The Classification and Scientific Names of Rainbow and Cutthroat Trouts Gerald R

Total Page:16

File Type:pdf, Size:1020Kb

The Classification and Scientific Names of Rainbow and Cutthroat Trouts Gerald R The Classification and Scientific Names of Rainbow and Cutthroat Trouts Gerald R. Smith and Ralph F. Stearley ABSTRACT Two unambiguous discoveries involving rainbow trout require scientific name changes. First, the rainbow trout has been demonstrated to be the same species as the Kamchatka trout. Second, studies of osteology and bio- chemistry of trout and salmon show that rainbow and cutthroat trout, and their close relatives, the golden, Mexican golden, Gila, and Apache trouts, are more closely related to Pacific salmons (Oncorhynchus) than to brown trout and Atlantic salmon (Salmo). The different names required by these two discoveries will cause some confusion in communications in which the formal classification is used, so we present evidence to acquaint biologists and managers with the rationale for the changes. The species name of the rainbow trout becomes mykiss, an older Latinized indigenous name of the Kamchatka trout. The generic designation of rainbow and cutthroat trout poses a more subjective problem, involving four possibilities: Salmo, Oncorhynchus, Rhabdofario, and Parasalmo. The balance of evidence indicates to us that the generic name for Pacific trouts and salmons should be Oncorhynchus. We suggest recognition of two divergent sister lineages, (1) Atlantic trout and salmon, and (2) Pacific trouts and salmons, as the genera Salmo and Oncorhynchus, respectively. Alternative generic classifications considered include the following: (a) Enlarge Salmo to include all Atlantic and Pacific trouts and salmons. This would be well supported by morphological and biochemical characters, but would fail to emphasize the dis- tinctions between the Pacific and Atlantic groups. (b) Use a separate generic name, Rhabdofario, for rainbow and cutthroat trout, and their inland relatives. This would be valid, but would fail to recognize the gradation between Pacific trouts and Pacific salmons. (c) Continue to assign Pacific trout to the genus Salmo, separate from On- corhynchus. This would be stable, but at the expense of evolutionary information in the classification-rainbow and cutthroat trout are on the same branch of evolution as the Pacific salmon. To reflect these biological re- lationships in the classification of trouts and salmons will contribute to better understanding of their life histories and better predictions for their management. The AFS Names of Fishes Committee has the salmon. If the classification is not neric and specific names of trout and adopted several changes in North American clear it is impossible to trace even salmon are partly the result of his- trout names as outlined in the following the distribution of this group. Still toric sequence of publication of de- article. The American FisheriesSociety has less is it possible to elucidate the scriptions by early pioneers in fish implemented use of the new names in all question of the origin (freshwater or biology, and partly the result of AFS publications produced after January marine) of the salmon; of the bio- modifications necessitated by new 1, 1989. See also, Fisheries 13(6):24.- logical reason for the inevitable death information on species relationships. The Editor. after spawning of all specimens in At any point in history, people some of the species of this tribe; of working on classification try to sat- IlX arge quantities of Salmo the origin of the migratory habits of isfy two criteria: (1) stability of no- Pass through the market the salmon; of the return of these menclature and (2) correspondence and hundreds of thousands of tons fish for spawning purposes into their between classification and knowl- of Oncorhynchus are caught annually. native streams, and many other edge about evolutionary relatedness. Many laboratories investigate these problems which interest everyone These criteria come into conflict when fishes, yet there is no agreement on who studies the life history of the new information compels re-align- simple and fundamental questions, salmon. ment of species groupings. In the such as: (1) Does the genus Salmo "Therefore, the first thing that must present case, information on the re- extend to the Pacific? (2) Does there be done is to attempt to find a nat- lationships of Pacific trouts and exist a distinct genus Oncorhynchus ural arrangement of this group." salmons has been available for 70 distinct from Salmo? Such an uncer- V. Tchernavin (1937 p. 236) years (since the work of C. Tate Re- tainty inevitably renders it impossi- gan in 1914), but people have been ble to clarify the many obscure ques- The Problem reluctant to destabilize names that so tions in regard to the life history of The internationally accepted ge- many biologists and managers use in their reports and communications. A Gerald R. Smith is the curator of fishes at the Museum of Zoology and Museum of number of workers have recently de- Paleontology, University of Michigan, Ann Arbor, MI 48109. His primary research is cided to correct the