3 Repro System Male AMJB Adikari.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Handy Guide to the Male and Female Reproductive Tracts
BASICS OF LIFE BY LES SELLNOW eproduction in all species borders on the miraculous. at the reproductive organs of both the mare and the stallion How else can one describe a process where two infini- and discuss just how they function in their effort to produce Rtesimal entities, one from the male, the other from the another “miracle.” Once again, sources are too numerous to female, join forces to produce living, breathing offspring? mention, other than to say that much of the basic informa- Reproductive capability or success varies by species. Mice tion on reproduction available today stems from research at and rabbits, for example, are prolific producers of offspring. such institutions as Colorado State University, Texas A&M Horses, on the other hand, fall into a category where it is University, and the University of Minnesota. There are many much more chancy. others involved in reproductive research, but much of the in- When horses ran wild, this wasn’t a serious problem. There formation utilized in this article emanated from those three were so many of them that their numbers continued to ex- institutions. pand even though birth rate often was dictated by the avail- ability of food and water. Once the horse was domesticated, The Mare however, organized reproduction became the order of the We’ll begin with the mare because her role in the repro- day. Stables that depend on selling the offspring of stallions ductive process is more complicated than that of the stallion. and mares have an economic stake in breeding success. Yet, Basically, the mare serves four functions: the process continues to be less than perfect, with success 1) She produces eggs or ova; rates hovering in the 65-70% range, and sometimes lower. -
Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal. -
Vascularization of the Penis of a Man
Roczniki Akademii Medycznej w Białymstoku · Vol. 49, 2004 · Annales Academiae MedicaeVascularization Bialostocensis of the penis of a man 285 Vascularization of the penis of a man Okolokulak E, Volchkevich D The Human Anatomy Department, Grodno State Medical University, Grodno, Belarus Abstract Conclusions: The penis receives blood from external and internal pudendal arteries, which are very variable. The Purpose: The study of the features of the blood supply of venous blood of the penis flows off in three types of veins. a penis of the man. Material and methods: Macromicropreparation, angio- graphy, corrosion method, morphometry, statistical method. Key words: penis, veins of penis, arteries of penis, erectile Results: The penis has three venous collector-execut- dysfunction. ing outflow of blood. First of them is submitted surface dorsal vein, which is shaped from small-sized venous ves- sels of skin, subcutaneous fat and surface fascia of penis. Introduction The beginning deep dorsal vein, which will derivate second venous collector, gives veniplex of head of the penis. The The development of the medical technology has deepened spongy veins outstanding as third venous collector, reach the knowledge of organic violations of gears of erection. It was the bulb of penis, where they receive small-sized bulbar vein. straightened out, that more than 50% from them cause vascular The arterial blood supply of penis happens at the expense of disorders [1-4]. It has given a particular push to more detailed external and internal pudendal arteries. The external puden- learning extra- and intraorgans vessels of the penis. At the same dal artery starts from an internal wall of femoral artery on time, the problems of vascularization and relationships of blood 2.5-2.7 cm below inguinal ligament. -
Female and Male Gametogenesis 3 Nina Desai , Jennifer Ludgin , Rakesh Sharma , Raj Kumar Anirudh , and Ashok Agarwal
