Lunar Space Elevator Infrastructure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Asteroid Retrieval Feasibility Study
Asteroid Retrieval Feasibility Study 2 April 2012 Prepared for the: Keck Institute for Space Studies California Institute of Technology Jet Propulsion Laboratory Pasadena, California 1 2 Authors and Study Participants NAME Organization E-Mail Signature John Brophy Co-Leader / NASA JPL / Caltech [email protected] Fred Culick Co-Leader / Caltech [email protected] Co -Leader / The Planetary Louis Friedman [email protected] Society Carlton Allen NASA JSC [email protected] David Baughman Naval Postgraduate School [email protected] NASA ARC/Carnegie Mellon Julie Bellerose [email protected] University Bruce Betts The Planetary Society [email protected] Mike Brown Caltech [email protected] Michael Busch UCLA [email protected] John Casani NASA JPL [email protected] Marcello Coradini ESA [email protected] John Dankanich NASA GRC [email protected] Paul Dimotakis Caltech [email protected] Harvard -Smithsonian Center for Martin Elvis [email protected] Astrophysics Ian Garrick-Bethel UCSC [email protected] Bob Gershman NASA JPL [email protected] Florida Institute for Human and Tom Jones [email protected] Machine Cognition Damon Landau NASA JPL [email protected] Chris Lewicki Arkyd Astronautics [email protected] John Lewis University of Arizona [email protected] Pedro Llanos USC [email protected] Mark Lupisella NASA GSFC [email protected] Dan Mazanek NASA LaRC [email protected] Prakhar Mehrotra Caltech [email protected] -
Integrated Lunar Transportation System
Integrated Lunar Transportation System Jerome Pearson1, John C. Oldson2, Eugene M. Levin3, and Harry Wykes4 Star Technology and Research, Inc., Mount Pleasant, SC, 29466 An integrated transportation system is proposed from the lunar poles to Earth orbit, using solar-powered electric vehicles on lunar tramways, highways, and a lunar space elevator. The system could transport large amounts of lunar resources to Earth orbit for construction, radiation shielding, and propellant depots, and could supply lunar equatorial, polar, and mining bases with manufactured items. We present a system for lunar surface transport using “cars, trucks, and trains,” and the infrastructure of “roads, highways, and tramways,” connecting with the lunar space elevator for transport to Earth orbit. The Apollo Lunar Rovers demonstrated a battery- powered range of nearly 50 kilometers, but they also uncovered the problems of lunar dust. For building dustless highways, it appears particularly attractive to create paved roads by using microwaves to sinter lunar dust into a hard surface. For tramways, tall towers can support high- strength ribbons that carry cable cars over the lunar craters; the ribbon might even be fabricated from lunar materials. We address the power and energy storage requirements for lunar transportation vehicles, the design and effectiveness of lunar tramways, and the materials requirements for the support ribbons of lunar tramways and lunar space elevators. 1. Introduction NASA is implementing a plan for a return to the Moon, which will build on and expand the capabilities demonstrated during the Apollo landings. The plan includes long-duration lunar stays, lunar outposts and bases, and exploitation of lunar resources on the Moon and in Earth orbit1. -
Pathways to Colonization David V
Pathways To Colonization David V. Smitherman, Jr. NASA, Marshall Space F’light Center, Mail CoLFDO2, Huntsville, AL 35812,256-961-7585, Abstract. The steps required for space colonization are many to grow fiom our current 3-person International Space Station,now under construction, to an inhstmcture that can support hundreds and eventually thousands of people in space. This paper will summarize the author’s fmdings fiom numerous studies and workshops on related subjects and identify some of the critical next steps toward space colonization. Findings will be drawn from the author’s previous work on space colony design, space infirastructure workshops, and various studies that addressed space policy. In cmclusion, this paper will note that siBnifcant progress has been made on space facility construction through the