Chapter 5: What Are the Major Types of Organic Molecules?

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 5: What Are the Major Types of Organic Molecules? Chapter 5: What are the major types of organic molecules? polymers four major classes of biologically important organic molecules: carbohydrates lipids proteins (and related compounds) nucleic acids (and related compounds) . • Discuss hydrolysis and condensation, and the connection between them. many biological molecules are polymers polymers: long chains w/ repeating subunits (monomers) example: proteins - amino acids example: nucleic acids – nucleotides macromolecules: very large polymers (100s of subunits) . Polymers hydrolysis (“break with water”) . Polymers condensation (dehydration synthesis) . • Discuss hydrolysis and condensation, and the connection between them. Chapter 5: What are the major types of organic molecules? four major classes of biologically important organic molecules: carbohydrates lipids proteins (and related compounds) nucleic acids (and related compounds) . • For each organic molecule class, address what they are (structure) and what they are used for (function). • Carbohydrates: what are they, and what are they used for? • What terms are associated with them (including the monomers and the polymer bond name)? • Give some examples of molecules in this group. Carbohydrates carbohydrates: carbon, hydrogen, and oxygen ratio typically (CH2O)n sugars, starches, and cellulose . Carbohydrates main molecules of life for energy storage; consumed for energy production some used as building materials monosaccharides, disaccharides, and polysaccharides . Carbohydrates monosaccharides single monomer 3, 4, 5, 6, or 7 carbons trioses, tetroses, pentoses, hexoses, and heptoses pentose examples: ribose and deoxyribose hexose examples: glucose, fructose, and galactose . Carbohydrates structural formulas for glucose, fructose, and galactose isomers of each other glucose and galactose are structural isomers of fructose glucose and galactose are diastereomers . Carbohydrates pentose and hexose sugars form ring structures in solution carbons given position numbers . Carbohydrates ring structures in solution often creates diastereomers example: a-glucose and b-glucose . Carbohydrates disaccharides: two monosaccharide units joined by a glycosidic linkage or bond condensation oxygen atom is bound to a carbon from each momomer linkage typically carbon 1 to carbon 4 . Carbohydrates maltose, sucrose, lactose: common disaccharides maltose (malt sugar): two glucose subunits sucrose (table sugar): glucose + fructose lactose (milk sugar): glucose + galactose + . Carbohydrates polysaccharides number of subunits varies, typically thousands can be branched or unbranched some are easily broken down and are good for energy storage (examples: starch, glycogen) some are harder to break down and are good as structural components (example: cellulose) . Carbohydrates starch: main energy storage carbohydrate of plants polymer made from α-glucose units, mostly α1-4 linkages amylose = unbranched starch amylopectin = branched starch (branches usually 1-6 linkages) amyloplasts, a type of plastid for starch storage . Carbohydrates glycogen: main energy storage carbohydrate of animals very highly branched more water-soluble is NOT stored in an organelle mostly found in liver and muscle cells . Carbohydrates cellulose: major structural component plant cell walls b-glucose units similar to starch, but note that the b1-4 linkage makes a huge difference . Carbohydrates unlike starch, most organisms cannot digest cellulose cellulose is a major constituent of cotton, wood, and paper cellulose contains ~50% of the carbon in found in plants . Carbohydrates fibrous cellulose is the “fiber” in your diet some fungi, bacteria, and protozoa make enzymes that can break down cellulose animals that live on materials rich in cellulose, e.g. cattle, sheep and termites, contain microorganisms in their gut that are able to break down cellulose for use by the animal . Carbohydrates carbohydrates can be modified from the basic (CH2O)n formula many modified carbohydrates have important biological roles example: chitin – structural component in fungal cell walls and arthropod exoskeltons example: galactosamine in cartilage example: glycoproteins and glycolipids cellular membranes . • Carbohydrates: what are they, and what are they used for? • What terms are associated with them (including the monomers and the polymer bond name)? • Give some examples of molecules in this group. • Lipids: what are they, and what are they used for? • What terms are associated with them (including majors classes and bond names)? • Give some examples of molecules in this group. Lipids lipids defined by solubility, not structure oily or fatty compounds lipids