure they do not bring any harmful viruses or bacteria to the orbital outpost. The trip to space is surprisingly short: within around six hours the Expedition 40/41 crew will dock with the microgravity laboratory orbiting 400 kilometres above Earth at 28,800 kilometres per hour. Once aboard, the new crew will have a week to get acclimatised to living without the benefit of gravity before their heavy workload begins. During their six months in space they will assist in the docking and unloading of six visiting spacecraft that ferry supplies and experiments. Alexander is prime operator for Europe's Automated Transfer Vehicle, meaning he will monitor the arrival and take responsibility for distributing the 2600 kilograms of items in its cargo bay. Alexander's science roster includes using the Electromagnetic Levitator for the first time. This furnace can melt and solidify metal alloys without a container, allowing scientists to understand the finer properties of these metals. Questions ESA is offering you the chance to ask the astronauts a question during the press conference via Twitter.
    [Show full text]
  • 9.0 BACKGROUND “What Do I Do First?” You Need to Research a Card (Thruster Or 9.1 DESIGNER’S NOTES Robonaut) with a Low Fuel Consumption
    9.2 TIPS FOR INEXPERIENCED ROCKET CADETS 9.0 BACKGROUND “What do I do first?” You need to research a card (thruster or 9.1 DESIGNER’S NOTES robonaut) with a low fuel consumption. A “1” is great, a “4” The original concept for this game was a “Lords of the Sierra Madre” in is marginal. The PRC player*** can consider an dash to space. With mines, ranches, smelters, and rail lines all purchased and claim Hellas Basin on Mars, using just his crew card. He controlled by different players, who have to negotiate between them- needs 19 fuel steps (6 WT) along the red route to do this. selves to expand. But space does not work this way. “What does my rocket need?” Your rocket needs 4 things: Suppose you have a smelter on one main-belt asteroid, powered by a • A card with a thruster triangle (2.4D) to act as a thruster. • A card with an ISRU rating, if its mission is to prospect. beam-station on another asteroid, and you discover platinum on a third • A refinery, if its mission is to build a factory. nearby asteroid. Unfortunately for long-term operations, next year these • Enough fuel to get to the destination. asteroids will be separated by 2 to 6 AUs.* Furthermore, main belt Decide between a small rocket able to make multiple claims, Hohmann transfers are about 2 years long, with optimal transfer opportu- or a big rocket including a refinery and robonaut able to nities about 7 years apart. Jerry Pournelle in his book “A Step Farther industrialize the first successful claim.
    [Show full text]
  • Asteroid Retrieval Feasibility Study
    Asteroid Retrieval Feasibility Study 2 April 2012 Prepared for the: Keck Institute for Space Studies California Institute of Technology Jet Propulsion Laboratory Pasadena, California 1 2 Authors and Study Participants NAME Organization E-Mail Signature John Brophy Co-Leader / NASA JPL / Caltech [email protected] Fred Culick Co-Leader / Caltech [email protected] Co -Leader / The Planetary Louis Friedman [email protected] Society Carlton Allen NASA JSC [email protected] David Baughman Naval Postgraduate School [email protected] NASA ARC/Carnegie Mellon Julie Bellerose [email protected] University Bruce Betts The Planetary Society [email protected] Mike Brown Caltech [email protected] Michael Busch UCLA [email protected] John Casani NASA JPL [email protected] Marcello Coradini ESA [email protected] John Dankanich NASA GRC [email protected] Paul Dimotakis Caltech [email protected] Harvard -Smithsonian Center for Martin Elvis [email protected] Astrophysics Ian Garrick-Bethel UCSC [email protected] Bob Gershman NASA JPL [email protected] Florida Institute for Human and Tom Jones [email protected] Machine Cognition Damon Landau NASA JPL [email protected] Chris Lewicki Arkyd Astronautics [email protected] John Lewis University of Arizona [email protected] Pedro Llanos USC [email protected] Mark Lupisella NASA GSFC [email protected] Dan Mazanek NASA LaRC [email protected] Prakhar Mehrotra Caltech [email protected]
    [Show full text]
  • Integrated Lunar Transportation System
