T1 – Trunk – Bisexual
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Handy Guide to the Male and Female Reproductive Tracts
BASICS OF LIFE BY LES SELLNOW eproduction in all species borders on the miraculous. at the reproductive organs of both the mare and the stallion How else can one describe a process where two infini- and discuss just how they function in their effort to produce Rtesimal entities, one from the male, the other from the another “miracle.” Once again, sources are too numerous to female, join forces to produce living, breathing offspring? mention, other than to say that much of the basic informa- Reproductive capability or success varies by species. Mice tion on reproduction available today stems from research at and rabbits, for example, are prolific producers of offspring. such institutions as Colorado State University, Texas A&M Horses, on the other hand, fall into a category where it is University, and the University of Minnesota. There are many much more chancy. others involved in reproductive research, but much of the in- When horses ran wild, this wasn’t a serious problem. There formation utilized in this article emanated from those three were so many of them that their numbers continued to ex- institutions. pand even though birth rate often was dictated by the avail- ability of food and water. Once the horse was domesticated, The Mare however, organized reproduction became the order of the We’ll begin with the mare because her role in the repro- day. Stables that depend on selling the offspring of stallions ductive process is more complicated than that of the stallion. and mares have an economic stake in breeding success. Yet, Basically, the mare serves four functions: the process continues to be less than perfect, with success 1) She produces eggs or ova; rates hovering in the 65-70% range, and sometimes lower. -
Studies of Human Physique and Sexual Attractiveness: Sexual Preferences of Men and Women in China
AMERICAN JOURNAL OF HUMAN BIOLOGY 19:88–95 (2007) Original Research Article Studies of Human Physique and Sexual Attractiveness: Sexual Preferences of Men and Women in China 1 2 3 1 BARNABY J. DIXSON, ALAN F. DIXSON, * BAOGUO LI, AND M.J. ANDERSON 1Department of Conservation and Research for Endangered Species, Zoological Society of San Diego, San Diego, California 2School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand 3College of Life Sciences, and Key Laboratory Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China ABSTRACT Men and women at Northwest University (n ¼ 631), Xi’an, China, were asked to rate the attractiveness of male or female figures manipulated to vary somatotype, waist-to- hip ratio (WHR), secondary sexual traits, and other features. In study 1, women rated the aver- age masculine somatotype as most attractive, followed by the mesomorphic (muscular), ecto- morphic (slim), and endomorphic (heavily built) somatotypes, in descending order of preference. In study 2, the amount and distribution of masculine trunk (chest and abdominal) hair were altered progressively in a series of front-posed figures. Women rated figures with no or little trunk hair as most attractive. Study 3 assessed the attractiveness of front-posed male figures which varied only in length of their nonerect penis. Numerical ratings for this trait were low, but moderate lengthening of the penis (22% or 33% above average) resulted in a significant increase in scores for attractiveness. In study 4, Chinese men rated the attractiveness of back- posed female images varying in waist-to-hip ratio (WHR from 0.5–1.0). -
Chapter 14. Anthropometry and Biomechanics
Table of contents 14 Anthropometry and biomechanics........................................................................................ 14-1 14.1 General application of anthropometric and biomechanic data .....................................14-2 14.1.1 User population......................................................................................................14-2 14.1.2 Using design limits ................................................................................................14-4 14.1.3 Avoiding pitfalls in applying anthropometric data ................................................14-6 14.1.4 Solving a complex sequence of design problems ..................................................14-7 14.1.5 Use of distribution and correlation data...............................................................14-11 14.2 Anthropometric variability factors..............................................................................14-13 14.3 Anthropometric and biomechanics data......................................................................14-13 14.3.1 Data usage............................................................................................................14-13 14.3.2 Static body characteristics....................................................................................14-14 14.3.3 Dynamic (mobile) body characteristics ...............................................................14-28 14.3.3.1 Range of whole body motion........................................................................14-28 -