are principally hydrophobic mainly carbon and hydrogen some do have polar and nonpolar regions some oxygen and/or phosphorus, mainly in polar regions . Lipids roles of lipids include serving as: membrane structural components signaling molecules energy storage molecules . Lipids major classes of lipids that you need to know are: triacylglycerols (fats) phospholipids terpenes and terpenoids . Lipids triacylglycerols: glycerol + 3 fatty acids glycerol: 3C sugar alcohol w/ 3 (-OH) groups fatty acid: long, unbranched hydrocarbon chain w/ (-COOH) at end . Lipids saturated fatty acids: no carbon-carbon double bonds (usually solid at room temp) . Lipids unsaturated fatty acids: one or more double bonds (usually liquid at room temp) monounsaturated – one double bond polyunsaturated – more than one double bond . Lipids about 30 different fatty acids are commonly found in triacylglycerols; most have an even number of carbons . Lipids condensation results in an ester linkage between a fatty acid and the glycerol . Lipids names based on number of attached fatty acids: one = monoacylglycerol two = diacylglycerol three = triacylglycerol . Carboxyl Glycerol Fatty acid (a) Ester linkage Palmitic acid Oleic acid Linoleic acid (b) A triacyglycerol (c) Palmitic (d) Oleic (e) Linoleic . Lipids triacylglycerols (also called triglycerides) are the most abundant lipids, and are important sources of energy . Lipids phospholipids consist of: a diacylglycerol molecule a phosphate group esterified to the third -OH group of glycerol an organic molecule (such as choline) esterified to the phosphate . Lipids phospholipids are amphipathic polar end (the phosphate and organic molecule) nonpolar end (the two fatty acids) this is often drawn with a polar “head” and two nonpolar “tails” . Lipids the nonpolar (or hydrophobic) portion of phospholipids tends to stay away from water the polar (or hydrophilic) portion of the molecule tends to interact with water this, along with shape, causes phospholipids to form bilayers when mixed with water because of this character phospholipids are important constituents of biological membranes . Lipids terpenes are long-chained lipids built from 5-carbon isoprene units many pigments, such as chlorophyll, carotenoids, and retinal, are terpenes or modified terpenes (often called terpenoids) . Lipids other terpenes/terpenoids include natural rubber and “essential oils” such as plant fragrances and many spices . Lipids steroids are terpene derivatives that contain four rings of carbon atoms side chains extend from the rings; length and structure of the side chains varies one type of steroid, cholesterol, is an important component of cell membranes other examples: many hormones such as testosterone, estrogens . • Lipids: what are they, and what are they used for? • What terms are associated with them (including majors classes and bond names)? • Give some examples of molecules in this group. • Polypeptides: what are they, and what are they used for? • What terms are associated with them (including the monomers and the polymer bond name)? • Give some examples of molecules in this group. Proteins (polypeptides) macromolecules formed from amino acid monomers proteins have great structural diversity and perform many roles roles include enzyme catalysis, defense, transport, structure/support, motion, regulation protein structure determines protein function . proteins are polymers made of amino acid monomers linked together by peptide bonds amino acids consist of a central or alpha carbon bound to: a hydrogen atom an amino group (-NH2) a carboxyl group (-COOH) and a variable side chain (R group) . proteins are polymers made of amino acid monomers linked together by peptide bonds the R group determines the identity and much of the chemical properties of the amino acid there are 20 amino acids that commonly occur in proteins pay attention to what makes an R group polar, nonpolar, or ionic (charged) and thus their hydrophobic or hydrophilic nature . • Discuss how to tell which of these categories an amino acid falls into: hydrophobic or hydrophilic (and within the hydrophilic, polar or charged). cysteine and tyrosine are actually essentially nonpolar . Alpha carbon R group POLAR = hydrophilic Asparagine Glutamine Tyrosine Serine Theonine Asn Gln Tyr Ser Thr Exception: mainly hydrophobic ACIDIC BASIC ELECTRICALLY CHARGED= hydrophilic ELECTRICALLY Aspartic Glutamic Acid Arginine Lysine Histidine Asn Glu Arg Lys His Glycine Alanine Valine Leucine Isoleucine Gly Ala Val Leu Ile NONPOLAR NONPOLAR = hydrophobic Tryptophan Proline Cysteine Methionine Phenylalanine Trp Pro Cys Met Phe • Discuss how to tell which of these categories an amino acid falls into: hydrophobic or hydrophilic (and within the hydrophilic, polar or
Recommended publications
