Carotenoids Up-Regulate Connexin43 Gene Expression Independent of Their Provitamin a Or Antioxidant Properties1

Total Page:16

File Type:pdf, Size:1020Kb

Carotenoids Up-Regulate Connexin43 Gene Expression Independent of Their Provitamin a Or Antioxidant Properties1 (CANCER RESEARCH 52, 5707-5712, October 15, 1992] Carotenoids Up-Regulate Connexin43 Gene Expression Independent of Their Provitamin A or Antioxidant Properties1 Li-Xin Zhang, Robert V. Cooney, and John S. Bertram2 Molecular Oncology Unit, Cancer Research Center of Hawaii. University of Hawaii, Honolulu, Hawaii 96813 ABSTRACT their antioxidant capabilities were not. Neither activity was associated with the provitamin status of the various carotenoids Epidemiological evidence and studies in whole animals and cell cul tested (16). ture have indicated that carotenoids have cancer chemopreventive ac Here, we explore the mechanism by which various caro tion. In mouse C3H10T1/2 cells, this activity is highly correlated with the ability of carotenoids to up-regulate gap junctional intercellular tenoids elevate junctional communication. Gap junctions are communication. Here, we report that in mouse cells, carotenoids in composed of transmembrane proteins called connexins, which crease the expression of connexM.ì,a gene that encodes a major gap form a family of proteins (17). One member of this family, junction protein. This effect appears unrelated to their provitamin A Cx43,3 is a major gap junctional protein in various mammalian or antioxidant properties, since carotenoids with and without provitamin cells including 10T1/2 cells (18). The data indicate that caro A activity increased levels of connexin43 mRNA and protein, whereas tenoids enhance gap junctional communication by increasing the antioxidants methyl-bixin and a-tocopherol were inactive. More the levels of Cx43 mRNA and protein. This effect appears over, the active carotenoid canthaxanthin did not induce the vitamin unrelated to their provitamin A activity or antioxidant proper A-inducible gene retinoic acid receptor-0. Connexln4i is the first caro- ties. tenoid-inducible gene described in mammals. By indicating an addi tional pathway through which carotenoids function, these data provide a mechanistic basis for cancer chemoprevention by carotenoids and may MATERIALS AND METHODS lead to a re-evaluation of carotenoid physiology. Chemicals. Lycopene and fi-carotene were obtained from Sigma Chemical Co. (St. Louis, MO) and were 90 and 80% pure, respectively, INTRODUCTION as determined by high-performance liquid chromatography. Canthax anthin and /rans-methyl-bixin were gifts from Hoffmann-LaRoche Carotenoids, yellow and red pigments found in vegetables (Nutley, NJ), and were >99% and 90% pure, respectively. Because of its and fruits, are common components of the human diet. Accu mulating evidence suggests that carotenoids, particularly 0-car- purity and greater chemical stability, canthaxanthin was used for many of the molecular studies. The synthetic benzoidal derivative of retinoic otene, have diverse beneficial roles in animals and humans. acid, TTNPB, was a kind gift from Hoffmann-LaRoche. a-Tocopherol Among these are: provitamin A activity (1), cancer chemopre was purchased from Sigma. vention (2-4), stimulation of immune responses (5), suppres Cell Culture. Mouse embryonic fibroblast C3H/10T1/2 cells were sion of atherosclerosis (6), and prevention of cataract formation cultured in Eagle's basal medium with Earle's salts (GIBCO), supple (7). High dose ^-carotene is clinically approved for use in mented with 5% fetal bovine serum (Hyclone Laboratories) and 25 jig/ml gentamicin sulfate, and were incubated at 37°Cin5% COi in air patients with erythropoietic protoporphyria (8), is currently undergoing clinical trial as a cancer preventive agent (9), and, as described previously (15,19). Unless otherwise mentioned, cells were seeded in plastic culture dishes (Falcon). When confluent, 1 week post- together with canthaxanthin, is a widely used, United States Department of Agriculture-approved, food coloring agent (10). seeding, the medium was changed to 3% fetal bovine serum. Drug treatment started with the first medium change unless otherwise indi Until recently, biological activity of carotenoids in mammals cated. Cell number was counted by Coulter counter. The murine em was considered limited to those with provitamin A activity. bryonal teratocarcinoma F9 cell line was kindly supplied by Dr. Lor However, since Peto étal.