Scientific Return of a Lunar Elevator

Total Page:16

File Type:pdf, Size:1020Kb

Scientific Return of a Lunar Elevator Scientific Return of a Lunar Elevator T.M. Eubanksa, C.F. Radleya aAsteroid Initiatives LLC, P.O. Box 141, Clifton Virginia 20124 Abstract The concept of a space elevator dates back to Tsilokovsky, but they are not commonly considered in near-term plans for space exploration, perhaps because a terrestrial elevator would not be possible without considerable improvements in tether material. A Lunar Space Elevator (LSE), however, can be built with current technology using commercially available tether polymers. This paper considers missions leading to infrastructure capable of shortening the time, lowering the cost and enhancing the capabilities of robotic and human explorers. These missions use planetary scale tethers, strings many thousands of kilometers long stabilized either by rotation or by gravitational gradients. These systems promise major reduction in transport costs versus chemical rockets, in a rapid timeframe, for a modest investment. Science will thus benefit as well as commercial activities. Keywords: space elevator, lunar exploration, large space structures 1. Introduction tether deployed as a static or orbiting struc- ture stretching from a celestial body out The long term exploration and develop- into space [2]. In order for a space elevator ment of space would greatly benefit from to remain static (stationary with respect to the use of planetary-scale tethers, both the surface of the body it is attached to) its as dynamic tools and for space elevators center of mass must be in a stationary orbit, [1, 2, 3]. with the force of gravity on the tether be- Free-flying tethers must rotate to stay in ing balanced by either the centrifugal force tension. Those that rotate so as to cancel of rotation (for a terrestrial elevator) [6] or the relative motion between the tip and a tidal forces (for a lunar elevator) [7] on the planetary or satellite surface are called ro- mass of the tether plus any counterweight tovators [4]; such tethers may be used to above the center of mass. set up transportation systems moving ma- arXiv:1609.00709v1 [physics.pop-ph] 31 Aug 2016 The proposed Deep Space Tether terial to and from planetary surfaces at low Pathfinder (DSTP) mission is intended to relative velocities and without the expen- both test the technology of the prototype diture of fuel [1, 5]. A space elevator is a LSE and provide a substantial scientific return by doing touch-and-go sampling Email addresses: of a selected area on the lunar surface. [email protected] (T.M. Eubanks), The rotation of the DSTP would be used [email protected] (C.F. Radley) to match the relative velocity between Preprint submitted to and accepted by Space Policy; currently in press. September 5, 2016 its lower tip and the Moon during a molecular-weight polyethylene (UHMWPE) flyby, allowing for the collection of surface (brand name Dyneema R ) [8] and poly- samples from a suitable scientific target, phenylenebenzobisoxazole (PBO) (brand in the default mission from the floor of name Zylon R ) [9] are inexpensive and avail- Shackleton Crater in the lunar South polar able in large quantities, ample for LSE teth- region. The collected material would then ers. Even a prototype LSE, deployed by a be returned to Earth by the release of a single launch of an existing launch vehicle, return capsule roughly one half rotation would serve as the linchpin in a lunar deliv- period later, when elevator tip velocity is ery service, the LSEI, capable of transport- appropriate for a direct return trajectory. ing up to 5 tonnes of material to and from After sample release, the DSTP would the lunar surface per year and supporting a continue into deep space, allowing for long wide variety of scientific research, including term observations of the performance and on and near the lunar surface, at the L1 La- micrometeorite resistance of the tether in grange point, and deep into cislunar space the space environment and the first test at the counterweight. of kilometric radio interferometry in deep The ∆V required for a rocket to ascend space. from lunar surface to EML-1 is 2.7 km The proposed LSE Infrastructure (LSEI), s−1. Goff [10] showed that the typical pay- the first true space elevator on any celestial load mass fraction for such a rocket is 34%, body, is planned as a follow-on to the DSTP. ∼1/3. A rocket which puts the 49 tonnes The LSEI would be a very long tether ex- LSE at EML-1 would otherwise be capable tending from the lunar Surface, through the of depositing 16 tonnes on to the lunar sur- Earth-Moon Lagrange L1 point (EML-1) face. So for LSE payload of 0.1 tonnes, this 56,000 km above the Moon, and on into cis- is equivalent to 16/0.1 = 160 payload land- lunar space. The LSEI prototype, scaled to ing cycles, which is the number of cycles be deployable