  • Meet Lycopene Prostate Cancer Is One of the Leading Causes of Cancer Death Among Men in the United States
    UCLA Nutrition Noteworthy Title Lycopene and Mr. Prostate: Best Friends Forever Permalink https://escholarship.org/uc/item/5ks510rw Journal Nutrition Noteworthy, 5(1) Author Simzar, Soheil Publication Date 2002 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Meet Lycopene Prostate cancer is one of the leading causes of cancer death among men in the United States. Dietary factors are considered an important risk factor for the development of prostate cancer in addition to age, genetic predisposition, environmental factors, and other lifestyle factors such as smoking. Recent studies have indicated that there is a direct correlation between the occurrence of prostate cancer and the consumption of tomatoes and tomato-based products. Lycopene, one of over 600 carotenoids, is one of the main carotenoids found in human plasma and it is responsible for the red pigment found in tomatoes and other foods such as watermelons and red grapefruits. It has been shown to be a very potent antioxidant, with oxygen-quenching ability greater than any other carotenoid. Recent research has indicated that its antioxidant effects help lower the risk of heart disease, atherosclerosis, and different types of cancer-especially prostate cancer. Lycopene's Characteristics Lycopene is on of approximately 600 known carotenoids. Carotenoids are red, yellow, and orange pigments which are widely distributed in nature and are especially abundant in yellow- orange fruits and vegetables and dark green, leafy vegetables. They absorb light in the 400- 500nm region which gives them a red/yellow color. Only green plants and certain microorganisms such as fungi and algae can synthesize these pigments.
    [Show full text]
  • 33 34 35 Lipid Synthesis Laptop
    BI/CH 422/622 Liver cytosol ANABOLISM OUTLINE: Photosynthesis Carbohydrate Biosynthesis in Animals Biosynthesis of Fatty Acids and Lipids Fatty Acids Triacylglycerides contrasts Membrane lipids location & transport Glycerophospholipids Synthesis Sphingolipids acetyl-CoA carboxylase Isoprene lipids: fatty acid synthase Ketone Bodies ACP priming 4 steps Cholesterol Control of fatty acid metabolism isoprene synth. ACC Joining Reciprocal control of b-ox Cholesterol Synth. Diversification of fatty acids Fates Eicosanoids Cholesterol esters Bile acids Prostaglandins,Thromboxanes, Steroid Hormones and Leukotrienes Metabolism & transport Control ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Synthesis Degradation Ketone body Utilization Isoprene Biosynthesis 1 Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates are transferred stepwise from ATP to mevalonate. • A third phosphate from ATP is added at the hydroxyl, followed by decarboxylation and elimination catalyzed by pyrophospho- mevalonate decarboxylase creates a pyrophosphorylated 5-C product: D3-isopentyl pyrophosphate (IPP) (isoprene). • Isomerization to a second isoprene dimethylallylpyrophosphate (DMAPP) gives two activated isoprene IPP compounds that act as precursors for D3-isopentyl pyrophosphate Isopentyl-D-pyrophosphate all of the other lipids in this class isomerase DMAPP Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates
    [Show full text]
  • Enhanced Lycopene Production in Escherichia Coli by Expression of Two MEP Pathway Enzymes from Vibrio Sp
    catalysts Article Enhanced Lycopene Production in Escherichia coli by Expression of Two MEP Pathway Enzymes from Vibrio sp. Dhg 1, 1, 1 1, Min Jae Kim y, Myung Hyun Noh y , Sunghwa Woo , Hyun Gyu Lim * and Gyoo Yeol Jung 1,2,* 1 Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea; [email protected] (M.J.K.); [email protected] (M.H.N.); [email protected] (S.W.) 2 School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea * Correspondence: [email protected] (H.G.L.); [email protected] (G.Y.J.); Tel.: +82-54-279-2391 (G.Y.J.) These authors contributed equally to this work. y Received: 28 October 2019; Accepted: 26 November 2019; Published: 29 November 2019 Abstract: Microbial production is a promising method that can overcome major limitations in conventional methods of lycopene production, such as low yields and variations in product quality. Significant efforts have been made to improve lycopene production by engineering either the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway or mevalonate (MVA) pathway in microorganisms. To further improve lycopene production, it is critical to utilize metabolic enzymes with high specific activities. Two enzymes, 1-deoxy-d-xylulose-5-phosphate synthase (Dxs) and farnesyl diphosphate synthase (IspA), are required in lycopene production using MEP pathway. Here, we evaluated the activities of Dxs and IspA of Vibrio sp. dhg, a newly isolated and fast-growing microorganism.