classification, but on the evolution of catostomids, salmonids, sculpins, and other freshwater fishes, with have unfortunately chosen an invalid special emphasis on speciation in whitefishes and sculpins. Ralph F. Stearly is a doctoral name, Parasalmo, for classifying Pa- student in fish paleontology and evolution in the Museum of Paleontology at the Univer- cific trouts. We review the history of sity of Michigan. trout and salmon names and suggest 4 Fisheries, Vol. 14, No. 1 choices which we think will be sta- Jordan and Evermann (1896), influ- ble in the future. enced by characteristics given by At the June 1988 meeting of The genus Salmo was proposed by Richardson (1836) and Suckley (1860), the American Society of Ichthy- Linnaeus in 1758. It originally in- applied the name mykiss (Walbaum's ologists and Herpetologists, the cluded the Atlantic salmon and trout 1792 Kamchatka trout) to the cut- APS-ASIH Committee on Names (Salmo salar and Salmo trutta, respec- throat trout, which they mistakenly of Fishes was able to review thor- tively) as well as huchen, chars, thought to extend to Kamchatka. In oughly the study of Pacific trouts grayling, and other soft-rayed fishes. 1898, Jordan and Evermann correctly outlined by Smith and Stearley Several decades later, with the ex- assigned the name clarki (Richardson in the accompanying article. After ploration of the lands bordering the 1836) to the cutthroat trout when they examining the evidence, the North Pacific, many new trouts and discovered that it ranged only to Committee voted unanimously salmons were discovered. Most of Alaska, not to the Bering Sea, and to accept Oncorhynchus as the these species (e.g., mykiss, tshawyts- that mykiss from Kamchatka lack or- proper generic name for these cha, gorbuscha, nerka, keta, kisutch) were ange on the throat ordan and Ev- fish, leaving Salmo as the genus described in Latin by Johann Wal- ermann 1898). But they mistakenly of trouts (including the Atlantic baum (1792) on the basis of speci- concluded that mykiss was a relative salmon) native to Europe, west- mens collected by Thomas Pennant's of Salmo salar because their specimen emn Asia, and the Atlantic basin. expedition in Kamchatka. In 1836, had larger scales (125 lateral series) A change in the specific name of John Richardson described most of than the steelhead, gairdneri. rainbow trout from gairdner to them again (e.g., gairdneri, quinnat, Robert Behnke (1966) corrected the mykiss has been advocated on scouleri, paucidens, consuetus, tsup- misunderstanding of scale size and good evidence by ichthyologists pitch) on the basis of specimens from provided convincing morphological for several years, and the Com- northwestern North America. (Wal- evidence that the Kamchatka trout mittee had already accepted it. baum included the new trouts, salm- and the rainbow trout were similar. The Committee has not en- ons, and chars in Linnaeus' genus Okazaki (1984) added data from 37 dorsed these changes lightly, for Salmo. Richardson did the same, ex- electrophoretic loci and demon- it has an overriding interest in cept that he separated chars out as strated beyond doubt that coastal the stability of fish names. We the genus Salvelinus.) steelheads from western North consider the evidence supporting Most of the species currently rec- America are genetically more similar the changes too strong to dis- ognized were captured repeatedly by to Kamchatka trout (genetic distance pute. Only the scientific names explorers on both sides of the Pacific - .0026) than to inland gairdneri (ge- are affected; the common names and were named again by naturalists netic distance = .0073). Okazaki long recommended by the Com- attempting to describe the spectac- summarized all of the available evi- mittee still remain unchanged. ular diveristy (e.g., Suckley 1860, dence, including the identity of ver- The new nomenclature will be 1862). Why were the new discov- tebral counts (Savvaitova 1975) and reflected in two of the Commit- eries so often thought to represent chromosome data (Vasil'yev 1975; tee's forthcoming books: "World new species? Partly because they Thorgard 1977) and concluded that List of Fishes ... of Interest to sometimes were, partly because the the rainbow trout and the Kam- North Americans," scheduled for species concept was less inclusive chatka trout are the same biological publication in 1989, and "List of then, but mostly because the nu- species, for which the oldest avail- Common and Scientific Names merous species of trout and salmon able name is mykiss (which is Wal- of Fishes from the United States show remarkable variation in sexual baum's spelling for an indigenous and Canada," 5th edition, 1990. dimorphism, breeding shapes, colors, Kamchatkan name for the rainbow C. Richard Robins, Chair and life history. trout). Committee on Names of Fishes Walbaum's, Richardson's, and The facts are solid and the choice Suckley's names for the same spe- seems unambiguous. Although North has established a stable set of ver- American biologists could appeal to cies, above, were mostly sorted out nacular names to assist unambigu- the International Commission on Zo- by Jordan and Gilbert (1883).