International Space Station program, and that si&icant efforts are needed in the development of new reusable Earth to Orbit transportation systems. The next key steps will include reusable in space transportation systems supported by in space propellant depots, the continued development of inflatable habitat and space elevator technologies, and the resolution of policy issues that will establish a future vision for space development A PATH TO SPACE COLONIZATION In 1993, as part of the author’s duties as a space program planner at the NASA Marshall Space Flight Center, a lengthy timeline was begun to determine the approximate length of time it might take for humans to eventually leave this solar system and travel to the stars. The thought was that we would soon discover a blue planet around another star and would eventually seek to send a colony to explore and expand our presence in this galaxy. -
05, Military, Aerospace, Space & Homeland
------------------------------------------------------------- [コンフェレンス紹介] May 3-5, 2005 MASH '05, Military, Aerospace, Space & Homeland Security Sacramento Marriott Rancho Cordova http://www.imaps.org/mash ------------------------------------------------------------- 2005 年 4 月 28 日 19:12 WIRED NEWS (2005/04/28) NASA、量子ワイヤ研究を援助――宇宙エレベータも射程 http://hotwired.goo.ne.jp/news/20050428301.html NASA はライス大学の量子ワイヤ研究に対する$11M の資金援助 く、宇宙船軽量化やプロセッサ高速化につながる。「宇宙エレベ を発表。2010 年までに長さ 1m の電線を完成させるのが目標。カ ータ」への応用も含め、ナノチューブは人類を宇宙へと送出すの ーボン・ナノチューブで作る量子ワイヤは軽量で電気伝導度が高 に大きな役割を果たすと期待されている。 ------------------------------------------------------------- 2005 年 4 月 28 日 19:12 WIRED NEWS (2005/04/28) ロケット燃料による飲料水汚染、米国の 36 州で http://hotwired.goo.ne.jp/news/20050428305.html 米の 36 の州で、ロケット燃料や兵器の製造に使われた化学 巨額の費用がかかるため、現在米環境保護局(EPA)では強制 薬品によって、飲料水が汚染されていることが判明。浄化に 力のない安全基準しか定めていない。 ------------------------------------------------------------- 2005 年 4 月 26 日 9:28 ジェトロ 半導体パッケージングの大型投資相次ぐ(中国) 上海発 半導体製造は前工程生産能力が急成長し、最近は後工程とい 体パッケージングへの大規模投資が相次いでいる。 われる半導体パッケージング需要が高まっている。このため半導 ------------------------------------------------------------- 2005 年 4 月 25 日 9:24 ジェトロ EU 憲法条約の批准、最初のヤマ場近づく(EU) ブリュッセル発 ギリシャ議会が 4 月 19 日、EU 憲法条約を賛成多数(賛成:268 となるもので、2006 年秋ごろの発効を目指している。発効には全 票、反対:17 票)で承認し、ギリシャは EU25 ヵ国中 5 番目の批准 加盟国の批准が必要で、5 月 29 日に実施予定のフランスの国民 国となった。EU 憲法条約は EU の拡大に伴い、新たな基本条約 投票が最初のヤマ場となる。 ------------------------------------------------------------- 2005 年 4 月 22 日 19:10 WIRED NEWS (2005/04/22) 狙った相手だけに聞かせる音声伝送システムに MIT 発明賞 http://hotwired.goo.ne.jp/news/20050422301.html 米マサチューセッツ工科大学(MIT)『レメルソン -
Technology Development and Demonstration Concepts for the Space Elevator
55th International Astronautical Congress 2004 - Vancouver, Canada IAC-04-IAA.3.8.3.02 TECHNOLOGY DEVELOPMENT AND DEMONSTRATION CONCEPTS FOR THE SPACE ELEVATOR David V. Smitherman, Jr., Architect Technical Manager, Advanced Projects Office NASA Marshall Space Flight Center, Huntsville, Alabama, USA E-mail: [email protected] ABSTRACT In 1999, the author managed for the National Aeronautics and Space Administration (NASA), a space elevator workshop at the NASA Marshall Space Flight Center to explore the potential feasibility of space elevators in the 21st century, and to identify the critical technologies and demonstration missions needed to make the development of space elevators feasible. Since that time, a NASA Institute for Advanced Concepts (NIAC) funded study proposed a simpler concept for the first space elevator system using more near-term technologies. This paper will review some of the latest ideas for space elevator development, the critical technologies required, and some of the ideas proposed for demonstrating the feasibility for full-scale development of an Earth to Geostationary Earth Orbit (GEO) Space Elevator. In conclusion, this paper finds that the most critical technologies for an earth-based space elevator include Carbon Nano-Tube (CNT) composite materials development and object avoidance technologies; that the lack of successful development of these technologies need not preclude continued development of space elevator systems in general; and that the critical technologies required for the earth-based space elevator are not required for similar systems at the Moon, and other locations. BACKGROUND In the 1990’s, advances were made by NASA Study: several researchers indicating that carbon To investigate this possibility the author, in nano-tubes might be the high strength 1999, managed for NASA a space elevator material needed for fabrication of space workshop at the NASA Marshall Space elevators from geostationary orbit down to Flight Center in Huntsville, Alabama, to the surface of the Earth. -