    [Show full text]
  • Comparison of Biogenic Volatile Organic Compound Emissions from Broad Leaved and Coniferous Trees in Turkey
    Environmental Impact II 647 Comparison of biogenic volatile organic compound emissions from broad leaved and coniferous trees in Turkey Y. M. Aydin1, B. Yaman1, H. Koca1, H. Altiok1, Y. Dumanoglu1, M. Kara1, A. Bayram1, D. Tolunay2, M. Odabasi1 & T. Elbir1 1Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Turkey 2Department of Soil Science and Ecology, Faculty of Forestry, Istanbul University, Turkey Abstract Biogenic volatile organic compound (BVOC) emissions from thirty-eight tree species (twenty broad leaved and eighteen coniferous) grown in Turkey were measured. BVOC samples were collected with a specialized dynamic enclosure technique in forest areas where these tree species are naturally grown. In this method, the branches were enclosed in transparent nalofan bags maintaining their natural conditions and avoiding any source of stress. The air samples from the inlet and outlet of the bags were collected on an adsorbent tube containing Tenax. Samples were analyzed using a thermal desorption (TD) and gas chromatography mass spectrometry (GC/MS) system. Sixty-five BVOC compounds were analyzed in five major groups: isoprene, monoterpenes, sesquiterpens, oxygenated sesquiterpenes and other oxygenated VOCs. Emission factors were calculated and adjusted to standard conditions (1000 μmol/m2 s photosynthetically active radiation-PAR and 30°C temperature). Consistent with the literature, broad leaved trees emitted mainly isoprene while the coniferous trees emitted mainly monoterpenes. Even though fir species are coniferous trees, they emitted significant amounts of isoprene in addition to monoterpenes. Oak species showed a large inter-species variability in their emissions. Pine species emitted mainly monoterpenes and substantial amounts of oxygenated compounds. Keywords: BVOC emissions, dynamic enclosure system, emission factor, Turkey.
    [Show full text]
  • Investigation of Antifungal Mechanisms of Thymol in the Human Fungal Pathogen, Cryptococcus Neoformans
    molecules Article Investigation of Antifungal Mechanisms of Thymol in the Human Fungal Pathogen, Cryptococcus neoformans Kwang-Woo Jung 1,*, Moon-Soo Chung 1, Hyoung-Woo Bai 1,2 , Byung-Yeoup Chung 1 and Sungbeom Lee 1,2,* 1 Radiation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea; [email protected] (M.-S.C.); [email protected] (H.-W.B.); [email protected] (B.-Y.C.) 2 Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Yuseong-gu, Korea * Correspondence: [email protected] (K.-W.J.); [email protected] (S.L.) Abstract: Due to lifespan extension and changes in global climate, the increase in mycoses caused by primary and opportunistic fungal pathogens is now a global concern. Despite increasing attention, limited options are available for the treatment of systematic and invasive mycoses, owing to the evo- lutionary similarity between humans and fungi. Although plants produce a diversity of chemicals to protect themselves from pathogens, the molecular targets and modes of action of these plant-derived chemicals have not been well characterized. Using a reverse genetics approach, the present study re- vealed that thymol, a monoterpene alcohol from Thymus vulgaris L., (Lamiaceae), exhibits antifungal Cryptococcus neoformans activity against by regulating multiple signaling pathways including cal- cineurin, unfolded protein response, and HOG (high-osmolarity glycerol) MAPK (mitogen-activated protein kinase) pathways. Thymol treatment reduced the intracellular concentration of Ca2+ by Citation: Jung, K.-W.; Chung, M.-S.; Bai, H.-W.; Chung, B.-Y.; Lee, S.