with one launch of a heavy lift to recoup the LSE launch cost. For sample vehicle, would be able to lift roughly 5 tons return, another factor of three applies, so of lunar samples per year, and deploy a sim- ∼53 sample return cycles would recoup the ilar quantity of equipment onto the lunar launch cost. surface. The LSEI would enhance a crewed While the initial LSEI would not be able Deep Space Habitat (DSH) at EML-1, for to deliver human passengers to and from the a small fraction of the total DSH cost by, lunar surface, a functioning LSEI prototype for example, supporting tele-robotic explo- would enhance the capabilities of humans ration on the surface. Similar scientific work in a Deep Space Habitat (DSH) in a Lis- could be accomplished by a farside LSE, sajous orbit around EML-1, as envisioned which could also provide real time commu- in the 2011 Global Exploration Roadmap nications to the farside, opening an entire [11, 12]. The LSEI would: enable astro- lunar hemisphere to exploration. nauts to deliver rovers and instruments to Of the possible near-term space ele- the lunar surface, teleoperate that equip- vator deployments (Earth, Moon, Mars), ment from only 56,000 km altitude, lift se- a lunar nearside elevator is undoubtedly lected surface samples to EML-1, evaluate the most technically feasible. Modern those samples, and use that evaluation to high strength polymers such as Ultra-high- direct the acquisition of further samples. 2 2. The Scientific Goals of the Deep surface imagery returned during the sam- Space Tether Pathfinder ple collection process will help to assess the nature and distribution of volatiles, even The DSTP would be spacecraft with a if sample return is not successful. (Por- 5000 kilometer long tether, with a tether tions of the Shackleton Crater rim are in mass of 2228 kg and a total system mass sunlight at any time of month [16], provid- of 3043 kg, rotating every 2.44 hours with ing illumination of the crater bottom that a sampling probe on the far tip [13]. The is typically several times full-Moon illumi- DSTP would flyby the Moon as a rotova- nation on Earth.) The search for lunar tor [4] to collect lunar samples in a touch- volatiles ranks high in the decadal surveys of and-go manner, followed by a cruise in deep planetary science [14], and the Permanently space as an engineering test of the tether Shadowed Regions (PSRs) on the Moon are technology needed for the first LSE [13]. arguably the easiest such locations to ac- The DSTP would be the first tether actually cess in the solar system. The PSRs con- deployed as a rotovator, rotating to match tain an important scientific record of the the velocity of its sampling tip with the history of volatiles in the inner Solar Sys- lunar surface, which would enable sample tem, and a potential resource for future eco- acquisition from a scientifically interesting nomic development [17, 18]. These regions region, such as the permanently shadowed have been the target of intense scientific in- regions at the lunar poles. Approximately terest in the last decade, and were the target 2 hours after sample collection the DSTP of the LCROSS impactor [19], but surface would use its rotational velocity to sling- sampling by landers or rovers is complicated shot the sample back to Earth for a ballis- by the lack of solar power and direct com- tic reentry with a minimal expenditure of munications with Earth in a PSR. fuel. The DSTP would then continue on Figure 1 shows the general DSTP tra- into deep space for a long-duration expo- jectory near the Moon in a 2-body gravi- sure test of the radiation and micromete- tational simulation, while Figures 2 and 3 orite resistance of the tether’s design, and show the DSTP tether positions one hour also a test of kilometric radio interferome- before and just after the time of sampling, try in deep space [13]. respectively. Figure 4, an enlargement of The primary scientific justification of the Figure 3 (inverted so that the crater floor DSTP mission would be lunar sample re- is at the bottom), shows that the tether de- turn; its lunar science objectives address scends almost vertically at the lunar sur- every one of goals in the “Lunar Polar face; to a surface observer the motion of the Volatiles and Associated Processes” white probe up and down inside the crater would paper submitted to the 2011 Decadal Sur- appear to be almost completely vertical, en- vey [14]. Current DSTP mission planning abling sampling from topographically rough has focused on sampling volatiles on the regions. In addition, there is a clear line- shadowed floor of Shackleton Crater at the of-sight back to the main spacecraft at the lunar South Pole, which is a cold-trap and other end of the tether, allowing for direct should collect substantial amounts of sur- relay communication with Earth at the time face volatiles from collisions and out-gassing of sampling.