(\ 1) in 1981 first raised the question, raine J. Gudas (Harvard) and cultured as described (20). Briefly, the "Can dietary 0-carotene materially reduce human cancer cells were cultured in Dulbecco's modified Eagle's medium (Flow) con rates?", the focus of carotenoid research has shifted to include taining 10% fetal calf serum (Hyclone Laboratories) and 25 *¿g/ml studies of their properties as antioxidants (12, 13). At present, gentamicin sulfate and were incubated at 37°Cin 5% CO: ¡na¡r-Cells therefore, 2 competing, but not mutually exclusive, hypotheses were seeded in 150-mm plastic culture dishes. Since this transformed exist to explain carotenoid action in mammals: (a) conversion cell line rapidly lifts off from the culture dish after attaining confluence, to retinoids, vitamin A-like compounds possessing multiple it was treated on the second day after seeding. Treatment. All carotenoids tested were delivered to cells using tet- physiological properties; and (b) activity of the intact molecule as a lipid-phase antioxidant. In previous studies using carcino rahydrofuran as solvent (99.9% with 0.025% butylated hydroxytoluene; purchased from Aldrich Chemical Co.) as described previously (15). gen-treated C3H10T1/2 cells, we have confirmed that caro TTNPB and a-tocopherol were dissolved in acetone unless indicated. tenoids can function as cancer preventive agents (14, 15) and The final concentration of acetone or tetrahydrofuran in the culture have demonstrated a novel action of carotenoids: that of up- medium was 0.5%. regulating gap junctional communication (16). The ability of Gap Junctional Communication Assay. Cell cultures were grown in carotenoids to enhance communication was highly correlated 60-mm dishes and treated with drugs after confluence. Gap junctional with their ability to inhibit neoplastic transformation, however, communication was measured by microinjection of the fluorescent tracer dye Lucifer yellow CH (Sigma) as a 10% solution in 0.33 MLiCI Received 4/23/92; accepted 8/3/92. as described previously (21). Micropipettes were prepared from glass The costs of publication of this article were defrayed in part by the payment of capillary tubes with the aid of a Flaming-Brown micropipette puller page charges. This article must therefore be hereby marked advertisement in accord (Sutler Instrument Co., Novata, CA), and Lucifer yellow was microin- ance with 18 U.S.C. Section 1734 solely to indicate this fact. jected into a single cell with an Eppendorf microinjector. The total 1This research was supported by Grant BC686 from the American Cancer Society. 2 To whom requests for reprints should be addressed, at University of Hawaii at 3 The abbreviations used are: Cx43, connexin43; TTNPB. tetrahydrotetramethyl Manoa, Cancer Research Center, Department of Molecular Oncology. 1236 Lau- naphthalenyl propenylben/oic acid: SDS. sodium dodecyl sulfate: RAR, retinoic hala Street, Honolulu, HI 96813. acid receptor. 5707 Downloaded from cancerres.aacrjournals.org on September 25, 2021. © 1992 American Association for Cancer Research. UP-REGULATION OF CONNEXIN43 GENE EXPRESSION BY CAROTENOIDS number of fluorescent neighboring cells was counted 10 min after mi- croinjection and served as an index of gap junctional communication. The communicating networks were digitized using a video camera and stored for later analysis. Lycopene Isolation of Protein. Cell cultures were grown in 150-mm dishes and were treated after reaching confluence. The cells were washed with Mx^vA^v^v^v^^v^kx V^ ice-cold phosphate-buffered saline containing 1 ITIMNaF and 1 imi CA ' ' phenylmethylsulfonyl fluoride. After centrifugation at 3,000 rpm for ^^ ß-Carotene 10 min, cell pellets were either frozen at -70°C for future analysis or lysed in 30-50 ¡i\oflysis buffer (1% Nonidet P-40, 0.05 M iodoaceta- mide, 10 mM phenylmethylsulfonyl fluoride. 1 m\i EDTA, 1 MMleu- peptin. 2 ¿ig/mlaprotinin, 0.7 ¿tg/mlpepstatin in borate buffer, pH 8.0) for 1-2 h at 4°C.Lysates were then centrifuged at 10,000 x g for 15 min, and the supernatant was used as the source of Cx43. Protein content was measured with a commercial Protein Assay Reagent kit (Pierce Chemical Co., Rockford, IL) according to the manufacture's instructions. Methyl-Bixin Protein Electrophoresis and \Yestern Blotting. Cell lysates contain ing an equal amount of protein (usually 35-50 Mg/lane)were mixed with Fig. 1. Structures of carotenoids tested. 