Genetically Engineered Biosynthetic Pathways for Nonnatural C60
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Comparison of the Anticancer Activities of Dietary Beta-Carotene, Canthaxanthin and Astaxanthin in Mice in Vivo
1: Anticancer Res 1999 May-Jun;19(3A):1849-53 Related Articles, Books, LinkOut A comparison of the anticancer activities of dietary beta-carotene, canthaxanthin and astaxanthin in mice in vivo. Chew BP, Park JS, Wong MW, Wong TS. Department Animal Sciences, Washington State University, Pullman 99164-6320, USA. [email protected] The anticancer activities of beta-carotene, astaxanthin and canthaxanthin against the growth of mammary tumors were studied in female eight-wk-old BALB/c mice. The mice were fed a synthetic diet containing 0, 0.1 or 0.4% beta-carotene, astaxanthin or canthaxanthin. After 3 weeks, all mice were inoculated with 1 x 10(6) WAZ-2T tumor cells into the mammary fat pad. All animals were killed on 45 d after inoculation with the tumor cells. No carotenoids were detectable in the plasma or tumor tissues of unsupplemented mice. Concentrations of plasma astaxanthin (20 to 28 mumol/L) were greater (P < 0.05) than that of beta-carotene (0.1 to 0.2 mumol/L) and canthaxanthin (3 to 6 mmol/L). However, in tumor tissues, the concentration of canthaxanthin (4.9 to 6.0 nmol/g) was higher than that of beta-carotene (0.2 to 0.5 nmol/g) and astaxanthin (1.2 to 2.7 nmol/g). In general, all three carotenoids decreased mammary tumor volume. Mammary tumor growth inhibition by astaxanthin was dose-dependent and was higher than that of canthaxanthin and beta-carotene. Mice fed 0.4% beta-carotene or canthaxanthin did not show further increases in tumor growth inhibition compared to those fed 0.1% of each carotenoid. -
Meet Lycopene Prostate Cancer Is One of the Leading Causes of Cancer Death Among Men in the United States
UCLA Nutrition Noteworthy Title Lycopene and Mr. Prostate: Best Friends Forever Permalink https://escholarship.org/uc/item/5ks510rw Journal Nutrition Noteworthy, 5(1) Author Simzar, Soheil Publication Date 2002 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Meet Lycopene Prostate cancer is one of the leading causes of cancer death among men in the United States. Dietary factors are considered an important risk factor for the development of prostate cancer in addition to age, genetic predisposition, environmental factors, and other lifestyle factors such as smoking. Recent studies have indicated that there is a direct correlation between the occurrence of prostate cancer and the consumption of tomatoes and tomato-based products. Lycopene, one of over 600 carotenoids, is one of the main carotenoids found in human plasma and it is responsible for the red pigment found in tomatoes and other foods such as watermelons and red grapefruits. It has been shown to be a very potent antioxidant, with oxygen-quenching ability greater than any other carotenoid. Recent research has indicated that its antioxidant effects help lower the risk of heart disease, atherosclerosis, and different types of cancer-especially prostate cancer. Lycopene's Characteristics Lycopene is on of approximately 600 known carotenoids. Carotenoids are red, yellow, and orange pigments which are widely distributed in nature and are especially abundant in yellow- orange fruits and vegetables and dark green, leafy vegetables. They absorb light in the 400- 500nm region which gives them a red/yellow color. Only green plants and certain microorganisms such as fungi and algae can synthesize these pigments. -
Effect of Carotenoids on Aflatoxin B1 Synthesis by Aspergillus Flavus