Recommended publications
  • Lunar Space Elevator Infrastructure
    Lunar Space Elevator Infrastructure A Cost Saving Approach to Human Spaceflight within a 15-year Constrained NASA Budget White Paper Submitted at the Open Invitation of the National Research Council 2013 Lunar Space Elevator Infrastructure In Response to the National Research Council’s Study on the Benefits, Challenges and Ramifications of America’s Human Spaceflight Program. LiftPort Group presents a Cost-Effective Approach to Human Spaceflight within a 15-year Constrained NASA Budget. | MICHAEL LAINE – PRESIDENT, LIFTPORT GROUP | CHARLES RADLEY MSC., – ADVISOR, LIFTPORT GROUP | MARSHALL EUBANKS MSC., – ADVISOR, LIFTPORT GROUP | JEROME PEARSON MSC., – ADVISOR, LIFTPORT GROUP | PETER SWAN PHD., – ADVISOR, LIFTPORT GROUP | LEE GRAHAM (NASA – HIS VIEWS DO NOT REFLECT HIS EMPLOYER) | | 8 JULY 2013 | LIFTPORT GROUP | 1307 Dogwood Hill RD SW, Port Orchard, WA, 98366 | www.liftport.com | (862) 438-5383 | [email protected] LiftPort’s Lunar Space Elevator Infrastructure: Affordable Response to Human Spaceflight What are the important benefits provided to the United States and other countries by human spaceflight endeavors? The ability to place humans in space is exciting to the public, and demonstrates the technological maturity and stature of each spacefaring nation. Such a visible and peaceful demonstration of cutting edge technology fosters foreign policy by showing Page | 1 strength without engaging in conflicti. Human spaceflight sparks the imagination and serves an instinctive need to explore. Astronauts are ambassadors for all of humanity in a very personal way. Men and women in space suits inspire people – of all cultures and demographics – to achieve excellence, to believe in a common cause and to pursue a noble goal.
    [Show full text]
  • Selection of the Insight Landing Site M. Golombek1, D. Kipp1, N
    Manuscript Click here to download Manuscript InSight Landing Site Paper v9 Rev.docx Click here to view linked References Selection of the InSight Landing Site M. Golombek1, D. Kipp1, N. Warner1,2, I. J. Daubar1, R. Fergason3, R. Kirk3, R. Beyer4, A. Huertas1, S. Piqueux1, N. E. Putzig5, B. A. Campbell6, G. A. Morgan6, C. Charalambous7, W. T. Pike7, K. Gwinner8, F. Calef1, D. Kass1, M. Mischna1, J. Ashley1, C. Bloom1,9, N. Wigton1,10, T. Hare3, C. Schwartz1, H. Gengl1, L. Redmond1,11, M. Trautman1,12, J. Sweeney2, C. Grima11, I. B. Smith5, E. Sklyanskiy1, M. Lisano1, J. Benardino1, S. Smrekar1, P. Lognonné13, W. B. Banerdt1 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 2State University of New York at Geneseo, Department of Geological Sciences, 1 College Circle, Geneseo, NY 14454 3Astrogeology Science Center, U.S. Geological Survey, 2255 N. Gemini Dr., Flagstaff, AZ 86001 4Sagan Center at the SETI Institute and NASA Ames Research Center, Moffett Field, CA 94035 5Southwest Research Institute, Boulder, CO 80302; Now at Planetary Science Institute, Lakewood, CO 80401 6Smithsonian Institution, NASM CEPS, 6th at Independence SW, Washington, DC, 20560 7Department of Electrical and Electronic Engineering, Imperial College, South Kensington Campus, London 8German Aerospace Center (DLR), Institute of Planetary Research, 12489 Berlin, Germany 9Occidental College, Los Angeles, CA; Now at Central Washington University, Ellensburg, WA 98926 10Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 11Institute for Geophysics, University of Texas, Austin, TX 78712 12MS GIS Program, University of Redlands, 1200 E. Colton Ave., Redlands, CA 92373-0999 13Institut Physique du Globe de Paris, Paris Cité, Université Paris Sorbonne, France Diderot Submitted to Space Science Reviews, Special InSight Issue v.