Recommended publications
  • Synthesis of (3S,3′S)- and Meso-Stereoisomers of Alloxanthin and Determination of Absolute Configuration of Alloxanthin Isolated from Aquatic Animals
    Mar. Drugs 2014, 12, 2623-2632; doi:10.3390/md12052623 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Synthesis of (3S,3′S)- and meso-Stereoisomers of Alloxanthin and Determination of Absolute Configuration of Alloxanthin Isolated from Aquatic Animals Yumiko Yamano 1,*, Takashi Maoka 2 and Akimori Wada 1 1 Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan; E-Mail: [email protected] 2 Research Institute for Production Development, 15 Shimogamo-morimoto-cho, Sakyo-ku, Kyoto 606-0805, Japan; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax.: +81-78-441-7562. Received: 20 March 2014; in revised form: 15 April 2014 / Accepted: 15 April 2014 / Published: 8 May 2014 Abstract: In order to determine the absolute configuration of naturally occurring alloxanthin, a HPLC analytical method for three stereoisomers 1a–c was established by using a chiral column. Two authentic samples, (3S,3′S)- and meso-stereoisomers 1b and 1c, were chemically synthesized according to the method previously developed for (3R,3′R)-alloxanthin (1a). Application of this method to various alloxanthin specimens of aquatic animals demonstrated that those isolated from shellfishes, tunicates, and crucian carp are identical with (3R,3′R)-stereoisomer 1a, and unexpectedly those from lake shrimp, catfish, biwa goby, and biwa trout are mixtures of three stereoisomers of 1a–c. Keywords: carotenoid; alloxanthin; synthesis; chiral HPLC separation; absolute configuration 1. Introduction Alloxanthin (1) (Figure 1) was first isolated from Cryptomonas algae [1] and its structure was determined to be 7,8,7′,8′-tetreradehydro-β,β-carotene-3,3′-diol by MS, IR and 1H-NMR spectroscopies [2].
    [Show full text]
  • Population Dynamics and Trophic Ecology of Dolly Varden in The
    Population Dynamics and Trophic Ecology of Dolly Varden in the Iliamna River, Alaska: Life History of Freshwater Fish Relying on Marine Food Subsidies Troy A. Jaecks A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2010 Program Authorized to Offer Degree: School of Aquatic and Fishery Sciences University of Washington Graduate School This is to certify that I have examined this copy of a master’s thesis by Troy A. Jaecks and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Committee Members: _______________________________________________ Thomas P. Quinn _______________________________________________ Andre Punt _______________________________________________ David Beauchamp _______________________________________________ James Hasbrouck Date: ___________________________________________ In presenting this thesis in partial fulfillment of the requirements for a master’s degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this thesis is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Any other reproduction for any purposes or by any means shall not be allowed without my permission. Signature ________________________________ Date ____________________________________ Table of Contents List of Figures
    [Show full text]
  • (Salmo Salar) from Scotland with Mandibular Deformation
    Int. J. Morphol., 34(3):1097-1104, 2016. Morphological Study and Mineral Analysis of the Lower Mandible of Adult Atlantic Salmon (Salmo salar) from Scotland with Mandibular Deformation Estudio Morfológico y Análisis de Minerales de la Mandíbula Inferior de Salmones del Atlántico (Salmo salar) Adultos con Deformación Mandibular, Provenientes de Escocia Mariana Rojas Rauco*,**; Emilio Ramírez Maldonado** & Mariano del Sol*,*** ROJAS, R. M.; RAMÍREZ, M. E. & DEL SOL, M. Morphological study and mineral analysis of the lower mandible of adult atlantic salmon (Salmo salar) from Scotland with mandibular deformation. Int. J. Morphol., 34(3):1097-1104, 2016. SUMMARY: Mandibular deformity is a condition that affects the jaw bone of adult salmon and has been observed in Norway and Chile, causing weight loss, poor quality of farmed fish and increased mortality. The causes range from high temperatures of the state of eggs, to poor nutrition phosphorus or vitamin C. This work aims to analyze this deformity by histochemical and mineral analysis technique during an episode presented in centers of the Scotia Sea. Jaw and spinal segments of 21 Atlantic salmon in Scotland were used. These samples were classified into three groups: Group 1: Severely deformed. Group 2: Mildly affected. Group 3: Normal controls. Four jaws per group were fixed in 10 % formalin and embedded in Paraplast, sections of 5 microns were performed using a Microm® microtome histochemical technique Von Kossa was used for the detection of calcium deposits, which highlights the calcium osteoid black and red color. For proximate analysis, and in order to obtain and compare levels of calcium, phosphorus, zinc and magnesium in total 9 bone jaws (6 affected with DM and 3 controls) and 9 body sections the Mann-Whitney test was used to compare these values between misshapen salmon and controls.