2x SDS sample buffer containing 20% 0-mercaptoethanol. After at least 15 min at room temperature, the samples were electrophoresed on 123456 78 a 10% SDS-polyacrylamide mini-gel (Bio-Rad, Richmond, CA) at 200 V. A prestained protein standard was also loaded for indication of both molecular weight and transference efficiency. After electrophoresis. Western blots were performed as previously described using a rabbit Cx43 mm«.an polyclonal antibody raised against a 15-mer synthetic polypeptide lo cated in the C-terminal domain of rat heart Cx43 (22). Immunofluorescent Detection of Gap Junctional Plaques. This anal B 012347 ysis was essentially performed as previously described (22) using the same polyclonal anti-Cx43 antibody as described above. Isolation of Total RNA and Poly(A)' RNA. After treatment, cells Cx43 were harvested with cold phosphate-buffered saline containing
Recommended publications
  • A Comparison of the Anticancer Activities of Dietary Beta-Carotene, Canthaxanthin and Astaxanthin in Mice in Vivo
    1: Anticancer Res 1999 May-Jun;19(3A):1849-53 Related Articles, Books, LinkOut A comparison of the anticancer activities of dietary beta-carotene, canthaxanthin and astaxanthin in mice in vivo. Chew BP, Park JS, Wong MW, Wong TS. Department Animal Sciences, Washington State University, Pullman 99164-6320, USA. [email protected] The anticancer activities of beta-carotene, astaxanthin and canthaxanthin against the growth of mammary tumors were studied in female eight-wk-old BALB/c mice. The mice were fed a synthetic diet containing 0, 0.1 or 0.4% beta-carotene, astaxanthin or canthaxanthin. After 3 weeks, all mice were inoculated with 1 x 10(6) WAZ-2T tumor cells into the mammary fat pad. All animals were killed on 45 d after inoculation with the tumor cells. No carotenoids were detectable in the plasma or tumor tissues of unsupplemented mice. Concentrations of plasma astaxanthin (20 to 28 mumol/L) were greater (P < 0.05) than that of beta-carotene (0.1 to 0.2 mumol/L) and canthaxanthin (3 to 6 mmol/L). However, in tumor tissues, the concentration of canthaxanthin (4.9 to 6.0 nmol/g) was higher than that of beta-carotene (0.2 to 0.5 nmol/g) and astaxanthin (1.2 to 2.7 nmol/g). In general, all three carotenoids decreased mammary tumor volume. Mammary tumor growth inhibition by astaxanthin was dose-dependent and was higher than that of canthaxanthin and beta-carotene. Mice fed 0.4% beta-carotene or canthaxanthin did not show further increases in tumor growth inhibition compared to those fed 0.1% of each carotenoid.
    [Show full text]
  • Effect of Carotenoids on Aflatoxin B1 Synthesis by Aspergillus Flavus
    Postharvest Pathology and Mycotoxins Effect of Carotenoids on Aflatoxin B1 Synthesis by Aspergillus flavus Robert A. Norton USDA, ARS, National Center for Agricultural Utilization Research, Bioactive Agents Research, 1815 N. University, Peoria, IL 61604. Accepted for publication 24 April 1997. ABSTRACT Norton, R. A. 1997. Effect of carotenoids on aflatoxin B1 synthesis by type; lutein was similar to a-carotene and zeaxanthin was similar to ~­ Aspergillus flavus. Phytopathology 87:814-821. carotene in inhibition. A mutant accumulating norsolorinic acid (NA), A. parasitiClis SRRC 162, incubated with a-carotene produced reduced levels Carotenes and xanthophylls occurring in yellow corn and related ter­ of both NA and aflatoxin, indicating that inhibition occurred before NA. penoids were tested for their effect on growth and aflatoxin B 1 produc­ Additional A. flavus strains tested against 50 Ilg/ml of ~-carotene had 89 tion by Aspergillus flavus NRRL 3357, using the suspended disc culture to 96% inhibition, which was significantly more sensitive than NRRL method. Aflatoxin synthesis was inhibited at concentrations of ~-caro­ 3357. A. parasiticus strains were less sensitive and generally had similar tene, lutein, and zeaxanthin comparable to those found in the horny en­ or lower inhibition than NRRL 3357. The results indicate that the pre­ dosperm of mature corn. Usually growth was not significantly affected. sence of carotenoids in endosperm may decrease the amount of aflatoxin Inhibition of aflatoxin biosynthesis was greater for compounds with an produced by A.flavus. a-ionone-type ring (a-carotene, lutein, or a-ionone) compared with com­ pounds with a ~-ionone ring. The presence of hydroxy groups on the rings Additional keywords: aflatoxin inhibition, ionones.