    Integrated Lunar Transportation System Jerome Pearson1, John C. Oldson2, Eugene M. Levin3, and Harry Wykes4 Star Technology and Research, Inc., Mount Pleasant, SC, 29466 An integrated transportation system is proposed from the lunar poles to Earth orbit, using solar-powered electric vehicles on lunar tramways, highways, and a lunar space elevator. The system could transport large amounts of lunar resources to Earth orbit for construction, radiation shielding, and propellant depots, and could supply lunar equatorial, polar, and mining bases with manufactured items. We present a system for lunar surface transport using “cars, trucks, and trains,” and the infrastructure of “roads, highways, and tramways,” connecting with the lunar space elevator for transport to Earth orbit. The Apollo Lunar Rovers demonstrated a battery- powered range of nearly 50 kilometers, but they also uncovered the problems of lunar dust. For building dustless highways, it appears particularly attractive to create paved roads by using microwaves to sinter lunar dust into a hard surface. For tramways, tall towers can support high- strength ribbons that carry cable cars over the lunar craters; the ribbon might even be fabricated from lunar materials. We address the power and energy storage requirements for lunar transportation vehicles, the design and effectiveness of lunar tramways, and the materials requirements for the support ribbons of lunar tramways and lunar space elevators. 1. Introduction NASA is implementing a plan for a return to the Moon, which will build on and expand the capabilities demonstrated during the Apollo landings. The plan includes long-duration lunar stays, lunar outposts and bases, and exploitation of lunar resources on the Moon and in Earth orbit1.
    [Show full text]
  • Pathways to Colonization David V
    Pathways To Colonization David V. Smitherman, Jr. NASA, Marshall Space F’light Center, Mail CoLFDO2, Huntsville, AL 35812,256-961-7585, Abstract. The steps required for space colonization are many to grow fiom our current 3-person International Space Station,now under construction, to an inhstmcture that can support hundreds and eventually thousands of people in space. This paper will summarize the author’s fmdings fiom numerous studies and workshops on related subjects and identify some of the critical next steps toward space colonization. Findings will be drawn from the author’s previous work on space colony design, space infirastructure workshops, and various studies that addressed space policy. In cmclusion, this paper will note that siBnifcant progress has been made on space facility construction through the International Space Station program, and that si&icant efforts are needed in the development of new reusable Earth to Orbit transportation systems. The next key steps will include reusable in space transportation systems supported by in space propellant depots, the continued development of inflatable habitat and space elevator technologies, and the resolution of policy issues that will establish a future vision for space development A PATH TO SPACE COLONIZATION In 1993, as part of the author’s duties as a space program planner at the NASA Marshall Space Flight Center, a lengthy timeline was begun to determine the approximate length of time it might take for humans to eventually leave this solar system and travel to the stars. The thought was that we would soon discover a blue planet around another star and would eventually seek to send a colony to explore and expand our presence in this galaxy.
    [Show full text]
  • Mass Driver CDR March 10, 2020 Mission Profile (Mars → Phobos)
    Mass Driver CDR March 10, 2020 Mission Profile (Mars → Phobos) ● Launch windows are defined by phobos position and tether sling spin up time ○ Phobos must be -29.033° from Olympus Mons (right ascension) ○ Max turnover = 3 launches/sol ● Acceleration Profile ○ 4.77 km/s Launch Velocity ○ 4.47 km/s Velocity past atmosphere ○ 2 G’s net ● Total Orbital Flight Time 14.69 hrs Orbital Trajectory ΔV (km/s) Time (hrs) Launch 4.77 6.17 Burn 1 0.286 8.52 Burn 2 0.375 RNDVZ Total 0.661 14.69 Considerations & Deviations ● Acceleration modification ○ Make time and distance shorter ○ Launch Velocity includes drag and rotation ● Orbital analysis ○ No perturbations ○ No eccentricity/inclinations ● Risk Assessment ○ If launch fails, more ΔV is required ○ If burn 1 fails, the taxi will return to Olympus Mons ○ If burn 2 fails, no return possibility without significant ΔV Mass Driver Objectives • Handle loads of our magnitude (passenger trains) • Allows us to more easily decelerate the cradle for reusability • Located at the base of Olympus Mons • Using Null-Flux Coils for Repulsive Levitation Mass Driver Objectives • Updated battery sizing, spacing and model • Two 1x1x1 m battery banks every 409 meters down the track Mass Driver Overview Important Parameters • Track Length: 635 km (for taxi + cradle acceleration) 106 km (for cradle deceleration) • Launch Duration: 4 minutes 14 seconds • 2g constant acceleration • Force required: 6.49 MN (propulsion) 1.11 MN (levitation) • Propellant saved: 477 Mg Maglev System Diagram 0.31 m 0.55 m HTS Magnets: 80 magnets