    [Show full text]
  • Location #1: Peary/Whipple Crater
    Location, Location, Location A Lunar Investment Strategy Hoyt Davidson Near Earth LLC June 2017 ISU's International Institute of Space Commerce Lunar Economic Action Plan (LEAP) Space and Questions from 1960 Still Relevant Today Economic Development • How can we utilize our dynamic system of competitive private enterprise in space, as on earth, to make newly discovered resources useful to man? • How can private enterprise and private capital make their maximum contribution? Philosophy and Policy The ultimate goal is not to impress others, or merely to explore our planetary system, but to use accessible space for the benefit of humankind. It is a goal that is not confined to a decade or a century. Nor is it confined to a single nearby destination, or to a fleeting dash to plant a flag. The idea is to begin preparing now for a future in which the material trapped in the Sun's vicinity is available for incorporation into our way of life. Dr. John Marburger, Head of the Office of Science and Technology Policy 2006 3 The Investment Premise • Just as on Earth, lunar real estate “value” is driven by location, location, location Rank Location Why Valuable 1 Peary Crater Best 1st industrial base and settlement 2 Sinus Medii Good cargo port & space elevator site 3 Largest skylights / lava tubes Best large scale settlements 4 Tsiolkovskiy crater, dark side Prime radio astronomy site 5 High helium-3 concentrations Potential high value mining 6 Lipsky Crater Space elevator site for Earth-Moon L2 7 Aristillus High Thorium concentrations • Lunar real
    [Show full text]
  • Asteroid Retrieval Feasibility Study
    Asteroid Retrieval Feasibility Study 2 April 2012 Prepared for the: Keck Institute for Space Studies California Institute of Technology Jet Propulsion Laboratory Pasadena, California 1 2 Authors and Study Participants NAME Organization E-Mail Signature John Brophy Co-Leader / NASA JPL / Caltech [email protected] Fred Culick Co-Leader / Caltech [email protected] Co -Leader / The Planetary Louis Friedman [email protected] Society Carlton Allen NASA JSC [email protected] David Baughman Naval Postgraduate School [email protected] NASA ARC/Carnegie Mellon Julie Bellerose [email protected] University Bruce Betts The Planetary Society [email protected] Mike Brown Caltech [email protected] Michael Busch UCLA [email protected] John Casani NASA JPL [email protected] Marcello Coradini ESA [email protected] John Dankanich NASA GRC [email protected] Paul Dimotakis Caltech [email protected] Harvard -Smithsonian Center for Martin Elvis [email protected] Astrophysics Ian Garrick-Bethel UCSC [email protected] Bob Gershman NASA JPL [email protected] Florida Institute for Human and Tom Jones [email protected] Machine Cognition Damon Landau NASA JPL [email protected] Chris Lewicki Arkyd Astronautics [email protected] John Lewis University of Arizona [email protected] Pedro Llanos USC [email protected] Mark Lupisella NASA GSFC [email protected] Dan Mazanek NASA LaRC [email protected] Prakhar Mehrotra Caltech [email protected]
    [Show full text]
  • Integrated Lunar Transportation System
    Integrated Lunar Transportation System Jerome Pearson1, John C. Oldson2, Eugene M. Levin3, and Harry Wykes4 Star Technology and Research, Inc., Mount Pleasant, SC, 29466 An integrated transportation system is proposed from the lunar poles to Earth orbit, using solar-powered electric vehicles on lunar tramways, highways, and a lunar space elevator. The system could transport large amounts of lunar resources to Earth orbit for construction, radiation shielding, and propellant depots, and could supply lunar equatorial, polar, and mining bases with manufactured items. We present a system for lunar surface transport using “cars, trucks, and trains,” and the infrastructure of “roads, highways, and tramways,” connecting with the lunar space elevator for transport to Earth orbit. The Apollo Lunar Rovers demonstrated a battery- powered range of nearly 50 kilometers, but they also uncovered the problems of lunar dust. For building dustless highways, it appears particularly attractive to create paved roads by using microwaves to sinter lunar dust into a hard surface. For tramways, tall towers can support high- strength ribbons that carry cable cars over the lunar craters; the ribbon might even be fabricated from lunar materials. We address the power and energy storage requirements for lunar transportation vehicles, the design and effectiveness of lunar tramways, and the materials requirements for the support ribbons of lunar tramways and lunar space elevators. 1. Introduction NASA is implementing a plan for a return to the Moon, which will build on and expand the capabilities demonstrated during the Apollo landings. The plan includes long-duration lunar stays, lunar outposts and bases, and exploitation of lunar resources on the Moon and in Earth orbit1.