    [Show full text]
  • Raspberry Pomace - Composition, Properties and Application
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE European Journal ISSN 2449-8955 Review Article of Biological Research Raspberry pomace - composition, properties and application Agnieszka Joanna Brodowska Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Łódź University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland * Corresponding author: Agnieszka Brodowska; E-mail: [email protected] Received: 19 February 2017; Revised submission: 24 March 2017; Accepted: 03 April 2017 Copyright: © The Author(s) 2017. European Journal of Biological Research © T.M.Karpi ński 2017. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial 4.0 International License, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. DOI : http://dx.doi.org/10.5281/zenodo.495190 ABSTRACT industry by-product, is considered as a potential food ingredient. Its pomace contains plenty of Raspberry pomace can be valorised due to its valuable components such as carbohydrates, nutritionally favourable effect on human health. proteins, fats, fibre, flavours, pectins, vitamins, It is an important source of polyphenols, ellagic similar to the composition of whole raspberries [2]. acid, ellagitannins, tocopherols, unsaturated fatty Moreover, raspberry pomace is rich in a large group acids, and dietary fibre. Thus, raspberry pomace of various phenolics especially ellagitannins, can be considered as a potential raw material to proanthocyanidins, anthocyanins, flavonols, and receive products rich in polyphenols or dietary phenolic acids (especially, ellagic acid) which are fibre, which can provide healthy properties to food also predominant in berries [3].
    [Show full text]
  • Pigment Palette by Dr
    Tree Leaf Color Series WSFNR08-34 Sept. 2008 Pigment Palette by Dr. Kim D. Coder, Warnell School of Forestry & Natural Resources, University of Georgia Autumn tree colors grace our landscapes. The palette of potential colors is as diverse as the natural world. The climate-induced senescence process that trees use to pass into their Winter rest period can present many colors to the eye. The colored pigments produced by trees can be generally divided into the green drapes of tree life, bright oil paints, subtle water colors, and sullen earth tones. Unveiling Overpowering greens of summer foliage come from chlorophyll pigments. Green colors can hide and dilute other colors. As chlorophyll contents decline in fall, other pigments are revealed or produced in tree leaves. As different pigments are fading, being produced, or changing inside leaves, a host of dynamic color changes result. Taken altogether, the various coloring agents can yield an almost infinite combination of leaf colors. The primary colorants of fall tree leaves are carotenoid and flavonoid pigments mixed over a variable brown background. There are many tree colors. The bright, long lasting oil paints-like colors are carotene pigments produc- ing intense red, orange, and yellow. A chemical associate of the carotenes are xanthophylls which produce yellow and tan colors. The short-lived, highly variable watercolor-like colors are anthocyanin pigments produc- ing soft red, pink, purple and blue. Tannins are common water soluble colorants that produce medium and dark browns. The base color of tree leaf components are light brown. In some tree leaves there are pale cream colors and blueing agents which impact color expression.