Female and Male Gametogenesis 3 Nina Desai , Jennifer Ludgin , Rakesh Sharma , Raj Kumar Anirudh , and Ashok Agarwal intimately part of the endocrine responsibility of the ovary. Introduction If there are no gametes, then hormone production is drastically curtailed. Depletion of oocytes implies depletion of the major Oogenesis is an area that has long been of interest in medicine, hormones of the ovary. In the male this is not the case. as well as biology, economics, sociology, and public policy. Androgen production will proceed normally without a single Almost four centuries ago, the English physician William spermatozoa in the testes. Harvey (1578–1657) wrote ex ovo omnia —“all that is alive This chapter presents basic aspects of human ovarian comes from the egg.” follicle growth, oogenesis, and some of the regulatory mech- During a women’s reproductive life span only 300–400 of anisms involved [ 1 ] , as well as some of the basic structural the nearly 1–2 million oocytes present in her ovaries at birth morphology of the testes and the process of development to are ovulated. The process of oogenesis begins with migra- obtain mature spermatozoa. tory primordial germ cells (PGCs). It results in the produc- tion of meiotically competent oocytes containing the correct genetic material, proteins, mRNA transcripts, and organ- Structure of the Ovary elles that are necessary to create a viable embryo. This is a tightly controlled process involving not only ovarian para- The ovary, which contains the germ cells, is the main repro- crine factors but also signaling from gonadotropins secreted ductive organ in the female. -
Assessment of the Boar Reproductive Efficiency: Physiology and Implications Avaliação Da Eficiência Reprodutiva Do Varrão: Fisiología E Implicações
Rev Bras Reprod Anim Supl, Belo Horizonte, n.6, p.194-198, dez. 2009. Disponível em www.cbra.org.br. Assessment of the boar reproductive efficiency: physiology and implications Avaliação da eficiência reprodutiva do varrão: fisiología e implicações Sara Williams Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina E-mail: [email protected] Abstract The main objective of a boar stud is to produce a large volume of high-quality semen per boar in an efficient and safe manner. This includes: the management of the anatomy, physiology and sexual behaviourof the young boar, that influences its performance as an adult. Normal reproductive activity in boars is coordinated by the endocrine and nervous system. Abnormal activity in one or more of these areas can result in reproductive problems. For the development of the sexual behaviour is important to considerer plays and social conditions of rearing of penmates. Play in animals is common in mammals, frequent in young and is not oriented to satisfy the immediate needs and carries appreciable costs in energy, time and even physical risk. Although, play contributes to the development of several functions that take place in the adult. Sexual behavior begin as early as 1 month of age in boars; mounting activity of penmates is observed more frequently for males than females. Some authors emphasized the importance of social conditions during rearing, due to the sexual activity showed in pubertal boars. Keywords: boars, reproduction physiology, sexual behaviour. Palavras-chave: varrão, fisiologia reprodutiva, comportamento sexual. Introduction The increased use of AI has dramatically increased the number of boars needed for semen collection on a daily basis. -
Anatomy and Physiology of Male Gametogenesis
1 Anatomy and Physiology of Male Gametogenesis Alex Varghese, Fnu Deepinder, Angali Chandra, Ang Wen Jeat, Furquan Pathan, Ashok Agarwal ABSTRACT Basic understanding of the male reproductive system is fundamental in effective evaluation and treatment of male infertility. This chapter is a concise introduction to the male reproductive anatomy and the intricately designed process of spermatogenesis along with its hormonal control. INTRODUCTION Understanding the fundamentals of anatomy and physiology of male reproductive system is a key to effective evaluation and treatment of male infertility. It comprises of the hypothalamic-pituitary-testis axis, epididymis, vas deferens, seminal vesicles, prostate and urethra. ANATOMY OF MALE REPRODUCTIVE SYSTEM Development The male urinary and reproductive systems share a common developmental origin. The testes and extra-testicular ducts arise from three different tissues: intermediate mesoderm, mesodermal epithelium and primordial germ cells. • The intermediate mesoderm forms a urogenital ridge that gives rise to testicular stroma and the mesonephric (Wolffian) duct. • The mesodermal (coelomic) epithelium gives rise to Sertoli cells and the paramesonephric duct. • The primordial germ cells migrate from yolk sac and give rise to the spermatagonia. Sexual differentiation occurs in the seventh week of gestation in embryos carrying the Y-chromosome. 4 ANDROLOGY LABORATORY MANUAL Transcription of the SRY gene present on the Y-chromosome leads to synthesis of testis-determining factor (TDF) protein. Secretion of TDF protein stimulates the nascent Leydig cells to produce testosterone, causing development of the mesonephric duct. It also stimulates Sertoli cells to secrete Mullerian-inhibiting factor (MIF), which leads to the regression of the paramesonephric duct. This cascade of events leads to the formation of male internal genital organs. -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria. -