    [Show full text]
  • Pathways to Colonization David V
    Pathways To Colonization David V. Smitherman, Jr. NASA, Marshall Space F’light Center, Mail CoLFDO2, Huntsville, AL 35812,256-961-7585, Abstract. The steps required for space colonization are many to grow fiom our current 3-person International Space Station,now under construction, to an inhstmcture that can support hundreds and eventually thousands of people in space. This paper will summarize the author’s fmdings fiom numerous studies and workshops on related subjects and identify some of the critical next steps toward space colonization. Findings will be drawn from the author’s previous work on space colony design, space infirastructure workshops, and various studies that addressed space policy. In cmclusion, this paper will note that siBnifcant progress has been made on space facility construction through the International Space Station program, and that si&icant efforts are needed in the development of new reusable Earth to Orbit transportation systems. The next key steps will include reusable in space transportation systems supported by in space propellant depots, the continued development of inflatable habitat and space elevator technologies, and the resolution of policy issues that will establish a future vision for space development A PATH TO SPACE COLONIZATION In 1993, as part of the author’s duties as a space program planner at the NASA Marshall Space Flight Center, a lengthy timeline was begun to determine the approximate length of time it might take for humans to eventually leave this solar system and travel to the stars. The thought was that we would soon discover a blue planet around another star and would eventually seek to send a colony to explore and expand our presence in this galaxy.
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • Water on the Moon, III. Volatiles & Activity
    Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere).
    [Show full text]
  • Rocket Plume Interactions for NASA Landing Systems
    https://ntrs.nasa.gov/search.jsp?R=20200000979 2020-03-28T19:06:15+00:00Z National Aeronautics and Space Administration Rocket Plume Interactions for NASA Landing Systems December 4th 2019 Dr. Manish Mehta Aerosciences Branch NASA Marshall Space Flight Center marshallmarshall NASA – DLR Technical Interchange Meeting www.nasa.gov NASA Aerosciences Two main areas Agency makes it a commitment to fully investigate the performance and environments of their vehicles Rocket plume-induced environments Launch vehicle & upper-stage base flows Lander base flows Plume-induced flow separation (PIFS) Plume impingement Stage Separation Motors Attitude Control Motors Lander Leg Struts/Footpad Plume-Surface interactions (PSI) Erosion Physics Ejecta Dynamics Plume Physics Plume-induced aerodynamics Launch Vehicles Landing Systems Aerodynamic flow environments Earth crew vehicle re-entry flows Shuttle Orbiter Apollo Fuel/oxidizer tank, booster element earth re-entry External Tank, SRBs Launch vehicle ascent aerodynamic flow/heating Planetary spacecraft re-entry flows Mars Science Laboratory (MSL) 2 Concept – Plume Surface Interaction (PSI) PSI Definition: • Rocket plume-surface interaction (PSI) is a multi-phase and multi-system complex discipline that describes the lander environment due to the impingement of hot rocket exhaust on regolith of planetary bodies. This environment is characterized by the plume flow physics, cratering physics and ejecta dynamics. Problem Statement: • Extraterrestrial PSI cannot be accurately modeled with cold flow terrestrial testing. There are technical gaps in the physics modeling in the predictive simulation tools and ground tests. There are limited to no flight instrumentation dedicated to PSI. An accurate, validated predictive simulation capability is required to mitigate against lunar dust environments and to land large, heavy payloads.
    [Show full text]
  • Apollo Over the Moon: a View from Orbit (Nasa Sp-362)
    chl APOLLO OVER THE MOON: A VIEW FROM ORBIT (NASA SP-362) Chapter 1 - Introduction Harold Masursky, Farouk El-Baz, Frederick J. Doyle, and Leon J. Kosofsky [For a high resolution picture- click here] Objectives [1] Photography of the lunar surface was considered an important goal of the Apollo program by the National Aeronautics and Space Administration. The important objectives of Apollo photography were (1) to gather data pertaining to the topography and specific landmarks along the approach paths to the early Apollo landing sites; (2) to obtain high-resolution photographs of the landing sites and surrounding areas to plan lunar surface exploration, and to provide a basis for extrapolating the concentrated observations at the landing sites to nearby areas; and (3) to obtain photographs suitable for regional studies of the lunar geologic environment and the processes that act upon it. Through study of the photographs and all other arrays of information gathered by the Apollo and earlier lunar programs, we may develop an understanding of the evolution of the lunar crust. In this introductory chapter we describe how the Apollo photographic systems were selected and used; how the photographic mission plans were formulated and conducted; how part of the great mass of data is being analyzed and published; and, finally, we describe some of the scientific results. Historically most lunar atlases have used photointerpretive techniques to discuss the possible origins of the Moon's crust and its surface features. The ideas presented in this volume also rely on photointerpretation. However, many ideas are substantiated or expanded by information obtained from the huge arrays of supporting data gathered by Earth-based and orbital sensors, from experiments deployed on the lunar surface, and from studies made of the returned samples.