    [Show full text]
  • Brown Trout (Salmo Trutta): a Technical Conservation Assessment
    Brown Trout (Salmo trutta): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project April 26, 2007 Laura Belica1 with life cycle model by David McDonald, Ph.D.2 11623 Steele Street, Laramie Wyoming 82070 2Department of Zoology and Physiology, University of Wyoming, P.O. Box 3166, Laramie, WY 82071 Belica, L. (2007, April 26). Brown Trout (Salmo trutta): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/projects/scp/assessments/ browntrout.pdf [date of access]. ACKNOWLEDGMENTS I would like to thank the many biologists and managers from Colorado, Kansas, Nebraska, South Dakota, and Wyoming and from the national forests within Region 2 who provided information about brown trout populations in their jurisdictions. I also extend my appreciation to David B. McDonald at the University of Wyoming for the population demographic matrix analysis he provided. Thank you to Nathan P. Nibbelink for coordinating the cost- share agreement with the USDA Forest Service. I especially thank Richard Vacirca, Gary Patton, and David Winters of the USDA Forest Service for their help in bringing this report to completion. I thank Nancy McDonald and Kimberly Nguyen for their attention to detail in preparing this report for publication. Finally, I would like to thank Peter McHugh for graciously taking the time to review and comment on this assessment. AUTHOR’S BIOGRAPHY Laura A. T. Belica received a M.S. degree in Zoology and Physiology from the University of Wyoming in 2003 (as L.A. Thel). Her research interests center around the ecology of fishes, hydrology, and watershed management, especially as they relate to the management of aquatic ecosystems and native fishes.
    [Show full text]
  • International Conference on Invasive Alien Species Management
    Proceedings of the International Conference on Invasive Alien Species Management NNationalational TTrustrust fforor NatureNature ConservationConservation BBiodiversityiodiversity CConservationonservation CentreCentre SSauraha,auraha, CChitwan,hitwan, NNepalepal MMarcharch 2525 – 227,7, 22014014 Supported by: Dr. Ganesh Raj Joshi, the Secretary of Ministry of Forests and Soil Conserva on, inaugura ng the conference Dignitaries of the inaugural session on the dais Proceedings of the International Conference on Invasive Alien Species Management National Trust for Nature Conservation Biodiversity Conservation Centre Sauraha, Chitwan, Nepal March 25 – 27, 2014 Supported by: © NTNC 2014 All rights reserved Any reproduc on in full or in part must men on the tle and credit NTNC and the author Published by : NaƟ onal Trust for Nature ConservaƟ on (NTNC) Address : Khumaltar, Lalitpur, Nepal PO Box 3712, Kathmandu, Nepal Tel : +977-1-5526571, 5526573 Fax : +977-1-5526570 E-mail : [email protected] URL : www.ntnc.org.np Edited by: Mr. Ganga Jang Thapa Dr. Naresh Subedi Dr. Manish Raj Pandey Mr. Nawa Raj Chapagain Mr. Shyam Kumar Thapa Mr. Arun Rana PublicaƟ on services: Mr. Numraj Khanal Photo credits: Dr. Naresh Subedi Mr. Shyam Kumar Thapa Mr. Numraj Khanal CitaƟ on: Thapa, G. J., Subedi, N., Pandey, M. R., Thapa, S. K., Chapagain, N. R. and Rana A. (eds.) (2014), Proceedings of the InternaƟ onal Conference on Invasive Alien Species Management. Na onal Trust for Nature Conserva on, Nepal. This publica on is also available at www.ntnc.org.np/iciasm/publica ons ISBN: 978-9937-8522-1-0 Disclaimer: This proceeding is made possible by the generous support of the Asian Development Bank (ADB), the American people through the United States Agency for InternaƟ onal Development (USAID) and the NaƟ onal Trust for Nature ConservaƟ on (NTNC).