T1 – Trunk – Bisexual
T1 – Trunk, Bisexual 3B – B30 Torso - # 02 Page 1 of 2 T1 – Trunk, Bisexual 1. Frontal region 48. Frontal bone 2. Orbital region 49. Temporalis muscle 3. Temporal region 50. Ball of the eye (ocular bulb) 4. Nasal region 51. Zygomatic bone (cheekbone) 5. Infraorbital region 52. External carotid artery 6. Infratemporal region 53. Posterior belly of digastric muscle 7. Oral region 54. tongue 8. Parotideomasseteric region 55. Mental muscle 9. Buccal region 56. Anterior belly of digastric muscle 10. Chin region 57. Hyoid bone 11. Sternocleidomastoideus muscle 58. Thyroid cartilage 12. Right internal jugular vein 59. Cricothyroid muscle 13. Right common carotid artery 60. Thyroid gland 14. Superior thyroid artery 61. Inferior thyroid vein 15. Inferior belly of omohyoid muscle 62. Scalenus anterior muscle 16. Right subclavian artery 63. Trachea (windpipe) 17. Clavicle 64. Left subclavian vein 18. Right subclavian vein 65. Left brachiocephalic vein 19. Right brachiocephalic vein 66. Superior vena cava 20. Pectoralis major muscle 67. Ascending aorta 21. Pectoralis minor muscle 68. Bifurcation of trachea 22. Right superior lobar bronchus 69. Bronchus of left inferior lobe 23. Right inferior lobar bronchus 70. Thoracic part of aorta 24. ?Serratus anterior muscle 71. Esophagus (gullet) 25. Right lung 72. External intercostal muscles 26. Diaphragm 73. Foramen of vena cava 27. 7th rib 74. Abdominal part of esophagus 28. Costal part of diaphragm 75. Spleen 29. Diaphragm, lumber part 76. Hilum of spleen 30. Right suprarenal gland 77. Celiac trunk 31. Inferior vena cava 78. Left kidney 32. Renal pyramid 79. Left renal artery and vein 33. Renal pelvis 80. -
Pretest Anatomy, Histology & Cell Biology
Anatomy, Histology, and Cell Biology PreTestTMSelf-Assessment and Review Notice Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The editors and the publisher of this work have checked with sources believed to be reli- able in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the pos- sibility of human error or changes in medical sciences, neither the editors nor the publisher nor any other party who has been involved in the preparation or publi- cation of this work warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omis- sions or for the results obtained from use of such information. Readers are encour- aged to confirm the information contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this book is accurate and that changes have not been made in the recommended dose or in the contraindications for administration. This recommendation is of particular importance in connection with new or infre- quently used drugs. Anatomy, Histology, and Cell Biology PreTestTMSelf-Assessment and Review Third Edition Robert M. Klein, PhD Professor and Associate Dean Professional Development and Faculty Affairs Department of Anatomy and Cell Biology University of Kansas, School of Medicine Kansas City, Kansas George C. -
Mvdr. Natália Hvizdošová, Phd. Mudr. Zuzana Kováčová
MVDr. Natália Hvizdošová, PhD. MUDr. Zuzana Kováčová ABDOMEN Borders outer: xiphoid process, costal arch, Th12 iliac crest, anterior superior iliac spine (ASIS), inguinal lig., mons pubis internal: diaphragm (on the right side extends to the 4th intercostal space, on the left side extends to the 5th intercostal space) plane through terminal line Abdominal regions superior - epigastrium (regions: epigastric, hypochondriac left and right) middle - mesogastrium (regions: umbilical, lateral left and right) inferior - hypogastrium (regions: pubic, inguinal left and right) ABDOMINAL WALL Orientation lines xiphisternal line – Th8 subcostal line – L3 bispinal line (transtubercular) – L5 Clinically important lines transpyloric line – L1 (pylorus, duodenal bulb, fundus of gallbladder, superior mesenteric a., cisterna chyli, hilum of kidney, lower border of spinal cord) transumbilical line – L4 Bones