Postharvest Pathology and Mycotoxins Effect of Carotenoids on Aflatoxin B1 Synthesis by Aspergillus flavus Robert A. Norton USDA, ARS, National Center for Agricultural Utilization Research, Bioactive Agents Research, 1815 N. University, Peoria, IL 61604. Accepted for publication 24 April 1997. ABSTRACT Norton, R. A. 1997. Effect of carotenoids on aflatoxin B1 synthesis by type; lutein was similar to a-carotene and zeaxanthin was similar to ~ Aspergillus flavus. Phytopathology 87:814-821. carotene in inhibition. A mutant accumulating norsolorinic acid (NA), A. parasitiClis SRRC 162, incubated with a-carotene produced reduced levels Carotenes and xanthophylls occurring in yellow corn and related ter of both NA and aflatoxin, indicating that inhibition occurred before NA. penoids were tested for their effect on growth and aflatoxin B 1 produc Additional A. flavus strains tested against 50 Ilg/ml of ~-carotene had 89 tion by Aspergillus flavus NRRL 3357, using the suspended disc culture to 96% inhibition, which was significantly more sensitive than NRRL method. Aflatoxin synthesis was inhibited at concentrations of ~-caro 3357. A. parasiticus strains were less sensitive and generally had similar tene, lutein, and zeaxanthin comparable to those found in the horny en or lower inhibition than NRRL 3357. The results indicate that the pre dosperm of mature corn. Usually growth was not significantly affected. sence of carotenoids in endosperm may decrease the amount of aflatoxin Inhibition of aflatoxin biosynthesis was greater for compounds with an produced by A.flavus. a-ionone-type ring (a-carotene, lutein, or a-ionone) compared with com pounds with a ~-ionone ring. The presence of hydroxy groups on the rings Additional keywords: aflatoxin inhibition, ionones. -
Raspberry Pomace - Composition, Properties and Application
View metadata, citation and similar papers at core.ac.uk brought to you by CORE European Journal ISSN 2449-8955 Review Article of Biological Research Raspberry pomace - composition, properties and application Agnieszka Joanna Brodowska Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Łódź University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland * Corresponding author: Agnieszka Brodowska; E-mail: [email protected] Received: 19 February 2017; Revised submission: 24 March 2017; Accepted: 03 April 2017 Copyright: © The Author(s) 2017. European Journal of Biological Research © T.M.Karpi ński 2017. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial 4.0 International License, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. DOI : http://dx.doi.org/10.5281/zenodo.495190 ABSTRACT industry by-product, is considered as a potential food ingredient. Its pomace contains plenty of Raspberry pomace can be valorised due to its valuable components such as carbohydrates, nutritionally favourable effect on human health. proteins, fats, fibre, flavours, pectins, vitamins, It is an important source of polyphenols, ellagic similar to the composition of whole raspberries [2]. acid, ellagitannins, tocopherols, unsaturated fatty Moreover, raspberry pomace is rich in a large group acids, and dietary fibre. Thus, raspberry pomace of various phenolics especially ellagitannins, can be considered as a potential raw material to proanthocyanidins, anthocyanins, flavonols, and receive products rich in polyphenols or dietary phenolic acids (especially, ellagic acid) which are fibre, which can provide healthy properties to food also predominant in berries [3]. -
33 34 35 Lipid Synthesis Laptop
BI/CH 422/622 Liver cytosol ANABOLISM OUTLINE: Photosynthesis Carbohydrate Biosynthesis in Animals Biosynthesis of Fatty Acids and Lipids Fatty Acids Triacylglycerides contrasts Membrane lipids location & transport Glycerophospholipids Synthesis Sphingolipids acetyl-CoA carboxylase Isoprene lipids: fatty acid synthase Ketone Bodies ACP priming 4 steps Cholesterol Control of fatty acid metabolism isoprene synth. ACC Joining Reciprocal control of b-ox Cholesterol Synth. Diversification of fatty acids Fates Eicosanoids Cholesterol esters Bile acids Prostaglandins,Thromboxanes, Steroid Hormones and Leukotrienes Metabolism & transport Control ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Synthesis Degradation Ketone body Utilization Isoprene Biosynthesis 1 Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates are transferred stepwise from ATP to mevalonate. • A third phosphate from ATP is added at the hydroxyl, followed by decarboxylation and elimination catalyzed by pyrophospho- mevalonate decarboxylase creates a pyrophosphorylated 5-C product: D3-isopentyl pyrophosphate (IPP) (isoprene). • Isomerization to a second isoprene dimethylallylpyrophosphate (DMAPP) gives two activated isoprene IPP compounds that act as precursors for D3-isopentyl pyrophosphate Isopentyl-D-pyrophosphate all of the other lipids in this class isomerase DMAPP Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates -
Carotenoids Up-Regulate Connexin43 Gene Expression Independent of Their Provitamin a Or Antioxidant Properties1
(CANCER RESEARCH 52, 5707-5712, October 15, 1992] Carotenoids Up-Regulate Connexin43 Gene Expression Independent of Their Provitamin A or Antioxidant Properties1 Li-Xin Zhang, Robert V. Cooney, and John S. Bertram2 Molecular Oncology Unit, Cancer Research Center of Hawaii. University of Hawaii, Honolulu, Hawaii 96813 ABSTRACT their antioxidant capabilities were not. Neither activity was associated with the provitamin status of the various carotenoids Epidemiological evidence and studies in whole animals and cell cul tested (16). ture have indicated that carotenoids have cancer chemopreventive ac Here, we explore the mechanism by which various caro tion. In mouse C3H10T1/2 cells, this activity is highly correlated with the ability of carotenoids to up-regulate gap junctional intercellular tenoids elevate junctional communication. Gap junctions are communication. Here, we report that in mouse cells, carotenoids in composed of transmembrane proteins called connexins, which crease the expression of connexM.ì,a gene that encodes a major gap form a family of proteins (17). One member of this family, junction protein. This effect appears unrelated to their provitamin A Cx43,3 is a major gap junctional protein in various mammalian or antioxidant properties, since carotenoids with and without provitamin cells including 10T1/2 cells (18). The data indicate that caro A activity increased levels of connexin43 mRNA and protein, whereas tenoids enhance gap junctional communication by increasing the antioxidants methyl-bixin and a-tocopherol were inactive. More the levels of Cx43 mRNA and protein. This effect appears over, the active carotenoid canthaxanthin did not induce the vitamin unrelated to their provitamin A activity or antioxidant proper A-inducible gene retinoic acid receptor-0. -
Enhanced Lycopene Production in Escherichia Coli by Expression of Two MEP Pathway Enzymes from Vibrio Sp
catalysts Article Enhanced Lycopene Production in Escherichia coli by Expression of Two MEP Pathway Enzymes from Vibrio sp. Dhg 1, 1, 1 1, Min Jae Kim y, Myung Hyun Noh y , Sunghwa Woo , Hyun Gyu Lim * and Gyoo Yeol Jung 1,2,* 1 Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea; [email protected] (M.J.K.); [email protected] (M.H.N.); [email protected] (S.W.) 2 School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea * Correspondence: [email protected] (H.G.L.); [email protected] (G.Y.J.); Tel.: +82-54-279-2391 (G.Y.J.) These authors contributed equally to this work. y Received: 28 October 2019; Accepted: 26 November 2019; Published: 29 November 2019 Abstract: Microbial production is a promising method that can overcome major limitations in conventional methods of lycopene production, such as low yields and variations in product quality. Significant efforts have been made to improve lycopene production by engineering either the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway or mevalonate (MVA) pathway in microorganisms. To further improve lycopene production, it is critical to utilize metabolic enzymes with high specific activities. Two enzymes, 1-deoxy-d-xylulose-5-phosphate synthase (Dxs) and farnesyl diphosphate synthase (IspA), are required in lycopene production using MEP pathway. Here, we evaluated the activities of Dxs and IspA of Vibrio sp. dhg, a newly isolated and fast-growing microorganism. -
Comparison of Biogenic Volatile Organic Compound Emissions from Broad Leaved and Coniferous Trees in Turkey