    [Show full text]
  • Variation in Salmonid Life Histories: Patterns and Perspectives
    United States Department of Agriculture Variation in Salmonid Life Forest Service Histories: Patterns and Pacific Northwest Research Station Perspectives Research Paper PNW-RP-498 Mary F. Willson February 1997 Author MARY F. WILLSON is a research ecologist, Forestry Sciences Laboratory, 2770 Sherwood Lane, Juneau, AK 98801. Abstract Willson, Mary F. 1997. Variation in salmonid life histories: patterns and perspectives. Res. Pap. PNW-RP-498. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 50 p. Salmonid fishes differ in degree of anadromy, age of maturation, frequency of repro- duction, body size and fecundity, sexual dimorphism, breeding season, morphology, and, to a lesser degree, parental care. Patterns of variation and their possible signif- icance for ecology and evolution and for resource management are the focus of this review. Keywords: Salmon, char, Oncorhynchus, Salmo, Salvelinus, life history, sexual dimor- phism, age of maturation, semelparity, anadromy, phenology, phenotypic variation, parental care, speciation. Summary Salmonid fishes differ in degree of anadromy, age of maturation, frequency of reproduction, body size and fecundity, sexual dimorphism, breeding season, morphology, and to a lesser degree, parental care. The advantages of large body size in reproductive competition probably favored the evolution of ocean foraging, and the advantages of safe breeding sites probably favored freshwater spawning. Both long-distance migrations and reproductive competition may have favored the evolution of semelparity. Reproductive competition has favored the evolution of secondary sexual characters, alternative mating tactics, and probably nest-defense behavior. Salmonids provide good examples of character divergence in response to ecological release and of parallel evolution. The great phenotypic plasticity of these fishes may facilitate speciation.
    [Show full text]
  • Loughs Agency Trout Strategy Contents Page 1
    Loughs Agency Trout Strategy Contents Page 1. The aim of the strategy .......................................................2 2. Executive Summary ..........................................................3 3. The need for a strategy .......................................................4 4. Strategy target species - an introduction .....................................5 5. Angling - economic and social development ..................................7 6. Encouraging Angling.........................................................9 7. Habitat ......................................................................9 8. Predation ................................................................... 10 9. Obstructions ................................................................ 11 10. Fly life and weed growth .................................................... 11 11. Commercial Fisheries........................................................ 11 12. Conservation of the wild stocks.............................................. 12 13. Setting conservation targets for wild fish..................................... 12 14. Protecting and improving wild stocks........................................ 13 15. Exploitation management .................................................. 13 16. Stocking and introductions ................................................. 14 17. Non-native species and bio-security ......................................... 14 18. Classification of trout fisheries . 15 19. Wild Fisheries Protection Zones.............................................
    [Show full text]
  • Arctic Char in Northern Alaska
    1 Dolly Varden & Arctic Char in Northern Alaska Dolly Varden & Arctic Char Distribution for Alaska and Chukotsk Peninsula 2 What is a char? Char are members of the family Salmonidae and the genus Salvelinus. The family Salmonidae includes all the salmonid fishes: Genus: Oncorhynchus rainbow trout, Pacific salmon, cutthroat trout Genus: Coregonus whitefish Genus: Thymallus grayling Genus: Salmo brown trout, Atlantic salmon Genus: Salvelinus Dolly Varden, Arctic char, lake trout, bull trout, brook trout 3 In Alaska, species of char include: Dolly Varden Salvelinus malma Arctic Char Salvelinus alpinus Lake Trout Salvelinus namaycush Bull Trout Salvelinus confluentus Brook Trout Salvelinus fontinalis (introduced in Southeast Alaska) Illustrations by Joseph R. Tomelleri 4 How is a char different from any other salmonid? Char are distinguished from other salmonid fishes by having light spots on a dark background and by the lack of teeth on the shaft of the vomer (upper palate). Chars Light spots/dark background Other Salmonids Dark spots/light background 5 What is in a fish’s name? Within the scientific community, the first person to formally describe a fish earns the right to name the fish. No one has ever seen a fish like you before! You are gray & purple & have large lips. You have 3 rays in your dorsal fin and you lack anal & ventral fins I will name you, Finus missingus. That fish and others like it from the same location become the “type specimen” to which scientists compare similar fish from other locations to determine if they are the same species or a different species. On my last expedition, I found a fish that was gray & purple, had large lips, 3 dorsal fin rays, and lacked anal & ventral fins.