    [Show full text]
  • Free Radicals in Biology and Medicine Page 0
    77:222 Spring 2005 Free Radicals in Biology and Medicine Page 0 This student paper was written as an assignment in the graduate course Free Radicals in Biology and Medicine (77:222, Spring 2005) offered by the Free Radical and Radiation Biology Program B-180 Med Labs The University of Iowa Iowa City, IA 52242-1181 Spring 2005 Term Instructors: GARRY R. BUETTNER, Ph.D. LARRY W. OBERLEY, Ph.D. with guest lectures from: Drs. Freya Q . Schafer, Douglas R. Spitz, and Frederick E. Domann The Fine Print: Because this is a paper written by a beginning student as an assignment, there are no guarantees that everything is absolutely correct and accurate. In view of the possibility of human error or changes in our knowledge due to continued research, neither the author nor The University of Iowa nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from the use of such information. Readers are encouraged to confirm the information contained herein with other sources. All material contained in this paper is copyright of the author, or the owner of the source that the material was taken from. This work is not intended as a threat to the ownership of said copyrights. S. Jetawattana Lycopene, a powerful antioxidant 1 Lycopene, a powerful antioxidant by Suwimol Jetawattana Department of Radiation Oncology Free Radical and Radiation Biology The University
    [Show full text]
  • Canthaxanthin, a Red-Hot Carotenoid: Applications, Synthesis, and Biosynthetic Evolution
    plants Review Canthaxanthin, a Red-Hot Carotenoid: Applications, Synthesis, and Biosynthetic Evolution Bárbara A. Rebelo 1,2 , Sara Farrona 3, M. Rita Ventura 2 and Rita Abranches 1,* 1 Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; [email protected] 2 Bioorganic Chemistry Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; [email protected] 3 Plant and AgriBiosciences Centre, Ryan Institute, NUI Galway, H19 TK33 Galway, Ireland; [email protected] * Correspondence: [email protected] Received: 14 July 2020; Accepted: 13 August 2020; Published: 15 August 2020 Abstract: Carotenoids are a class of pigments with a biological role in light capture and antioxidant activities. High value ketocarotenoids, such as astaxanthin and canthaxanthin, are highly appealing for applications in human nutraceutical, cosmetic, and animal feed industries due to their color- and health-related properties. In this review, recent advances in metabolic engineering and synthetic biology towards the production of ketocarotenoids, in particular the red-orange canthaxanthin, are highlighted. Also reviewed and discussed are the properties of canthaxanthin, its natural producers, and various strategies for its chemical synthesis. We review the de novo synthesis of canthaxanthin and the functional β-carotene ketolase enzyme across organisms, supported by a protein-sequence-based phylogenetic analysis. Various possible modifications of the carotenoid biosynthesis pathway and the present sustainable cost-effective alternative platforms for ketocarotenoids biosynthesis are also discussed. Keywords: canthaxanthin; metabolic engineering; carotenoid biosynthesis pathway; plant secondary metabolite; chemical synthesis 1.
    [Show full text]
  • (Se, Vitamin E and Carotenoids) in Broiler Diets on the Growth
    Brazilian Journal of Poultry Science Revista Brasileira de Ciência Avícola The Effects of Different Types of Antioxidants (Se, ISSN 1516-635X Jan - Mar 2016 / v.18 / n.1 / 101-116 Vitamin E and Carotenoids) in Broiler Diets on the Growth Performance, Skin Pigmentation and Liver http://dx.doi.org/10.1590/18069061-2015-0155 and Plasma Antioxidant Concentrations Author(s) ABSTracT Karadas FI This study investigated the effects of the addition of different Erdoğan SI antioxidants to broiler diets on their live performance, liver antioxidant Kor DI Oto GII composition and concentrations, immune response, and meat and skin Uluman MIII color. A total of 945 three-day-old Ross 308 broiler chicks of both genders were randomly allocated to one of nine dietary treatments (n=105), with I Yüzüncü Yıl University Agriculture Faculty, three replicates 35 chicks per pen, as follows: T1: control (commercially Department of Animal Science, Van, Turkey II Yüzüncü Yıl University Research Hospital, available corn-and soybean-based broiler diet); T2: selenium Department of Pharmacy, Van, Turkey (control+0.5 mg/kg Sel-PlexTMSe yeast); T3: vitamin E (control+200 mg/ III Kars Directorate of Provincial Food Agricul- kg Kavimix-E-50 α-tocopherol acetate); T4: lutein (control+100 mg/kg ture and Livestock 5% Lutein Beads XB); T5: lycopene (control+100 mg/kg 5% Lyco Beads XB);T6: canthaxanthin (control+25 mg/kg 10% Carophyll®Red);T7: apo- ester (control+25 mg/kg 10% Carophyll®Yellow); T8: lutein+zeaxanthin (control+25 mg/kg Xamacol®); and T9: β-carotene (control+100 mg/kg 10% Rovimix®). Feed (starter, grower, developer and finisher phases) and water were provided ad libitum for 42 days.