Iac-04-Iaa.3.8.3.07 the Lunar Space Elevator
IAC-04-IAA.3.8.3.07 THE LUNAR SPACE ELEVATOR Jerome Pearson, Eugene Levin, John Oldson, and Harry Wykes STAR Inc., Mount Pleasant, SC USA; [email protected] ABSTRACT This paper examines lunar space elevators, a concept originated by the lead author, for lunar development. Lunar space elevators are flexible structures connecting the lunar surface with counterweights located beyond the L1 or L2 Lagrangian points in the Earth- moon system. A lunar space elevator on the moon’s near side, balanced about the L1 Lagrangian point, could support robotic climbing vehicles to release lunar material into high Earth orbit. A lunar space elevator on the moon’s far side, balanced about L2, could provide nearly continuous communication with an astronomical observatory on the moon’s far side, away from the optical and radio interference from the Earth. Because of the lower mass of the moon, such lunar space elevators could be constructed of existing materials instead of carbon nanotubes, and would be much less massive than the Earth space elevator. We review likely spots for development of lunar surface operations (south pole locations for water and continuous sunlight, and equatorial locations for lower delta-V), and examine the likely payload requirements for Earth-to-moon and moon-to-Earth transportation. We then examine its capability to launch large amounts of lunar material into high Earth orbit, and do a top-level system analysis to evaluate the potential payoffs of lunar space elevators. SPACE ELEVATOR HISTORY The idea of a "stairway to heaven" is as as the rotation period of the body. -
State of the Space Industrial Base 2020 Report
STATE OF THE SPACE INDUSTRIAL BASE 2020 A Time for Action to Sustain US Economic & Military Leadership in Space Summary Report by: Brigadier General Steven J. Butow, Defense Innovation Unit Dr. Thomas Cooley, Air Force Research Laboratory Colonel Eric Felt, Air Force Research Laboratory Dr. Joel B. Mozer, United States Space Force July 2020 DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. DISCLAIMER The views expressed in this report reflect those of the workshop attendees, and do not necessarily reflect the official policy or position of the US government, the Department of Defense, the US Air Force, or the US Space Force. Use of NASA photos in this report does not state or imply the endorsement by NASA or by any NASA employee of a commercial product, service, or activity. USSF-DIU-AFRL | July 2020 i ABOUT THE AUTHORS Brigadier General Steven J. Butow, USAF Colonel Eric Felt, USAF Brig. Gen. Butow is the Director of the Space Portfolio at Col. Felt is the Director of the Air Force Research the Defense Innovation Unit. Laboratory’s Space Vehicles Directorate. Dr. Thomas Cooley Dr. Joel B. Mozer Dr. Cooley is the Chief Scientist of the Air Force Research Dr. Mozer is the Chief Scientist at the US Space Force. Laboratory’s Space Vehicles Directorate. ACKNOWLEDGEMENTS FROM THE EDITORS Dr. David A. Hardy & Peter Garretson The authors wish to express their deep gratitude and appreciation to New Space New Mexico for hosting the State of the Space Industrial Base 2020 Virtual Solutions Workshop; and to all the attendees, especially those from the commercial space sector, who spent valuable time under COVID-19 shelter-in-place restrictions contributing their observations and insights to each of the six working groups. -
Today's Space Elevator
