Squalene – Antioxidant of the Future?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meet Lycopene Prostate Cancer Is One of the Leading Causes of Cancer Death Among Men in the United States
UCLA Nutrition Noteworthy Title Lycopene and Mr. Prostate: Best Friends Forever Permalink https://escholarship.org/uc/item/5ks510rw Journal Nutrition Noteworthy, 5(1) Author Simzar, Soheil Publication Date 2002 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Meet Lycopene Prostate cancer is one of the leading causes of cancer death among men in the United States. Dietary factors are considered an important risk factor for the development of prostate cancer in addition to age, genetic predisposition, environmental factors, and other lifestyle factors such as smoking. Recent studies have indicated that there is a direct correlation between the occurrence of prostate cancer and the consumption of tomatoes and tomato-based products. Lycopene, one of over 600 carotenoids, is one of the main carotenoids found in human plasma and it is responsible for the red pigment found in tomatoes and other foods such as watermelons and red grapefruits. It has been shown to be a very potent antioxidant, with oxygen-quenching ability greater than any other carotenoid. Recent research has indicated that its antioxidant effects help lower the risk of heart disease, atherosclerosis, and different types of cancer-especially prostate cancer. Lycopene's Characteristics Lycopene is on of approximately 600 known carotenoids. Carotenoids are red, yellow, and orange pigments which are widely distributed in nature and are especially abundant in yellow- orange fruits and vegetables and dark green, leafy vegetables. They absorb light in the 400- 500nm region which gives them a red/yellow color. Only green plants and certain microorganisms such as fungi and algae can synthesize these pigments. -
33 34 35 Lipid Synthesis Laptop
BI/CH 422/622 Liver cytosol ANABOLISM OUTLINE: Photosynthesis Carbohydrate Biosynthesis in Animals Biosynthesis of Fatty Acids and Lipids Fatty Acids Triacylglycerides contrasts Membrane lipids location & transport Glycerophospholipids Synthesis Sphingolipids acetyl-CoA carboxylase Isoprene lipids: fatty acid synthase Ketone Bodies ACP priming 4 steps Cholesterol Control of fatty acid metabolism isoprene synth. ACC Joining Reciprocal control of b-ox Cholesterol Synth. Diversification of fatty acids Fates Eicosanoids Cholesterol esters Bile acids Prostaglandins,Thromboxanes, Steroid Hormones and Leukotrienes Metabolism & transport Control ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Synthesis Degradation Ketone body Utilization Isoprene Biosynthesis 1 Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates are transferred stepwise from ATP to mevalonate. • A third phosphate from ATP is added at the hydroxyl, followed by decarboxylation and elimination catalyzed by pyrophospho- mevalonate decarboxylase creates a pyrophosphorylated 5-C product: D3-isopentyl pyrophosphate (IPP) (isoprene). • Isomerization to a second isoprene dimethylallylpyrophosphate (DMAPP) gives two activated isoprene IPP compounds that act as precursors for D3-isopentyl pyrophosphate Isopentyl-D-pyrophosphate all of the other lipids in this class isomerase DMAPP Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates -
Biosynthesis of New Alpha-Bisabolol Derivatives Through a Synthetic Biology Approach Arthur Sarrade-Loucheur
Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach Arthur Sarrade-Loucheur To cite this version: Arthur Sarrade-Loucheur. Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach. Biochemistry, Molecular Biology. INSA de Toulouse, 2020. English. NNT : 2020ISAT0003. tel-02976811 HAL Id: tel-02976811 https://tel.archives-ouvertes.fr/tel-02976811 Submitted on 23 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Institut National des Sciences Appliquées de Toulouse Présentée et soutenue par Arthur SARRADE-LOUCHEUR Le 30 juin 2020 Biosynthèse de nouveaux dérivés de l'α-bisabolol par une approche de biologie synthèse Ecole doctorale : SEVAB - Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingenieries Spécialité : Ingénieries microbienne et enzymatique Unité de recherche : TBI - Toulouse Biotechnology Institute, Bio & Chemical Engineering Thèse dirigée par Gilles TRUAN et Magali REMAUD-SIMEON Jury -
Enhanced Lycopene Production in Escherichia Coli by Expression of Two MEP Pathway Enzymes from Vibrio Sp