    [Show full text]
  • Foreword and Retrospective: Life Histories, Evolution and Salmonids1
    FOREWORD AND RETROSPECTIVE: LIFE HISTORIES, EVOLUTION AND SALMONIDS1 William M. Schaffer [Pp. 20-61. In, Stearns, S. and A. Hendry (eds.) 2004. Evolution Illuminated: Salmon and their Relatives. Oxford University Press, UK] 1 In memory of Paul F. Elson and Robert H. MacArthur who helped me on my way. Foreword and Retrospective 2 I. Origins of this Foreword. This book is about salmonid fishes and the ways in which studying salmonids can inform general problems in evolution. My own involvement with salmon dates to the fall of 1969 when, at the urging of Professor J. T. Bonner, I attempted to apply my then nascent ideas on life history evolution to the genus Salmo. The occasion was the weekly ecology brown bag at which I had been scheduled to speak, and the ensuing discussion focused on the adaptive merits of semelparous vs. iteroparous reproduction. Dr. Bonner, it transpired, spent his summers in Nova Scotia where he enjoyed angling for salmon. He was impressed by the tremendous obstacles elsewhere2 encountered by these fish when they returned from the ocean to spawn. Even though S. salar is technically iteroparous, it was apparent that individuals often had but a single crack at reproduction (Belding 1934). I should go to the Maritimes, he proposed; solicit the assistance of P. F. Elson, a fisheries biologist at the research station in St. Andrews; learn about salmon. Perhaps, there were data that would inform the theory I was developing. Perhaps I would gain insight as to why Oncorhynchus is obligatorily semelparous and Salmo not.3 And so, when the spring semester ended, I drove north, knowing little enough about the organisms I had chosen to study, but convinced, as only a graduate student can be, that they would doubtless conform to my expectations.
    [Show full text]
  • Maine's Coldwater Game Fish Poster
    Maine’sMaine’s ColdwaterColdwater GameGame FishFish Brown Trout Brook Trout Landlocked Salmon Togue Splake Arctic Charr Lake Whitefish Rainbow Trout Rainbow Smelt Cusk Maine Department of All in for the Maine Outdoors. Inland Fisheries and Wildlife mefishwildlife.com Maine’s Coldwater Game Fish COMMON NAME: BROWN TROUT COMMON NAME: EASTERN BROOK TROUT OTHER NAMES: GERMAN BROWN TROUT, BROWNIE, LOCH LEVEN TROUT, SAIBLING OTHER NAMES: SQUARETAIL, BROOKIE, SPECKLED TROUT SCIENTIFIC NAME: Salmo trutta SCIENTIFIC NAME: Salvelinus fontinalis ORIGIN: Introduced ORIGIN: Native ADULT SIZE: Normal size is 14-20 inches and 1-2 pounds. Browns occasionally reach 10 pounds. ADULT SIZE: Size varies greatly, depending on water temperature, productivity, and food sources. The statewide average length of 3-year-old brook trout in Maine lakes is 13.3 inches. However, IDENTIFICATION: Usual coloration is light brown or tawny with pronounced black spots on the back, same-age trout from different lakes range from 7.5 to 17.5 inches in length. Stream populations sides and head. Spots are often surrounded with reddish halo, along with reddish spots on the sides. are typically slower growing than lake populations. Some high elevation trout populations mature Color is highly variable and browns are occasionally confused with landlocked salmon. and reproduce at lengths smaller than 6 inches. IDENTIFICATION: Color is variable, depending on habitat. Brook trout can be distinguished from other members of the trout family by the dark, wavy, worm-like line on their back and the white leading edges of their fins, including the tail. COMMON NAME: LANDLOCKED ATLANTIC SALMON OTHER NAMES: SEBAGO SALMON, OUANANICHE SCIENTIFIC NAME: Salmo salar COMMON NAME: LAKE TROUT, TOGUE OTHER NAMES: LAKER, GREY TROUT, MACKINAW ORIGIN: Native SCIENTIFIC NAME: Salvelinus namaycush ADULT SIZE: Average size is 16-18 inches and 1-1/2-2 pounds, but 3-5 pound fish are not uncommon.