MR Imaging of Vaginal Morphology, Paravaginal Attachments and Ligaments
MR imaging of vaginal morph:ingynious 05/06/15 10:09 Pagina 53 Original article MR imaging of vaginal morphology, paravaginal attachments and ligaments. Normal features VITTORIO PILONI Iniziativa Medica, Diagnostic Imaging Centre, Monselice (Padova), Italy Abstract: Aim: To define the MR appearance of the intact vaginal and paravaginal anatomy. Method: the pelvic MR examinations achieved with external coil of 25 nulliparous women (group A), mean age 31.3 range 28-35 years without pelvic floor dysfunctions, were compared with those of 8 women who had cesarean delivery (group B), mean age 34.1 range 31-40 years, for evidence of (a) vaginal morphology, length and axis inclination; (b) perineal body’s position with respect to the hymen plane; and (c) visibility of paravaginal attachments and lig- aments. Results: in both groups, axial MR images showed that the upper vagina had an horizontal, linear shape in over 91%; the middle vagi- na an H-shape or W-shape in 74% and 26%, respectively; and the lower vagina a U-shape in 82% of cases. Vaginal length, axis inclination and distance of perineal body to the hymen were not significantly different between the two groups (mean ± SD 77.3 ± 3.2 mm vs 74.3 ± 5.2 mm; 70.1 ± 4.8 degrees vs 74.04 ± 1.6 degrees; and +3.2 ± 2.4 mm vs + 2.4 ± 1.8 mm, in group A and B, respectively, P > 0.05). Overall, the lower third vaginal morphology was the less easily identifiable structure (visibility score, 2); the uterosacral ligaments and the parau- rethral ligaments were the most frequently depicted attachments (visibility score, 3 and 4, respectively); the distance of the perineal body to the hymen was the most consistent reference landmark (mean +3 mm, range -2 to + 5 mm, visibility score 4). -
Study Guide Medical Terminology by Thea Liza Batan About the Author
Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails proficiencyincommunicatingwithhealthcareprofessionalssuchasphysicians,nurses, or dentists. -
Diagnosis of Zygomaticus Muscle Paralysis Using Needle
Case Report Ann Rehabil Med 2013;37(3):433-437 pISSN: 2234-0645 • eISSN: 2234-0653 http://dx.doi.org/10.5535/arm.2013.37.3.433 Annals of Rehabilitation Medicine Diagnosis of Zygomaticus Muscle Paralysis Using Needle Electromyography With Ultrasonography Seung Han Yoo, MD, Hee Kyu Kwon, MD, Sang Heon Lee, MD, Seok Jun Lee, MD, Kang Wook Ha, MD, Hyeong Suk Yun, MD Department of Rehabilitation Medicine, Korea University College of Medicine, Seoul, Korea A 22-year-old woman visited our clinic with a history of radiofrequency volumetric reduction for bilateral masseter muscles at a local medical clinic. Six days after the radiofrequency procedure, she noticed a facial asymmetry during smiling. Physical examination revealed immobility of the mouth drawing upward and laterally on the left. Routine nerve conduction studies and needle electromyography (EMG) in facial muscles did not suggest electrodiagnostic abnormalities. We assumed that the cause of facial asymmetry could be due to an injury of zygomaticus muscles, however, since defining the muscles through surface anatomy was difficult and it was not possible to identify the muscles with conventional electromyographic methods. Sono-guided needle EMG for zygomaticus muscle revealed spontaneous activities at rest and small amplitude motor unit potentials with reduced recruitment patterns on volition. Sono-guided needle EMG may be an optimal approach in focal facial nerve branch injury for the specific localization of the injury lesion. Keywords Ultrasonography-guided, Zygomaticus, Needle electromyography INTRODUCTION are performed in only the three or four muscles [2]. Also, anatomic variation and tiny muscle size pose difficulties Facial palsy is a common form of neuropathy due to to electrodiagnostic tests in the target muscles. -
Vascularization of the Penis of a Man
Roczniki Akademii Medycznej w Białymstoku · Vol. 49, 2004 · Annales Academiae MedicaeVascularization Bialostocensis of the penis of a man 285 Vascularization of the penis of a man Okolokulak E, Volchkevich D The Human Anatomy Department, Grodno State Medical University, Grodno, Belarus Abstract Conclusions: The penis receives blood from external and internal pudendal arteries, which are very variable. The Purpose: The study of the features of the blood supply of venous blood of the penis flows off in three types of veins. a penis of the man. Material and methods: Macromicropreparation, angio- graphy, corrosion method, morphometry, statistical method. Key words: penis, veins of penis, arteries of penis, erectile Results: The penis has three venous collector-execut- dysfunction. ing outflow of blood. First of them is submitted surface dorsal vein, which is shaped from small-sized venous ves- sels of skin, subcutaneous fat and