catalysts Article Enhanced Lycopene Production in Escherichia coli by Expression of Two MEP Pathway Enzymes from Vibrio sp. Dhg 1, 1, 1 1, Min Jae Kim y, Myung Hyun Noh y , Sunghwa Woo , Hyun Gyu Lim * and Gyoo Yeol Jung 1,2,* 1 Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea; [email protected] (M.J.K.); [email protected] (M.H.N.); [email protected] (S.W.) 2 School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea * Correspondence: [email protected] (H.G.L.); [email protected] (G.Y.J.); Tel.: +82-54-279-2391 (G.Y.J.) These authors contributed equally to this work. y Received: 28 October 2019; Accepted: 26 November 2019; Published: 29 November 2019 Abstract: Microbial production is a promising method that can overcome major limitations in conventional methods of lycopene production, such as low yields and variations in product quality. Significant efforts have been made to improve lycopene production by engineering either the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway or mevalonate (MVA) pathway in microorganisms. To further improve lycopene production, it is critical to utilize metabolic enzymes with high specific activities. Two enzymes, 1-deoxy-d-xylulose-5-phosphate synthase (Dxs) and farnesyl diphosphate synthase (IspA), are required in lycopene production using MEP pathway. Here, we evaluated the activities of Dxs and IspA of Vibrio sp. dhg, a newly isolated and fast-growing microorganism. -
WO 2009/005519 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 8 January 2009 (08.01.2009) WO 2009/005519 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/19 (2006.01) A61K 31/185 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/20 (2006.01) A61K 31/225 (2006.01) AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, (21) International Application Number: ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, PCT/US2007/072499 IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, (22) International Filing Date: 29 June 2007 (29.06.2007) MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, (25) Filing Language: English TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (26) Publication Language: English (71) Applicant (for all designated States except US): AC- (84) Designated States (unless otherwise indicated, for every CERA, INC. [US/US]; 380 Interlocken Crescent, Suite kind of regional protection available): ARIPO (BW, GH, 780, Broomfield, CO 80021 (US). GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), (72) Inventor; and European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, (75) Inventor/Applicant (for US only): HENDERSON, FR, GB, GR, HU, IE, IS, IT, LT,LU, LV,MC, MT, NL, PL, Samuel, T. -
Comparison of Biogenic Volatile Organic Compound Emissions from Broad Leaved and Coniferous Trees in Turkey
Environmental Impact II 647 Comparison of biogenic volatile organic compound emissions from broad leaved and coniferous trees in Turkey Y. M. Aydin1, B. Yaman1, H. Koca1, H. Altiok1, Y. Dumanoglu1, M. Kara1, A. Bayram1, D. Tolunay2, M. Odabasi1 & T. Elbir1 1Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Turkey 2Department of Soil Science and Ecology, Faculty of Forestry, Istanbul University, Turkey Abstract Biogenic volatile organic compound (BVOC) emissions from thirty-eight tree species (twenty broad leaved and eighteen coniferous) grown in Turkey were measured. BVOC samples were collected with a specialized dynamic enclosure technique in forest areas where these tree species are naturally grown. In this method, the branches were enclosed in transparent nalofan bags maintaining their natural conditions and avoiding any source of stress. The air samples from the inlet and outlet of the bags were collected on an adsorbent tube containing Tenax. Samples were analyzed using a thermal desorption (TD) and gas chromatography mass spectrometry (GC/MS) system. Sixty-five BVOC compounds were analyzed in five major groups: isoprene, monoterpenes, sesquiterpens, oxygenated sesquiterpenes and other oxygenated VOCs. Emission factors were calculated and adjusted to standard conditions (1000 μmol/m2 s photosynthetically active radiation-PAR and 30°C temperature). Consistent with the literature, broad leaved trees emitted mainly isoprene while the coniferous trees emitted mainly monoterpenes. Even though fir species are coniferous trees, they emitted significant amounts of isoprene in addition to monoterpenes. Oak species showed a large inter-species variability in their emissions. Pine species emitted mainly monoterpenes and substantial amounts of oxygenated compounds. Keywords: BVOC emissions, dynamic enclosure system, emission factor, Turkey. -
Squalene, Olive Oil, and Cancer Risk: a Review and Hypothesis
Vol. 6, 1101-1103, December 1997 Cancer Epidemiology,Blornarkers & Prevention 1101 Review Squalene, Olive Oil, and Cancer Risk: A Review and Hypothesis Harold L. Newmark’ of unsaturated fatty acids. In Italy, about 80% of edible oil is Strang Cancer Research Laboratory, The Rockefeller University, New York, olive oil,2 suggesting a protective effect of olive oil intake. In New York 10021, and Laboratory for Cancer Research, College of Pharmacy, another Italian case-control study of diet and pancreatic cancer Rutgers University, Piscataway, New Jersey 08855-0789 (8), increased frequency of edible oil consumption was associ- ated with a trend toward decreased risk. Edible oil in Italy consists of about 80% olive oil, thus suggesting a protective Abstract effect