Environmental Impact II 647 Comparison of biogenic volatile organic compound emissions from broad leaved and coniferous trees in Turkey Y. M. Aydin1, B. Yaman1, H. Koca1, H. Altiok1, Y. Dumanoglu1, M. Kara1, A. Bayram1, D. Tolunay2, M. Odabasi1 & T. Elbir1 1Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Turkey 2Department of Soil Science and Ecology, Faculty of Forestry, Istanbul University, Turkey Abstract Biogenic volatile organic compound (BVOC) emissions from thirty-eight tree species (twenty broad leaved and eighteen coniferous) grown in Turkey were measured. BVOC samples were collected with a specialized dynamic enclosure technique in forest areas where these tree species are naturally grown. In this method, the branches were enclosed in transparent nalofan bags maintaining their natural conditions and avoiding any source of stress. The air samples from the inlet and outlet of the bags were collected on an adsorbent tube containing Tenax. Samples were analyzed using a thermal desorption (TD) and gas chromatography mass spectrometry (GC/MS) system. Sixty-five BVOC compounds were analyzed in five major groups: isoprene, monoterpenes, sesquiterpens, oxygenated sesquiterpenes and other oxygenated VOCs. Emission factors were calculated and adjusted to standard conditions (1000 μmol/m2 s photosynthetically active radiation-PAR and 30°C temperature). Consistent with the literature, broad leaved trees emitted mainly isoprene while the coniferous trees emitted mainly monoterpenes. Even though fir species are coniferous trees, they emitted significant amounts of isoprene in addition to monoterpenes. Oak species showed a large inter-species variability in their emissions. Pine species emitted mainly monoterpenes and substantial amounts of oxygenated compounds. Keywords: BVOC emissions, dynamic enclosure system, emission factor, Turkey. -
Pigment Palette by Dr
Tree Leaf Color Series WSFNR08-34 Sept. 2008 Pigment Palette by Dr. Kim D. Coder, Warnell School of Forestry & Natural Resources, University of Georgia Autumn tree colors grace our landscapes. The palette of potential colors is as diverse as the natural world. The climate-induced senescence process that trees use to pass into their Winter rest period can present many colors to the eye. The colored pigments produced by trees can be generally divided into the green drapes of tree life, bright oil paints, subtle water colors, and sullen earth tones. Unveiling Overpowering greens of summer foliage come from chlorophyll pigments. Green colors can hide and dilute other colors. As chlorophyll contents decline in fall, other pigments are revealed or produced in tree leaves. As different pigments are fading, being produced, or changing inside leaves, a host of dynamic color changes result. Taken altogether, the various coloring agents can yield an almost infinite combination of leaf colors. The primary colorants of fall tree leaves are carotenoid and flavonoid pigments mixed over a variable brown background. There are many tree colors. The bright, long lasting oil paints-like colors are carotene pigments produc- ing intense red, orange, and yellow. A chemical associate of the carotenes are xanthophylls which produce yellow and tan colors. The short-lived, highly variable watercolor-like colors are anthocyanin pigments produc- ing soft red, pink, purple and blue. Tannins are common water soluble colorants that produce medium and dark browns. The base color of tree leaf components are light brown. In some tree leaves there are pale cream colors and blueing agents which impact color expression. -
Free Radicals in Biology and Medicine Page 0
77:222 Spring 2005 Free Radicals in Biology and Medicine Page 0 This student paper was written as an assignment in the graduate course Free Radicals in Biology and Medicine (77:222, Spring 2005) offered by the Free Radical and Radiation Biology Program B-180 Med Labs The University of Iowa Iowa City, IA 52242-1181 Spring 2005 Term Instructors: GARRY R. BUETTNER, Ph.D. LARRY W. OBERLEY, Ph.D. with guest lectures from: Drs. Freya Q . Schafer, Douglas R. Spitz, and Frederick E. Domann The Fine Print: Because this is a paper written by a beginning student as an assignment, there are no guarantees that everything is absolutely correct and accurate. In view of the possibility of human error or changes in our knowledge due to continued research, neither the author nor The University of Iowa nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from the use of such information. Readers are encouraged to confirm the information contained herein with other sources. All material contained in this paper is copyright of the author, or the owner of the source that the material was taken from. This work is not intended as a threat to the ownership of said copyrights. S. Jetawattana Lycopene, a powerful antioxidant 1 Lycopene, a powerful antioxidant by Suwimol Jetawattana Department of Radiation Oncology Free Radical and Radiation Biology The University -