    [Show full text]
  • Carotenoid Pigmentation of Salmonid Fishes Carotenoid Pigmentation Of
    71 Carotenoid pigmentation of salmonid fishes - recent progress1 Bjørn Bjerkeng AKVAFORSK, Institute of Aquaculture Research AS, N-6600 Sunndalsøra, Norway Tel. +47 71 69 53 05, Fax. +47 71 69 53 01. [email protected] ABSTRACT: The purpose of this presentation is to review recent literature on carotenoid pigmentation in salmonid fishes. Consumers have preferences for red-colored products of salmonid fishes, and this is reflected by an increased rate of publications on carotenoids in relation to aspects of quality such as coloration, variation among groups of fish and within fish, and effects of fish production and processing. Recent studies have shown that dietary carotenoid utilization for muscle pigmentation has a considerable genetic component, enabling selective breeding for color traits. Recently, studies have shown that astaxanthin (3,3´-dihydroxy-â, â-carotene-4,4´-dione) E/Z isomers accumulate selectively in fish tissues and plasma. All-E-astaxanthin accumulate selectively in muscle and plasma, and 13Z-astaxanthin in liver of salmonid fishes. The positive effect of lipid content on muscle carotenoid deposition appear to be the only interaction with macronutrients. Also it has been shown that oil composition and á-tocopherol may have slight positive effects on carotenoid utilization. Storage losses of carotenoids may be considerable, and protection from oxygene is of great importance. Carotenoid absorption is slow, and apparently governed by passive diffusion. About 60% of the absorbed carotenoids are metabolized, partly into idoxanthin (3,3´,4´-trihydroxy- â, â -carotene-4-one) which is rapidly formed from astaxanthin. Carotenoid metabolism and partitioning among body compartments is affected by sex hormones.
    [Show full text]
  • Dietary Canthaxanthin Reduces Xanthophyll Uptake and Red Coloration in Adult Red-Legged Partridges Carlos Alonso-Alvarez1,*, Esther Garcıa-Dé Blas2 and Rafael Mateo2
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb185074. doi:10.1242/jeb.185074 RESEARCH ARTICLE Dietary canthaxanthin reduces xanthophyll uptake and red coloration in adult red-legged partridges Carlos Alonso-Alvarez1,*, Esther Garcıa-dé Blas2 and Rafael Mateo2 ABSTRACT these traits would have evolved under sexual selection to signal Carotenoids give color to conspicuous animal signals that are often individual quality during intra-sexual competition or mate choice the product of sexual selection. Knowledge of the mechanisms (e.g. Senar, 2006; Hill, 2006). involved in carotenoid-based signaling is critical to understanding In spite of the large number of different carotenoids giving rise to how these traits evolve. However, these mechanisms remain only animal coloration, not many are involved in the production of red partially understood. Carotenoids are usually viewed as scarce ornaments. Thus, for instance, astaxanthin and/or canthaxanthin dietary antioxidants whose allocation to ornaments may trade off are present in 90% of the red traits of avian species (reviewed in against health. This trade-off would ensure its reliability as a signal of table 5.1 in McGraw, 2006). In aquatic birds, these two individual quality. In the case of red (keto)carotenoids, the literature ketocarotenoids can be directly obtained from the diet because suggests that some species may show constraints in their uptake. they often feed on invertebrates that store large amounts of these red Canthaxanthin is one of the most common ketocarotenoids in red compounds (Hudon and Brush, 1990; Negro et al., 2000; Matsuno, ornaments of animals. It is often commercially used as a dietary 2001).
    [Show full text]
  • Cytotoxicity L
    UC Irvine UC Irvine Previously Published Works Title Immunomodulation in humans caused by beta-carotene and vitamin A Permalink https://escholarship.org/uc/item/7303m8vx Journal Nutrition Research, 10(12) ISSN 02715317 Authors Prabhala, Rao H Garewal, Harinder S Meyskens, Frank L et al. Publication Date 1990-12-01 DOI 10.1016/S0271-5317(05)80139-3 Peer reviewed eScholarship.org Powered by the California Digital Library University of California NUTRITION RESEARCH, Volo 10, pp. 1473-1486,1990 0271-5317/90 $3.00 + .00 Printed in the USA. Copyright (c) 1990 Pergamon Press plc. All rights reserved. IMMUNOMODULATION IN HUMANS CAUSED BY BETA-CAROTENE AND VITAMIN A Rao H. Prabhala, Ph.D.1, 4, Harinder S. Garewal, M.D., Ph.D. 2, Frank L. Meyskens, Jr., M.D.2, 5, and Ronald R. Watson, Ph.D.3, 6 1Department of Microbiology and Inununology; 2Department of Hematology and Oncology; 3Department of Family and Conmlunity Medicine; University of Arizona Tucson, Arizona 85724, USA 4Current Address: Dartmouth Medical School, Hanover, NH 03756 5Current Address: University of California, Riverside, CA ABSTRACT Carotenoids and retinoids can stimulate some human immune responses. These include cytokine release with anti-tumor cell activity, increased natural killer cells and activated lymphocytes after both in vitro and in vivo treatment with beta carotene. Such stimulations seem only partly due to retlnoids formed from carotenoid metabolism and may be due to effects caused by the structure of beta carotene. Changes in in~nune functions could explain in part the cancer resistance provided by high carotenoid or retinoid intakes in animals. KEY WORDS: beta carotene, natural killer cells, activated lymphocytes, cancer.