Lumbar vertebrae (5): body vertebral arch – lamina of arch, pedicle of arch, superior and inferior vertebral notch – intervertebral foramen vertebral foramen spinous process superior articular process – mammillary process inferior articular process costal process – accessory process Sacrum base of sacrum – promontory, superior articular process lateral part – wing, auricular surface, sacral tuberosity pelvic surface – transverse lines (ridges), anterior sacral foramina dorsal surface – median, intermediate, lateral sacral crest, posterior sacral foramina, sacral horn, sacral canal, sacral hiatus apex of the sacrum Coccyx coccygeal horn Layers of the abdominal wall 1. SKIN 2. SUBCUTANEOUS TISSUE + SUPERFICIAL FASCIAS + SUPRAFASCIAL STRUCTURES Superficial fascias: Camper´s fascia (fatty layer) – downward becomes dartos m. Scarpa´s fascia (membranous layer) – downward becomes superficial perineal fascia of Colles´) dartos m. + Colles´ fascia = tunica dartos Suprafascial structures: Arteries and veins: cutaneous brr. of posterior intercostal a. and v., and musculophrenic a. -
Índice De Denominacións Españolas
VOCABULARIO Índice de denominacións españolas 255 VOCABULARIO 256 VOCABULARIO agente tensioactivo pulmonar, 2441 A agranulocito, 32 abaxial, 3 agujero aórtico, 1317 abertura pupilar, 6 agujero de la vena cava, 1178 abierto de atrás, 4 agujero dental inferior, 1179 abierto de delante, 5 agujero magno, 1182 ablación, 1717 agujero mandibular, 1179 abomaso, 7 agujero mentoniano, 1180 acetábulo, 10 agujero obturado, 1181 ácido biliar, 11 agujero occipital, 1182 ácido desoxirribonucleico, 12 agujero oval, 1183 ácido desoxirribonucleico agujero sacro, 1184 nucleosómico, 28 agujero vertebral, 1185 ácido nucleico, 13 aire, 1560 ácido ribonucleico, 14 ala, 1 ácido ribonucleico mensajero, 167 ala de la nariz, 2 ácido ribonucleico ribosómico, 168 alantoamnios, 33 acino hepático, 15 alantoides, 34 acorne, 16 albardado, 35 acostarse, 850 albugínea, 2574 acromático, 17 aldosterona, 36 acromatina, 18 almohadilla, 38 acromion, 19 almohadilla carpiana, 39 acrosoma, 20 almohadilla córnea, 40 ACTH, 1335 almohadilla dental, 41 actina, 21 almohadilla dentaria, 41 actina F, 22 almohadilla digital, 42 actina G, 23 almohadilla metacarpiana, 43 actitud, 24 almohadilla metatarsiana, 44 acueducto cerebral, 25 almohadilla tarsiana, 45 acueducto de Silvio, 25 alocórtex, 46 acueducto mesencefálico, 25 alto de cola, 2260 adamantoblasto, 59 altura a la punta de la espalda, 56 adenohipófisis, 26 altura anterior de la espalda, 56 ADH, 1336 altura del esternón, 47 adipocito, 27 altura del pecho, 48 ADN, 12 altura del tórax, 48 ADN nucleosómico, 28 alunarado, 49 ADNn, 28 -
Histology of Male Reproductive System
Histology of Male Reproductive System Dr. Rajesh Ranjan Assistant Professor Deptt. of Veterinary Anatomy C.V.Sc, Rewa 1 Male Reproductive System A-Testis B-Epididymis C-Ductus Deferens D-Urethra 1-Pelvic part 2-Penile part E-Penis G-Accessory Glands 1. Seminal vesicles 2-Prostate gland 3-Bulbouretheral gland/ Cowper’s gland Testis The testis remains covered by: Tunica vaginalis- The outermost covering (peritoneal covering of the testis and epididymis). It has a parietal and visceral layer. The parietal layer remains adhered to the scrotum while the visceral layer adheres to the capsule of the testis. The space between the these two layers is called the vaginal cavity. The layers consists of mesothelium lining and connective tissue that blends with the underlying connective tissue of the scrotum. Tunica albuginea: Capsule of the testis Consists of dense irregular connective tissue, predominantly collagen fibers, few elastic fibers and myofibroblast. It has vascular layer (Tunica vasculosa) that contains anatomizing branches of testicular artery and veins. The tunica albuginea gives connective tissue trabeculae called septula testis which converge towards the mediastinum testis. The septula testis divides the testicular parenchyma into number of testicular lobules. Each lobule contains 1-4 seminiferous tubules. Mediastinum testis is a connective tissue area containing the channels of rete testis, large blood and lymph vessels. In bull it occupies the central position along the longitudinal axis of the gonad. Interstitial cells (Leydig cells) The inter-tubular spaces of the testis contain loose C.T., blood and lymph vessels, fibrocytes, free mononuclear cells and interstitial cells called Leydig cells.