    [Show full text]
  • TERPENES : Structural Classification and Biological Activities
    IOSR Journal Of Pharmacy And Biological Sciences (IOSR-JPBS) e-ISSN:2278-3008, p-ISSN:2319-7676. Volume 16, Issue 3 Ser. I (May – June 2021), PP 25-40 www.Iosrjournals.Org TERPENES : structural classification and biological activities Florence Déclaire Mabou1*, Irma Belinda Nzeuwa Yossa2 1Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 96 Dschang, Cameroon 2Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, P.O. Box 96 Dschang, Cameroon Corresponding author : (F.D. Mabou) Abstract Terpenes is a large group of compounds found in flowers, stems, leaves, roots and other parts of numerous plant species. They are built up from isoprene units with the general formula (C5H8)n. They can be grouped into classes according to the number of isoprene units (n) in the molecule: hemiterpenes (C5H8), monoterpenes (C10H16), sesquiterpenes (C15H24), diterpenes (C20H32), triterpenes (C30H48), tetraterpenes (C40H64), and polyterpenes (C5H8)n. Most of the terpenoids with the variation in their structures are biologically active and are used worldwide for the treatment of many diseases. Many terpenoids inhibited different human cancer cells and are used as anticancer drugs such as Taxol and its derivatives. Many flavorings and nice fragrances are consisting on terpenes because of its nice aroma. Terpenes and its derivatives are used as antimalarial drugs such as artemisinin and related compounds. Meanwhile, terpenoids play a diverse role in the field of foods, drugs, cosmetics, hormones, vitamins, and so on. This chapterprovides classification, biological activities and distribution of terpenes isolated currently from different natural sources. --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 04-05-2021 Date of Acceptance: 17-05-2021 --------------------------------------------------------------------------------------------------------------------------------------- I.
    [Show full text]
  • What Is Coenzyme Q10 (Coq10)?
    What is Coenzyme Q10 (CoQ10)? CoQ10 is a benzoquinone containing 10 isoprene units, which allows it to diffuse rapidly through the inner mitochondrial membrane. In this setting, the molecule works as a lipophilic electron carrier for the respiratory chai n, transferring electrons from NADH, succinate and fatty acid oxidation intermediates to cytochromes. In other words, CoQ10 functions as an intermediary between two -electron carriers and the one -electron cytochromes (1). CoQ10 may also act as an antioxidan t (2). protecting cell structures (3). and other cell membranes (4). from oxidative damage by preventing lipid peroxidation. Since congestive heart failure is often accompanied by oxidative damage to the myocardium (5). and since CoQ10 levels are often dec reased in the myocardial cells of advanced heart failure patients (6). it is possible that supplementing CoQ10 levels could help alleviate the severity of heart disease. This hypothesis is bolstered by the fact that myocardial CoQ10 deficiency correlates with heart failure severity (6,7). To test the validity of this idea, let us examine the effects of CoQ10 in treating hypertrophic cardiomyopathy and congestive heart failure. Hypertrophic Cardiomyopathy (HCM) HCM is characterized primarily by a thickenin g of the left ventricle walls (usually the septal), as well as by significant impairment of left ventricular filling. Although standard disease treatment calls for negative inotropic drugs, this regimen relieves pain and palpitations without decreasing wal l thickness, and generally leads to worse fatigue and dyspnea. Given the decreased CoQ10 levels in diseased heart tissue, it is possible that the heart wall thickens in response to decreased myocardial energy production, such that cells become larger to co mpensate for reduced contractile efficiency.