surface fascia of penis. Introduction The beginning deep dorsal vein, which will derivate second venous collector, gives veniplex of head of the penis. The The development of the medical technology has deepened spongy veins outstanding as third venous collector, reach the knowledge of organic violations of gears of erection. It was the bulb of penis, where they receive small-sized bulbar vein. straightened out, that more than 50% from them cause vascular The arterial blood supply of penis happens at the expense of disorders [1-4]. It has given a particular push to more detailed external and internal pudendal arteries. The external puden- learning extra- and intraorgans vessels of the penis. At the same dal artery starts from an internal wall of femoral artery on time, the problems of vascularization and relationships of blood 2.5-2.7 cm below inguinal ligament. -
The Anatomy, Biological Plausibility and Efficacy of Visceral Mobilization in the Treatment of Pelvic floor Dysfunction
Journal of Pelvic, Obstetric and Gynaecological Physiotherapy, Autumn 2015, 117, 5–18 CLINICAL REVIEW The anatomy, biological plausibility and efficacy of visceral mobilization in the treatment of pelvic floor dysfunction R. C. Horton Rehabilitation Services, Asante Rogue Regional Medical Center, Medford, Oregon, and Faculty, Herman & Wallace Pelvic Rehabilitation Institute, Seattle, Washington, USA Abstract This paper provides an overview of the technique of visceral mobilization. Founded on the principles of osteopathic manipulative therapy, this modality is employed by manual therapy practitioners throughout the world. Advancements in the field of pelvic physiotherapy have generated a better understanding of how the components of the abdominopelvic canister work synergistically to support the midline of the body and contribute to normal function. The walls of this canister are occupied by and intimately connected to the visceral structures found within the abdominal cavity. These midline contents carry a significant mass within the body, and affect the function of the somatic frame in three ways: referred visceral pain; central sensitization; and changes in local tissue dynamics. The evidence supporting visceral mobilization therapy (VMT) is limited, and there is an overabundance of case reports and observational studies in the literature. How- ever, there is some higher-level clinical evidence that supports the inclusion of VMT within a comprehensive treatment programme for a number of pelvic physiotherapy diagnoses, including lower urinary tract dysfunction, chronic constipation and irritable bowel syndrome. The evidence supporting VMT for the treatment of adhesion-related disorders such as infertility shows promise, and further studies are currently in progress. Keywords: fascia, manual therapy, osteopathy, pelvic dysfunction, visceral mobilization. -
Atlas of the Facial Nerve and Related Structures
Rhoton Yoshioka Atlas of the Facial Nerve Unique Atlas Opens Window and Related Structures Into Facial Nerve Anatomy… Atlas of the Facial Nerve and Related Structures and Related Nerve Facial of the Atlas “His meticulous methods of anatomical dissection and microsurgical techniques helped transform the primitive specialty of neurosurgery into the magnificent surgical discipline that it is today.”— Nobutaka Yoshioka American Association of Neurological Surgeons. Albert L. Rhoton, Jr. Nobutaka Yoshioka, MD, PhD and Albert L. Rhoton, Jr., MD have created an anatomical atlas of astounding precision. An unparalleled teaching tool, this atlas opens a unique window into the anatomical intricacies of complex facial nerves and related structures. An internationally renowned author, educator, brain anatomist, and neurosurgeon, Dr. Rhoton is regarded by colleagues as one of the fathers of modern microscopic neurosurgery. Dr. Yoshioka, an esteemed craniofacial reconstructive surgeon in Japan, mastered this precise dissection technique while undertaking a fellowship at Dr. Rhoton’s microanatomy lab, writing in the preface that within such precision images lies potential for surgical innovation. Special Features • Exquisite color photographs, prepared from carefully dissected latex injected cadavers, reveal anatomy layer by layer with remarkable detail and clarity • An added highlight, 3-D versions of these extraordinary images, are available online in the Thieme MediaCenter • Major sections include intracranial region and skull, upper facial and midfacial region, and lower facial and posterolateral neck region Organized by region, each layered dissection elucidates specific nerves and structures with pinpoint accuracy, providing the clinician with in-depth anatomical insights. Precise clinical explanations accompany each photograph. In tandem, the images and text provide an excellent foundation for understanding the nerves and structures impacted by neurosurgical-related pathologies as well as other conditions and injuries. -
GRAS 45BC KEMAR Head & Torso with Mouth Simulator, Non-Configured