    [Show full text]
  • Differentiation and Growth of Kype Skeletal Tissues in Anadromous Male Atlantic Salmon (Salmo Salar)
    Int. J. Dev. Biol. 46: 719-730 (2002) Original Article Differentiation and growth of kype skeletal tissues in anadromous male Atlantic Salmon (Salmo salar) P.-ECKHARD WITTEN*,1 and BRIAN K. HALL2 1Institute of Marine Research at the University of Kiel, Germany and 2Department of Biology, Dalhousie University, Halifax NS, Canada ABSTRACT The re-initiation of bone development in adult starving Atlantic salmon (Salmo salar) during their energetically expensive upstream migration is remarkable and deserves closer examina- tion. Dramatic alterations of the skull bones and teeth, most prominently, the development of a kype in males, are widely known but little studied or understood. We describe the microstructure and the cellular processes involved in the formation of the skeletal tissues of the kype. Fresh bone material, obtained from animals migrating upstream was subjected to radiological, histological or histochemi- cal analysis. We show that the kype is, in part, composed of rapidly growing skeletal needles arising at the tip of the dentary. Proximally, the needles anastomose into a spongiosa-like meshwork which retains connective tissue inside bone marrow spaces. Ventrally, the needles blend into Sharpey fiber bone. Skeletal needles and Sharpey fiber bone can be distinguished from the compact bone of the dentary by radiography. Rapid formation of the skeleton of the kype is demonstrated by the presence of numerous osteoblasts, a broad distal osteoid zone, and the appearance of proteoglycans at the growth zone. The mode of bone formation in anadromous males can be described as ‘making bone as fast as possible and with as little material as possible’. Unlike the normal compact bone of the dentary, the new skeletal tissue contains chondrocytes and cartilaginous extracellular matrix.
    [Show full text]
  • Trout and Salmon (Family Salmonidae) Diversity in North Carolina by the Ncfishes.Com Team There Are Four Species of Trout and Sa
    Trout and Salmon (Family Salmonidae) Diversity in North Carolina By the NCFishes.com Team There are four species of trout and salmon in North Carolina (Table 1; NCFishes.com; Tracy et al. 2020). [Please note: Tracy et al. (2020) may be downloaded for free at: https://trace.tennessee.edu/sfcproceedings/vol1/iss60/1.] Unlike most fish species found in North Carolina’s waters, the Family Salmonidae are known collectively and commonly as just trout. However, one can hear people call Brook Trout “brookies, speckled trout, or specks”. Their four common names – Rainbow, Brown, and Brook trout, and Sockeye Salmon are the American Fisheries Society-accepted common names (Page et al. 2013) and each of the scientific (Latin) names actually means something (please refer to The Meanings of the Scientific Names of Salmonidae, page 7). However, in North Carolina and elsewhere Sockeye Salmon populations that are not anadromous (i.e., not migrating from the ocean to fresh water to spawn because they are land-locked populations) are called Kokanee. Table 1. Species of trout and salmon found in North Carolina. Scientific Name/ Scientific Name/ American Fisheries Society Accepted Common Name American Fisheries Society Accepted Common Name Oncorhynchus mykiss - Rainbow Trout Salmo trutta – Brown Trout Oncorhynchus nerka – Sockeye Salmon Salvelinus fontinalis – Brook Trout North Carolina’s only indigenous (native) species of trout is the Brook Trout, specifically the Southern Appalachia strain, and it was historically found throughout the Appalachian Mountains on both sides of the Eastern Continental Divide (NCWRC undated). With the onset of largescale industrial logging resulting in the habitat and water quality degradation of many mountain streams, the Northern strain of Brook Trout, Rainbow Trout, and Brown Trout were introduced in the 1870s and 18880s to offset the dwindling populations and numbers of Southern strain Brook Trout.
    [Show full text]