    [Show full text]
  • A Rapid and Scalable Approach to Planetary Defense Against Asteroid Impactors
    THE LEAGUE OF EXTRAORDINARY MACHINES: A RAPID AND SCALABLE APPROACH TO PLANETARY DEFENSE AGAINST ASTEROID IMPACTORS Version 1.0 NASA INSTITUTE FOR ADVANCED CONCEPTS (NIAC) PHASE I FINAL REPORT THE LEAGUE OF EXTRAORDINARY MACHINES: A RAPID AND SCALABLE APPROACH TO PLANETARY DEFENSE AGAINST ASTEROID IMPACTORS Prepared by J. OLDS, A. CHARANIA, M. GRAHAM, AND J. WALLACE SPACEWORKS ENGINEERING, INC. (SEI) 1200 Ashwood Parkway, Suite 506 Atlanta, GA 30338 (770) 379-8000, (770)379-8001 Fax www.sei.aero [email protected] 30 April 2004 Version 1.0 Prepared for ROBERT A. CASSANOVA NASA INSTITUTE FOR ADVANCED CONCEPTS (NIAC) UNIVERSITIES SPACE RESEARCH ASSOCIATION (USRA) 75 5th Street, N.W. Suite 318 Atlanta, GA 30308 (404) 347-9633, (404) 347-9638 Fax www.niac.usra.edu [email protected] NIAC CALL FOR PROPOSALS CP-NIAC 02-02 PUBLIC RELEASE IS AUTHORIZED The League of Extraordinary Machines: NIAC CP-NIAC 02-02 Phase I Final Report A Rapid and Scalable Approach to Planetary Defense Against Asteroid Impactors Table of Contents List of Acronyms ________________________________________________________________________________________ iv Foreword and Acknowledgements___________________________________________________________________________ v Executive Summary______________________________________________________________________________________ vi 1.0 Introduction _________________________________________________________________________________________ 1 2.0 Background _________________________________________________________________________________________
    [Show full text]
  • Technology Development and Demonstration Concepts for the Space Elevator
    55th International Astronautical Congress 2004 - Vancouver, Canada IAC-04-IAA.3.8.3.02 TECHNOLOGY DEVELOPMENT AND DEMONSTRATION CONCEPTS FOR THE SPACE ELEVATOR David V. Smitherman, Jr., Architect Technical Manager, Advanced Projects Office NASA Marshall Space Flight Center, Huntsville, Alabama, USA E-mail: [email protected] ABSTRACT In 1999, the author managed for the National Aeronautics and Space Administration (NASA), a space elevator workshop at the NASA Marshall Space Flight Center to explore the potential feasibility of space elevators in the 21st century, and to identify the critical technologies and demonstration missions needed to make the development of space elevators feasible. Since that time, a NASA Institute for Advanced Concepts (NIAC) funded study proposed a simpler concept for the first space elevator system using more near-term technologies. This paper will review some of the latest ideas for space elevator development, the critical technologies required, and some of the ideas proposed for demonstrating the feasibility for full-scale development of an Earth to Geostationary Earth Orbit (GEO) Space Elevator. In conclusion, this paper finds that the most critical technologies for an earth-based space elevator include Carbon Nano-Tube (CNT) composite materials development and object avoidance technologies; that the lack of successful development of these technologies need not preclude continued development of space elevator systems in general; and that the critical technologies required for the earth-based space elevator are not required for similar systems at the Moon, and other locations. BACKGROUND In the 1990’s, advances were made by NASA Study: several researchers indicating that carbon To investigate this possibility the author, in nano-tubes might be the high strength 1999, managed for NASA a space elevator material needed for fabrication of space workshop at the NASA Marshall Space elevators from geostationary orbit down to Flight Center in Huntsville, Alabama, to the surface of the Earth.