    [Show full text]
  • Plant Carotenoids As Pigment Sources in Laying Hen Diets: Effect on Yolk Color, Carotenoid Content, Oxidative Stability and Sensory Properties of Eggs
    foods Article Plant Carotenoids as Pigment Sources in Laying Hen Diets: Effect on Yolk Color, Carotenoid Content, Oxidative Stability and Sensory Properties of Eggs Kristina Kljak 1 , Klaudija Carovi´c-Stanko 1,2,* , Ivica Kos 1 , Zlatko Janjeˇci´c 1 , Goran Kiš 1, Marija Duvnjak 1 , Toni Safner 1,2 and Dalibor Bedekovi´c 1 1 Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia; [email protected] (K.K.); [email protected] (I.K.); [email protected] (Z.J.); [email protected] (G.K.); [email protected] (M.D.); [email protected] (T.S.); [email protected] (D.B.) 2 Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia * Correspondence: [email protected]; Tel.: +385-1-2393-622 Abstract: The aim of this study was to evaluate the effect of a supplementation diet for hens consisting of dried basil herb and flowers of calendula and dandelion for color, carotenoid content, iron-induced oxidative stability, and sensory properties of egg yolk compared with commercial pigment (control) and marigold flower. The plant parts were supplemented in diets at two levels: 1% and 3%. In response to dietary content, yolks from all diets differed in carotenoid profile (p < 0.001). The Citation: Kljak, K.; Carovi´c-Stanko, 3% supplementation level resulted in a similar total carotenoid content as the control (21.25 vs. K.; Kos, I.; Janjeˇci´c,Z.; Kiš, G.; 21.79 µg/g), but by 3-fold lower compared to the 3% marigold (66.95 µg/g). The tested plants did Duvnjak, M.; Safner, T.; Bedekovi´c,D.
    [Show full text]
  • Genetically Engineered Biosynthetic Pathways for Nonnatural C60
    www.nature.com/scientificreports OPEN Genetically engineered biosynthetic pathways for nonnatural C60 carotenoids using Received: 22 November 2018 Accepted: 22 January 2019 C5-elongases and C50-cyclases in Published: xx xx xxxx Escherichia coli Ling Li 1, Maiko Furubayashi1, Shifei Wang1, Takashi Maoka2, Shigeko Kawai-Noma1, Kyoichi Saito1 & Daisuke Umeno 1 While the majority of the natural carotenoid pigments are based on 40-carbon (C40) skeleton, some carotenoids from bacteria have larger C50 skeleton, biosynthesized by attaching two isoprene units (C5) to both sides of the C40 carotenoid pigment lycopene. Subsequent cyclization reactions result in the production of C50 carotenoids with diverse and unique skeletal structures. To produce even larger nonnatural novel carotenoids with C50 + C5 + C5 = C60 skeletons, we systematically coexpressed natural C50 carotenoid biosynthetic enzymes (lycopene C5-elongases and C50-cyclases) from various bacterial sources together with the laboratory-engineered nonnatural C50-lycopene pathway in Escherichia coli. Among the tested enzymes, the elongases and cyclases from Micrococcus luteus exhibited signifcant activity toward C50-lycopene, and yielded the novel carotenoids C60-favuxanthin and C60- sarcinaxanthin. Moreover, coexpression of M. luteus elongase with Corynebacterium cyclase resulted in the production of C60-sarcinaxanthin, C60-sarprenoxanthin, and C60-decaprenoxanthin. Carotenoids are a class of natural pigments covering yellow, orange and red colors. More than 750 carotenoids have been identifed in various plants, fungi, and microorganisms1, and a wide range of essential biological func- tions have been described, with light-harvesting, photoprotection, antioxidatant, and pro-vitamin activities, and roles in the control of membrane fuidity2. In recent years, carotenoids have been increasingly considered in appli- cations as therapeutic or bioelectronic materials3,4.
    [Show full text]