GRAS 45BC KEMAR Head & Torso with Mouth Simulator, Non-configured Connection: 0 V/CCP or 200 V/LEMO The 45BC KEMAR head & torso with mouth simulator is Channel(s): 2 an acoustic research tool with built-in ear and mouth ANSI: S3.36, S3.25 simulators that simulates the changes that occur to IEC: 60318-7 soundwaves as they pass a human head and torso. Its Special feature: Built-in mouth simulator and equivalent without mouth is GRAS 45BB KEMAR Head & power amplifier Torso, non-configured. GRAS Sound & Vibration Skovlytoften 33, 2840 Holte, Denmark www.grasacoustics.com GRAS 45BC KEMAR Head & Torso with Page: 2 Technology Mouth Simulator, Non-configured Introduction and in the far-field. Because of its anthropometric shape, it does so more realistically than any other The KEMAR head and torso simulator was manikin. KEMAR is the only manikin with a introduced by Knowles in 1972 and quickly became changeable ear-to-shoulder ratio simulating both the industry standard for hearing-aid manufacturers male and female median values. and research audiologists (visit KEMAR.us to read the full story). The GRAS KEMAR has the same Mouth Simulator dimensions and acoustical properties as the original The built-in mouth simulator simulates the sound KEMAR from 1972 and is 100% backward compatible. field around the human head at close quarters and When fitted with pinna simulators, ear canal the far-field. It is based on ITU-T Rec. P.58. At the extension, and Ear Simulator, according to IEC mouth reference point (MRP) – 25 mm from the lip 60318-4 or low-noise, KEMAR closely mimics the plane – the mouth simulator can be equalized to acoustic properties of the human ear. -
Penile and Genital Injuries
Urol Clin N Am 33 (2006) 117–126 Penile and Genital Injuries Hunter Wessells, MD, FACS*, Layron Long, MD Department of Urology, University of Washington School of Medicine and Harborview Medical Center, 325 Ninth Avenue, Seattle, WA 98104, USA Genital injuries are significant because of their Mechanisms association with injuries to major pelvic and vas- The male genitalia have a tremendous capacity cular organs that result from both blunt and pen- to resist injury. The flaccidity of the pendulous etrating mechanisms, and the chronic disability portion of the penis limits the transfer of kinetic resulting from penile, scrotal, and vaginal trauma. energy during trauma. In contrast, the fixed Because trauma is predominantly a disease of portion of the genitalia (eg, the crura of the penis young persons, genital injuries may profoundly in relation to the pubic rami, and the female affect health-related quality of life and contribute external genitalia in their similar relationships to the burden of disease related to trauma. Inju- with these bony structures) are prone to blunt ries to the female genitalia have additional conse- trauma from pelvic fracture or straddle injury. quences because of the association with sexual Similarly, the erect penis becomes more prone to assault and interpersonal violence [1]. Although injury because increases in pressure within the the existing literature has many gaps, a recent penis during bending rise exponentially when the Consensus Group on Genitourinary Trauma pro- penis is rigid (up to 1500 mm Hg) as opposed to vided an overview and reference point on the sub- flaccid [6]. Injury caused by missed intromission ject [2]. -
SŁOWNIK ANATOMICZNY (ANGIELSKO–Łacinsłownik Anatomiczny (Angielsko-Łacińsko-Polski)´ SKO–POLSKI)
ANATOMY WORDS (ENGLISH–LATIN–POLISH) SŁOWNIK ANATOMICZNY (ANGIELSKO–ŁACINSłownik anatomiczny (angielsko-łacińsko-polski)´ SKO–POLSKI) English – Je˛zyk angielski Latin – Łacina Polish – Je˛zyk polski Arteries – Te˛tnice accessory obturator artery arteria obturatoria accessoria tętnica zasłonowa dodatkowa acetabular branch ramus acetabularis gałąź panewkowa anterior basal segmental artery arteria segmentalis basalis anterior pulmonis tętnica segmentowa podstawna przednia (dextri et sinistri) płuca (prawego i lewego) anterior cecal artery arteria caecalis anterior tętnica kątnicza przednia anterior cerebral artery arteria cerebri anterior tętnica przednia mózgu anterior choroidal artery arteria choroidea anterior tętnica naczyniówkowa przednia anterior ciliary arteries arteriae ciliares anteriores tętnice rzęskowe przednie anterior circumflex humeral artery arteria circumflexa humeri anterior tętnica okalająca ramię przednia anterior communicating artery arteria communicans anterior tętnica łącząca przednia anterior conjunctival artery arteria conjunctivalis anterior tętnica spojówkowa przednia anterior ethmoidal artery arteria ethmoidalis anterior tętnica sitowa przednia anterior inferior cerebellar artery arteria anterior inferior cerebelli tętnica dolna przednia móżdżku anterior interosseous artery arteria interossea anterior tętnica międzykostna przednia anterior labial branches of deep external rami labiales anteriores arteriae pudendae gałęzie wargowe przednie tętnicy sromowej pudendal artery externae profundae zewnętrznej głębokiej