of olive oil in pancreatic cancer.2 Epidemioiogical studies of breast and pancreatic cancer Animal studies on fat and cancer have generally shown in several Mediterranean populations have demonstrated that olive oil either has no effect or a protective effect on the that increased dietary intake of olive oil is associated with prevention of a variety of chemically induced tumors. Olive oil a small decreased risk or no increased risk of cancer, did not increase tumor incidence or growth, in contrast to corn despite a higjier proportion of overall lipid intake. and sunflower oil, in some mammary cancer models (9 -1 1) and Experimental animal model studies of high dietary fat also in colon cancer models (12, 13), although in an earlier and cancer also indicate that olive oil has either no effect report, olive oil exhibited mammary tumor-promoting proper- or a protective effect on the prevention of a variety of ties similar to that ofcorn oil (14), in contrast to the later studies chemically induced tumors. -
Gas Chromatographic-Mass Spectrometric Investigation of Seep
RICE UNIVERSITY GAS CHROHATOGRAP! 11 C-i IASS SPECTROMCTRIC iriVESTIGATION OF SEEP OIL ISOPRENOID ALKANES by' David James Curry A THESIS SUBMITTED III PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS Thesis Director's' signature ■ficCt rfc Houston, Texas August, 1072 TABLE OF COKTENTS ACSC'IOMLEDGEMEHTS ' 1 ABSTRACT... 2 INTRODUCTION TO GEOCHEMISTRY 4. ISOPRENOID ALKANES. 10 SAMPLE DESCRIPTION ....1C EXPERIMENTAL METHODS.-. ;...20 INTERPRETATION AND DISCUSSION OF RESULTS.......20 SUMMARY. .01 POSSIBILITIES FOR FUTURE STUDY ........64 TABLES.'..... ........SO CHROMATOGRAMS 71 FOOTNOTES..... 74 SELECTED BIBLIOGRAPHY. 76 MASS SPECTRA MS 1 (Phytane) 15,43 I IS 2 (Authenti c Pri s tane)..... .. .25 MS 3 (Pristane).' 26,40 I IS 4 (Au then ti c P r.i s tane) . ...27 MS 5 (C^ Isoprenoid) ...31 OO MS 6 (3-,7-,ll-trin;ethyl tetradecana) • • « sJsJ MS 7 (C1? Unknown) ... 33 MS 8 (C10 Isoorenoid) ...36 MS 9 (Pristane) ,38 MS 18 (Ci Unknown) 41 MS 11 (C22 Isoprenoicl) 44 MS 12 (C23 Isoprenoid),. 46 IIS 13- (C2* Isoprenoicl) 48 MS 14 (C2g Isoprenoicl) 50 MS 15 (C2Q Iscprenoid)...: 51 MS 15 (COQ Isoprenoid) MS 17 (Proposed C2C Isoprenoid) 64 CHROMATOGRAMS GC I (Total Branched alkane-cycloalkane Fraction) 71 GC II (Still Residue Branched Alkane-cycloalkane Fraction)72 GC III (Total, normal Alkane Fraction) 73 (GC I,II,III were taken on 3% SE-30 phase) TABLES I: Composition of Distillation and 56 Column'Chromatography Fractions II: Approximate Relative and Absoluts 67 Amounts of Isoprenoid Components III: Off Scale Intensities of Mass..... !...68 Spectrometric Peaks IV: Initial Separatory Gas Chroma- _ 69 tographic Conditions V: . -
A Key Mammalian Cholesterol Synthesis Enzyme, Squalene Monooxygenase, Is Allosterically Stabilized by Its Substrate
A key mammalian cholesterol synthesis enzyme, squalene monooxygenase, is allosterically stabilized by its substrate Hiromasa Yoshiokaa, Hudson W. Coatesb, Ngee Kiat Chuab, Yuichi Hashimotoa, Andrew J. Brownb,1, and Kenji Ohganea,c,1 aInstitute for Quantitative Biosciences, The University of Tokyo, 113-0032 Tokyo, Japan; bSchool of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; and cSynthetic Organic Chemistry Laboratory, RIKEN, 351-0198 Saitama, Japan Edited by Brenda A. Schulman, Max Planck Institute of Biochemistry, Martinsried, Germany, and approved February 18, 2020 (received for review September 20, 2019) Cholesterol biosynthesis is a high-cost process and, therefore, is the cognate E3 ligase for SM (9, 10), catalyzing its ubiquitination tightly regulated by both transcriptional and posttranslational in the N100 region (11). negative feedback mechanisms in response to the level of cellular Despite its importance in cholesterol-accelerated degradation, cholesterol. Squalene monooxygenase (SM, also known as squalene the structure and function of the SM-N100 region has not been epoxidase or SQLE) is a rate-limiting enzyme in the cholesterol fully resolved. Thus far, biochemical analyses have revealed the biosynthetic pathway and catalyzes epoxidation of squalene. The presence of a reentrant loop anchoring SM to the ER membrane stability of SM is negatively regulated by cholesterol via its and an amphipathic helix required for cholesterol-accelerated N-terminal regulatory domain (SM-N100). In this study, using a degradation (7, 8), while X-ray crystallography has revealed the SM-luciferase fusion reporter cell line, we performed a chemical architecture of the catalytic domain of SM (12). However, the genetics screen that identified inhibitors of SM itself as up-regulators highly hydrophobic and disordered nature of the N100 region of SM. -
Investigation of Antifungal Mechanisms of Thymol in the Human Fungal Pathogen, Cryptococcus Neoformans