    [Show full text]
  • Isoprene Rule Revisited 242:2 R9–R22 Endocrinology REVIEW Terpenes, Hormones and Life: Isoprene Rule Revisited
    242 2 Journal of S G Hillier and R Lathe Isoprene rule revisited 242:2 R9–R22 Endocrinology REVIEW Terpenes, hormones and life: isoprene rule revisited Stephen G Hillier1 and Richard Lathe2 1Medical Research Council Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK 2Division of Infection and Pathway Medicine, University of Edinburgh Medical School, Edinburgh, UK Correspondence should be addressed to S G Hillier or R Lathe: [email protected] or [email protected] Abstract The year 2019 marks the 80th anniversary of the 1939 Nobel Prize in Chemistry awarded Key Words to Leopold Ruzicka (1887–1976) for work on higher terpene molecular structures, including f isoprene the first chemical synthesis of male sex hormones. Arguably his crowning achievement f terpene was the ‘biogenetic isoprene rule’, which helped to unravel the complexities of terpenoid f steroid biosynthesis. The rule declares terpenoids to be enzymatically cyclized products of f evolution substrate alkene chains containing a characteristic number of linear, head-to-tail f great oxidation event condensed, C5 isoprene units. The number of repeat isoprene units dictates the type of f Ruzicka terpene produced (i.e., 2, monoterpene; 3, sesquiterpene; 4, diterpene, etc.). In the case of triterpenes, six C5 isoprene units combine into C30 squalene, which is cyclized into one of the signature carbon skeletons from which myriad downstream triterpenoid structures are derived, including sterols and steroids. Ruzicka also had a keen interest in the origin of life, but the pivotal role of terpenoids has generally been overshadowed by nucleobases, amino acids, and sugars.
    [Show full text]
  • Isoprene, Terpenes and Natural Alkenes and Alkynes
    ISOPRENE, TERPENES AND NATURAL ALKENES AND ALKYNES ETHYLENE The simplest alkene, ethene, is produced naturally by all higher plants from the amino acid methionine and is a plant growth regulator. It causes trees to lose their leaves and stems to thicken. It is best known for its ability to ripen fruit and is responsible for the accelerated ripening of fruit confined in bags or in the presence of ripe fruits. ISOPRENE AND TERPENES Some of the most interesting naturally occurring compounds originate from 2-methyl-1,3- butadiene, otherwise known as isoprene, in plants; the isoprene itself is synthesized from acetate. Pyrophosphate esters of isoprene are the actual reagents for these construction projects; pyrophosphoric acid is an anhydride of phosphoric acid. O OH O O OH O P P O P P O O O OH O O OH isoprene isopentenyl pyrophosphate geranyl pyrophosphate ---> ---> squalene The isoprene units are always linked 1,4 and head-to-tail in terpenes (the preferred addition orientation even in mineral acid), but are often linked further in bizarre ways to produce rings. Oxygen functional groups are often included, as might be expected from hydrolysis of the pyrophosphate linkage. The diversity of compounds produced is amazing, but the pattern of one methyl group every fourth carbon reveals their origin. The simplest, monoterpenes, consist of 2 isoprene units. The stereoisomers of these simplest terpenes provide interesting illustrations of the stereospecificity of odor receptors; for example (+)-(S)-carvone is responsible for the odor of caraway and (-)-(R)-carvone the odor of spearmint. O OH O myrcene geraniol limonene carvone camphor pinene Sesquiterpenes (1.5 terpenes) have 3 isoprene units and diterpenes have 4.
    [Show full text]
  • Squalene – Antioxidant of the Future?
    This is a summary of an article which appeared in The South African Journal of Natural Medicine 2007, 33, p106-112. Squalene – antioxidant of the future? HEIDI DU PREEZ is a Sourced primarily from the liver of the deep-sea professional natural scientist, shark, squalene has been referred to as the with a Masters degree in 1 ‘antioxidant of the future’. Heidi du Preez food science. She is currently discusses this unique molecule. studying for a degree in nutritional medicine. Heidi qualene is an isoprenoid hydrocarbon with six isoprene units. It is consults for both the food produced in our bodies and also found in nature. Many and health industries. She S antioxidants are either isoprenoids or have an isoprenoid tail. Vitamin E, vitamin A, beta-carotene and flavonoids are all uses a holistic, naturopathic isoprenoids. Isoprenoids are found abundantly in nature, but biologists approach, incorporating are mainly interested in studying the few, including squalene and diet, supplementation, lycopene, that have extraordinary antioxidant properties. detoxification and spiritual wellbeing in her treatment Since squalene is a pure isoprenoid, containing only isoprene units, it has an effective and stable antioxidant configuration. Squalene is regimen. Her focus is on the considered by many to be the most powerful and stable of the prevention and cure of isoprenoids.2 chronic, metabolic and degenerative diseases. Heidi In its purified form squalene is a colourless, almost tasteless, serves on the council of the transparent liquid without a significant odour. It is the major hydrocarbon in fish oils. Since squalene is a polyunsaturated ‘lipid’, South African Association for derived from fish oil, it should not be confused with being an essential Nutritional Therapy, and is fatty acid.