International Space Elevator Consortium ISEC Position Paper # 2019-1 Today's Space Elevator Space Elevator Matures into the Galactic Harbour A Primer for Progress in Space Elevator Development Peter Swan, Ph.D. Michael Fitzgerald ii Today's Space Elevator Space Elevator Matures into the Galactic Harbour Peter Swan, Ph.D. Michael Fitzgerald Prepared for the International Space Elevator Consortium Chief Architect's Office Sept 2019 iii iv Today's Space Elevator Copyright © 2019 by: Peter Swan Michael Fitzgerald International Space Elevator Consortium All rights reserved, including the rights to reproduce this manuscript or portions thereof in any form. Published by Lulu.com [email protected] 978-0-359-93496-6 Cover Illustrations: Front – with permission of Galactic Harbour Association. Back – with permission of Michael Fitzgerald. Printed in the United States of America v vi Preface The Space Elevator is a Catalyst for Change! There was a moment in time that I realized the baton had changed hands - across three generations. I was talking within a small but enthusiastic group of attendees at the International Space Development Conference in June 2019. On that stage there was generation "co-inventor" Jerome Pearson, generation "advancing concept" Michael Fitzgerald and generation "excited students" James Torla and Souvik Mukherjee. The "moment" was more than an assembly of young and old. It was also a portrait of the stewards of the Space Elevator revolution -- from Inventor to Developer to Innovators. James was working a college research project on how to get to Mars in 77 days from the Apex Anchor and Souvik (16 years old) was representing his high school from India. -
These Aren't the Asteroids You Are Looking
These Aren’t the Asteroids You Are Looking For: Classifying Asteroids in Space as Chattels, Not Land Andrew Tingkang* I. INTRODUCTION “The truth is I don’t know what we’re going to find. But I know that everything will be different. It will be like Cecil Rhodes discovering diamonds in South Africa.” “He didn’t discover the mine,” she said. “He just made the most money.” “I could live with that.”1 Space, as the saying goes, is the final frontier. We humans first ven- tured beyond the atmosphere in 1961, under the threatening cloud of the Cold War.2 Since that time, we have made a number of stunning accom- plishments in outer space. We established a permanent presence in outer space through the International Space Station, where scientists and astro- nauts continue to work on research to benefit both humanity on Earth and the future of humanity’s activities in space.3 American presidents from both sides of the aisle have expressed a strong interest in sending Ameri- cans back to the Moon and beyond.4 Humanity has achieved some of its * J.D. Candidate, Seattle University School of Law, 2012; B.A., Philosophy and Political Science, University of Washington, 2009. I would like to thank my parents, Glenn and Laurie, and my broth- ers, Bryan and Cameron, for their constant and continuing love and support. I also thank all of the editors from the Seattle University Law Review who have contributed to this Comment. I may be reached at [email protected]. 1. Reid Malenfant, a driven protagonist that would make Ayn Rand proud, speaking about sending a mission to an asteroid. -
Critical Technologies for the Development of Future Space Elevator Systems
c . d 8# CRITICAL TECHNOLOGIES FOR THE DEVELOPMENT OF FUTURE SPACE ELEVATOR SYSTEMS David V. Smitherman, Jr., Architect Technical Manager, Advanced Concepts Office NASA Marshall Space Flight Center, Huntsville, Alabama, USA E-mail: David.Smitherman@,nasa.gov ABSTRACT: A space elevator is a tether structure extending through geosynchronous earth orbit (GEO) to the surface of the earth. Its center of mass is in GEO such that it orbits the earth in sync with the earth’s rotation. In 2004 and 2005, the NASA Marshall Space Flight Center and the Institute for Scientific Research, Inc. worked under a cooperative agreement to research the feasibility of space elevator systems, and to advance the critical technologies required for the future development of space elevators for earth to orbit transportation. The discovery of carbon nanotubes in the early 1990’s was the first indication that it might be possible to develop materials strong enough to make space elevator construction feasible. a This report presents an overview of some of the latest NASA sponsored research on space elevator design, and the systems and materials that will be required to make space elevator construction possible. In conclusion, the most critical technology for earth-based space elevators is the successful development of ultra high strength carbon nanotube reinforced composites for ribbon construction in the lOOGPa range. In addition, many intermediate technology goals and demonstration missions for the space elevator can provide significant advancements to other spaceflight and terrestrial applications. INTRODUCTION length of about 100,OOOkm. Its center of mass would be in GEO such that it would orbit the During the past year, through a cooperative earth in sync with the earth’s rotation. -