    [Show full text]
  • 1 Iac-06-C4.4.7 the Innovative Dual-Stage 4-Grid Ion
    IAC-06-C4.4.7 THE INNOVATIVE DUAL-STAGE 4-GRID ION THRUSTER CONCEPT – THEORY AND EXPERIMENTAL RESULTS Cristina Bramanti, Roger Walker, ESA-ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands [email protected], Roger. Walker @esa.int Orson Sutherland, Rod Boswell, Christine Charles Plasma Research Laboratory, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia [email protected], [email protected], [email protected]. David Fearn EP Solutions, 23 Bowenhurst Road, Church Crookham, Fleet, Hants, GU52 6HS, United Kingdom [email protected] Jose Gonzalez Del Amo, Marika Orlandi ESA-ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands [email protected], [email protected] ABSTRACT A new concept for an advanced “Dual-Stage 4-Grid” (DS4G) ion thruster has been proposed which draws inspiration from Controlled Thermonuclear Reactor (CTR) experiments. The DS4G concept is able to operate at very high specific impulse, power and thrust density values well in excess of conventional 3-grid ion thrusters at the expense of a higher power-to-thrust ratio. A small low-power experimental laboratory model was designed and built under a preliminary research, development and test programme, and its performance was measured during an extensive test campaign, which proved the practical feasibility of the overall concept and demonstrated the performance predicted by analytical and simulation models. In the present paper, the basic concept of the DS4G ion thruster is presented, along with the design, operating parameters and measured performance obtained from the first and second phases of the experimental campaign.
    [Show full text]
  • Iac-04-Iaa.3.8.3.07 the Lunar Space Elevator
    IAC-04-IAA.3.8.3.07 THE LUNAR SPACE ELEVATOR Jerome Pearson, Eugene Levin, John Oldson, and Harry Wykes STAR Inc., Mount Pleasant, SC USA; [email protected] ABSTRACT This paper examines lunar space elevators, a concept originated by the lead author, for lunar development. Lunar space elevators are flexible structures connecting the lunar surface with counterweights located beyond the L1 or L2 Lagrangian points in the Earth- moon system. A lunar space elevator on the moon’s near side, balanced about the L1 Lagrangian point, could support robotic climbing vehicles to release lunar material into high Earth orbit. A lunar space elevator on the moon’s far side, balanced about L2, could provide nearly continuous communication with an astronomical observatory on the moon’s far side, away from the optical and radio interference from the Earth. Because of the lower mass of the moon, such lunar space elevators could be constructed of existing materials instead of carbon nanotubes, and would be much less massive than the Earth space elevator. We review likely spots for development of lunar surface operations (south pole locations for water and continuous sunlight, and equatorial locations for lower delta-V), and examine the likely payload requirements for Earth-to-moon and moon-to-Earth transportation. We then examine its capability to launch large amounts of lunar material into high Earth orbit, and do a top-level system analysis to evaluate the potential payoffs of lunar space elevators. SPACE ELEVATOR HISTORY The idea of a "stairway to heaven" is as as the rotation period of the body.
    [Show full text]
  • Today's Space Elevator
    International Space Elevator Consortium ISEC Position Paper # 2019-1 Today's Space Elevator Space Elevator Matures into the Galactic Harbour A Primer for Progress in Space Elevator Development Peter Swan, Ph.D. Michael Fitzgerald ii Today's Space Elevator Space Elevator Matures into the Galactic Harbour Peter Swan, Ph.D. Michael Fitzgerald Prepared for the International Space Elevator Consortium Chief Architect's Office Sept 2019 iii iv Today's Space Elevator Copyright © 2019 by: Peter Swan Michael Fitzgerald International Space Elevator Consortium All rights reserved, including the rights to reproduce this manuscript or portions thereof in any form. Published by Lulu.com [email protected] 978-0-359-93496-6 Cover Illustrations: Front – with permission of Galactic Harbour Association. Back – with permission of Michael Fitzgerald. Printed in the United States of America v vi Preface The Space Elevator is a Catalyst for Change! There was a moment in time that I realized the baton had changed hands - across three generations. I was talking within a small but enthusiastic group of attendees at the International Space Development Conference in June 2019. On that stage there was generation "co-inventor" Jerome Pearson, generation "advancing concept" Michael Fitzgerald and generation "excited students" James Torla and Souvik Mukherjee. The "moment" was more than an assembly of young and old. It was also a portrait of the stewards of the Space Elevator revolution -- from Inventor to Developer to Innovators. James was working a college research project on how to get to Mars in 77 days from the Apex Anchor and Souvik (16 years old) was representing his high school from India.
    [Show full text]