    [Show full text]
  • Genetically Engineered Biosynthetic Pathways for Nonnatural C60
    www.nature.com/scientificreports OPEN Genetically engineered biosynthetic pathways for nonnatural C60 carotenoids using Received: 22 November 2018 Accepted: 22 January 2019 C5-elongases and C50-cyclases in Published: xx xx xxxx Escherichia coli Ling Li 1, Maiko Furubayashi1, Shifei Wang1, Takashi Maoka2, Shigeko Kawai-Noma1, Kyoichi Saito1 & Daisuke Umeno 1 While the majority of the natural carotenoid pigments are based on 40-carbon (C40) skeleton, some carotenoids from bacteria have larger C50 skeleton, biosynthesized by attaching two isoprene units (C5) to both sides of the C40 carotenoid pigment lycopene. Subsequent cyclization reactions result in the production of C50 carotenoids with diverse and unique skeletal structures. To produce even larger nonnatural novel carotenoids with C50 + C5 + C5 = C60 skeletons, we systematically coexpressed natural C50 carotenoid biosynthetic enzymes (lycopene C5-elongases and C50-cyclases) from various bacterial sources together with the laboratory-engineered nonnatural C50-lycopene pathway in Escherichia coli. Among the tested enzymes, the elongases and cyclases from Micrococcus luteus exhibited signifcant activity toward C50-lycopene, and yielded the novel carotenoids C60-favuxanthin and C60- sarcinaxanthin. Moreover, coexpression of M. luteus elongase with Corynebacterium cyclase resulted in the production of C60-sarcinaxanthin, C60-sarprenoxanthin, and C60-decaprenoxanthin. Carotenoids are a class of natural pigments covering yellow, orange and red colors. More than 750 carotenoids have been identifed in various plants, fungi, and microorganisms1, and a wide range of essential biological func- tions have been described, with light-harvesting, photoprotection, antioxidatant, and pro-vitamin activities, and roles in the control of membrane fuidity2. In recent years, carotenoids have been increasingly considered in appli- cations as therapeutic or bioelectronic materials3,4.
    [Show full text]
  • Biomolecular Materials. Report of the January 13-15, 2002 Workshop
    Cover Illustrations (from top): Molecular graphics representation looking into the channel of the a hemolysin pore. Song!et al., 1996 (Figure 24). Complexation of F-actin and cationic lipids leads to the hierarchical self-assembly of a network of tubules; shown here in cross-section. Wong 2000 (Figure 9). Depiction of an array of hybrid nanodevices powered by F1-ATPase. Soong et al., 2000 (Figure 1). Electronmicrograph, after fixation, of neuron from the A cluster of the pedal ganglia in L. stagnalis immobilized within a picket fence of polyimide after 3 days in culture on silicon chip. (Scale bar = 20!mm.). Zeck and Fromherz 2001 (Figure 16). Biomolecular Materials Report of the January 13-15, 2002 Workshop Supported by the Basic Energy Sciences Advisory Committee U.S. Department of Energy Co-Chairs: Mark D. Alper Materials Sciences Division Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology University of California at Berkeley Berkeley, CA 94720 Samuel I. Stupp Department of Materials Science and Engineering Department of Chemistry Feinberg School of Medicine Northwestern University Evanston, IL 60208 This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract DE-AC03-76SF00098 This report is dedicated to the memory of Iran L. Thomas, Deputy Director of the Department of Energy Office of Basic Energy Sciences and Director of the Division of Materials Sciences and Engineering until his death in February, 2003. Iran was among the first to recognize the potential impact of the biological sciences on the physical sciences, organizing workshops and initiating programs in that area as early as 1988.
    [Show full text]