Opening the Pandora's Box of Space Law Paul Tobias
Hastings International and Comparative Law Review Volume 28 Article 7 Number 2 Winter 2005 1-1-2005 Opening the Pandora's Box of Space Law Paul Tobias Follow this and additional works at: https://repository.uchastings.edu/ hastings_international_comparative_law_review Part of the Comparative and Foreign Law Commons, and the International Law Commons Recommended Citation Paul Tobias, Opening the Pandora's Box of Space Law, 28 Hastings Int'l & Comp.L. Rev. 299 (2005). Available at: https://repository.uchastings.edu/hastings_international_comparative_law_review/vol28/iss2/7 This Note is brought to you for free and open access by the Law Journals at UC Hastings Scholarship Repository. It has been accepted for inclusion in Hastings International and Comparative Law Review by an authorized editor of UC Hastings Scholarship Repository. Opening the Pandora's Box of Space Law By PAUL TOBIAS* Introduction The greatest danger facing us in outer space comes not from the physical environment, however cold and hostile it may be, but from our own human nature and from the discords that trouble our relationship here on earth. Therefore, as we stand on the threshold of the space age, our first responsibility as governments is clear: we must make sure that man's earthly conflicts will not be carried into outer space.' During the golden age of exploration, Pope Alexander VI resolved the question of sovereignty by drawing a line across a map of the New World.2 All lands to the west of the line were given to Spain, and all lands to the east were given to Portugal.3 To this day, while the majority of South Americans speak Spanish, the official language of Brazil is Portuguese. -
Space Elevators: an Advanced Earth-Space Infrastructure for the New Millennium
National Aeronautics and NASA/CP—2000–210429 Space Administration AD33 George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812 Space Elevators An Advanced Earth-Space Infrastructure for the New Millennium Compiled by D.V. Smitherman, Jr. Marshall Space Flight Center, Huntsville, Alabama This publication is based on the findings from the Advanced Space Infrastructure Workshop on Geostationary Orbiting Tether “Space Elevator” Concepts, NASA Marshall Space Flight Center, June 8–10, 1999. August 2000 The NASA STI Program Office…in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical conferences, science. The NASA Scientific and Technical symposia, seminars, or other meetings sponsored Information (STI) Program Office plays a key or cosponsored by NASA. part in helping NASA maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, The NASA STI Program Office is operated by projects, and mission, often concerned with Langley Research Center, the lead center for subjects having substantial public interest. NASA’s scientific and technical information. The NASA STI Program Office provides access to the • TECHNICAL TRANSLATION. NASA STI Database, the largest collection of English-language translations of foreign scientific aeronautical and space science STI in the world. The and technical material pertinent to NASA’s Program Office is also NASA’s institutional mission. mechanism for disseminating the results of its research and development activities. These results Specialized services that complement the STI are published by NASA in the NASA STI Report Program Office’s diverse offerings include creating Series, which includes the following report types: custom thesauri, building customized databases, organizing and publishing research results…even • TECHNICAL PUBLICATION.