Canthaxanthin, a Red-Hot Carotenoid: Applications, Synthesis, and Biosynthetic Evolution
plants Review Canthaxanthin, a Red-Hot Carotenoid: Applications, Synthesis, and Biosynthetic Evolution Bárbara A. Rebelo 1,2 , Sara Farrona 3, M. Rita Ventura 2 and Rita Abranches 1,* 1 Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; [email protected] 2 Bioorganic Chemistry Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; [email protected] 3 Plant and AgriBiosciences Centre, Ryan Institute, NUI Galway, H19 TK33 Galway, Ireland; [email protected] * Correspondence: [email protected] Received: 14 July 2020; Accepted: 13 August 2020; Published: 15 August 2020 Abstract: Carotenoids are a class of pigments with a biological role in light capture and antioxidant activities. High value ketocarotenoids, such as astaxanthin and canthaxanthin, are highly appealing for applications in human nutraceutical, cosmetic, and animal feed industries due to their color- and health-related properties. In this review, recent advances in metabolic engineering and synthetic biology towards the production of ketocarotenoids, in particular the red-orange canthaxanthin, are highlighted. Also reviewed and discussed are the properties of canthaxanthin, its natural producers, and various strategies for its chemical synthesis. We review the de novo synthesis of canthaxanthin and the functional β-carotene ketolase enzyme across organisms, supported by a protein-sequence-based phylogenetic analysis. Various possible modifications of the carotenoid biosynthesis pathway and the present sustainable cost-effective alternative platforms for ketocarotenoids biosynthesis are also discussed. Keywords: canthaxanthin; metabolic engineering; carotenoid biosynthesis pathway; plant secondary metabolite; chemical synthesis 1. -
(Se, Vitamin E and Carotenoids) in Broiler Diets on the Growth
Brazilian Journal of Poultry Science Revista Brasileira de Ciência Avícola The Effects of Different Types of Antioxidants (Se, ISSN 1516-635X Jan - Mar 2016 / v.18 / n.1 / 101-116 Vitamin E and Carotenoids) in Broiler Diets on the Growth Performance, Skin Pigmentation and Liver http://dx.doi.org/10.1590/18069061-2015-0155 and Plasma Antioxidant Concentrations Author(s) ABSTracT Karadas FI This study investigated the effects of the addition of different Erdoğan SI antioxidants to broiler diets on their live performance, liver antioxidant Kor DI Oto GII composition and concentrations, immune response, and meat and skin Uluman MIII color. A total of 945 three-day-old Ross 308 broiler chicks of both genders were randomly allocated to one of nine dietary treatments (n=105), with I Yüzüncü Yıl University Agriculture Faculty, three replicates 35 chicks per pen, as follows: T1: control (commercially Department of Animal Science, Van, Turkey II Yüzüncü Yıl University Research Hospital, available corn-and soybean-based broiler diet); T2: selenium Department of Pharmacy, Van, Turkey (control+0.5 mg/kg Sel-PlexTMSe yeast); T3: vitamin E (control+200 mg/ III Kars Directorate of Provincial Food Agricul- kg Kavimix-E-50 α-tocopherol acetate); T4: lutein (control+100 mg/kg ture and Livestock 5% Lutein Beads XB); T5: lycopene (control+100 mg/kg 5% Lyco Beads XB);T6: canthaxanthin (control+25 mg/kg 10% Carophyll®Red);T7: apo- ester (control+25 mg/kg 10% Carophyll®Yellow); T8: lutein+zeaxanthin (control+25 mg/kg Xamacol®); and T9: β-carotene (control+100 mg/kg 10% Rovimix®). Feed (starter, grower, developer and finisher phases) and water were provided ad libitum for 42 days.