molecules Article Investigation of Antifungal Mechanisms of Thymol in the Human Fungal Pathogen, Cryptococcus neoformans Kwang-Woo Jung 1,*, Moon-Soo Chung 1, Hyoung-Woo Bai 1,2 , Byung-Yeoup Chung 1 and Sungbeom Lee 1,2,* 1 Radiation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea; [email protected] (M.-S.C.); [email protected] (H.-W.B.); [email protected] (B.-Y.C.) 2 Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Yuseong-gu, Korea * Correspondence: [email protected] (K.-W.J.); [email protected] (S.L.) Abstract: Due to lifespan extension and changes in global climate, the increase in mycoses caused by primary and opportunistic fungal pathogens is now a global concern. Despite increasing attention, limited options are available for the treatment of systematic and invasive mycoses, owing to the evo- lutionary similarity between humans and fungi. Although plants produce a diversity of chemicals to protect themselves from pathogens, the molecular targets and modes of action of these plant-derived chemicals have not been well characterized. Using a reverse genetics approach, the present study re- vealed that thymol, a monoterpene alcohol from Thymus vulgaris L., (Lamiaceae), exhibits antifungal Cryptococcus neoformans activity against by regulating multiple signaling pathways including cal- cineurin, unfolded protein response, and HOG (high-osmolarity glycerol) MAPK (mitogen-activated protein kinase) pathways. Thymol treatment reduced the intracellular concentration of Ca2+ by Citation: Jung, K.-W.; Chung, M.-S.; Bai, H.-W.; Chung, B.-Y.; Lee, S. -
Inhibition of Sterol Biosynthesis by Bacitracin (Mevalonic Acid/CQ-Isopentenyl Pyrophosphate/C15-Farnesyl Pyrophosphate) K
Proc. Nat. Acad. Sci. USA Vol. 69, No. 5, pp. 1287-1289, May 1972 Inhibition of Sterol Biosynthesis by Bacitracin (mevalonic acid/CQ-isopentenyl pyrophosphate/C15-farnesyl pyrophosphate) K. JOHN STONE* AND JACK L. STROMINGERt Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138 Contributed by Jack L. Strominger, March 14 1972 ABSTRACT Bacitracin is an inhibitor of the biosyn- muslin eliminated floating particles of fat from the enzyme thesis of squalene and sterols from mevalonic acid, C5- solution enzyme). In some the isopentenyl pyrophosphate, or C15-farnesyl pyrophosphate (Sio experiments, S10 enzyme catalyzed by preparations from rat liver. The antibiotic was centrifuged at 105,000 X g for 90 min to remove micro- is active at extremely low ratios of antibiotic to substrate. somal particles, and this supernatant is referred to as the Sc1t The mechanism of inhibition appears to be the formation enzyme. of a complex between bacitracin, divalent cation, and C15- Bacitracin was generously provided by the Upjohn Co., farnesyl pyrophosphate and other isoprenyl pyrophos- phates. It is similar to the formation of the complex with Kalamazoo, Mich. [2-14C]3RS-mevalonic acid was obtained C55-isopropenyl pyrophosphate in microbial systems. The from New England Nuclear Co., [SH]farnesyl pyrophosphate toxicity of bacitracin for animal cells could be due in part and [2-'4C]isopentenyl pyrophosphate were generous gifts to the formation of these complexes. from Dr. Konrad Bloch. The Enzyme incubations (about 0.5-ml samples) were termi- antibacterial properties of bacitracin result, in part, from nated by in a water bath for 1 an inhibition of the heating boiling min. -
Supporting Information for Low-Priority Substance Tetracosane, 2,6,10,15,19,23-Hexamethyl-(CASRN 111-01-3) (Squalane) Final Desi
Supporting Information for Low-Priority Substance Tetracosane, 2,6,10,15,19,23-Hexamethyl- (CASRN 111-01-3) (Squalane) Final Designation February 20, 2020 Office of Pollution Prevention and Toxics U.S. Environmental Protection Agency 1200 Pennsylvania Avenue Washington, DC 20460 Contents 1. Introduction ................................................................................................................................................................ 1 2. Background on Squalane .......................................................................................................................................... 3 3. Physical-Chemical Properties ................................................................................................................................... 4 3.1 References ...................................................................................................................................................... 6 4. Relevant Assessment History ................................................................................................................................... 7 5. Conditions of Use ....................................................................................................................................................... 8 6. Hazard Characterization .......................................................................................................................................... 10 6.1 Human Health Hazard ...................................................................................................................................