    [Show full text]
  • Surveyor 1 Space- Craft on June 2, 1966 As Seen by the Narrow Angle Camera of the Lunar Re- Connaissance Orbiter Taken on July 17, 2009 (Also See Fig
    i “Project Surveyor, in particular, removed any doubt that it was possible for Americans to land on the Moon and explore its surface.” — Harrison H. Schmitt, Apollo 17 Scientist-Astronaut ii Frontispiece: Landing site of the Surveyor 1 space- craft on June 2, 1966 as seen by the narrow angle camera of the Lunar Re- connaissance Orbiter taken on July 17, 2009 (also see Fig. 13). The white square in the upper photo outlines the area of the enlarged view below. The spacecraft is ca. 3.3 m tall and is casting a 15 m shadow to the East. (NASA/LROC/ ASU/GSFC photos) iii iv Surveyor I: America’s First Moon Landing by William F. Mellberg v © 2014, 2015 William F. Mellberg vi About the author: William Mellberg was a marketing and public relations representative with Fokker Aircraft. He is also an aerospace historian, having published many articles on both the development of airplanes and space vehicles in various magazines. He is the author of Famous Airliners and Moon Missions. He also serves as co-Editor of Harrison H. Schmitt’s website: http://americasuncommonsense.com Acknowledgments: The support and recollections of Frank Mellberg, Harrison Schmitt, Justin Rennilson, Alexander Gurshstein, Paul Spudis, Ronald Wells, Colin Mackellar and Dwight Steven- Boniecki is gratefully acknowledged. vii Surveyor I: America’s First Moon Landing by William F. Mellberg A Journey of 250,000 Miles . December 14, 2013. China’s Chang’e 3 spacecraft successfully touched down on the Moon at 1311 GMT (2111 Beijing Time). The landing site was in Mare Imbrium, the Sea of Rains, about 25 miles (40 km) south of the small crater, Laplace F, and roughly 100 miles (160 km) east of its original target in Sinus Iridum, the Bay of Rainbows.
    [Show full text]
  • Calibration, Foreground Subtraction, and Signal
    From Theoretical Promise to Observational Reality: Calibration, Foreground Subtraction, and Signal Extraction in Hydrogen Cosmology by Adrian Chi-Yan Liu A.B., Princeton University (2006) Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2012 c Massachusetts Institute of Technology 2012. All rights reserved. Author.............................................................. Department of Physics May 25, 2012 Certified by. Max Erik Tegmark Professor of Physics Thesis Supervisor Accepted by . Krishna Rajagopal Professor of Physics Associate Department Head for Education 2 From Theoretical Promise to Observational Reality: Calibration, Foreground Subtraction, and Signal Extraction in Hydrogen Cosmology by Adrian Chi-Yan Liu Submitted to the Department of Physics on May 25, 2012, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract By using the hyperfine 21 cm transition to map out the distribution of neutral hy- drogen at high redshifts, hydrogen cosmology has the potential to place exquisite constraints on fundamental cosmological parameters, as well as to provide direct ob- servations of our Universe prior to the formation of the first luminous objects. How- ever, this theoretical promise has yet to become observational reality. Chief amongst the observational obstacles are a need for extremely well-calibrated instruments and methods for dealing with foreground contaminants such as Galactic synchrotron ra- diation. In this thesis we explore a number of these challenges by proposing and testing a variety of techniques for calibration, foreground subtraction, and signal extraction in hydrogen cosmology. For tomographic hydrogen cosmology experiments, we explore a calibration algorithm known as redundant baseline calibration, extending treatments found in the existing literature to include rigorous calculations of uncertainties and extensions to not-quite-redundant baselines.
    [Show full text]