Species and Subject Index*

Total Page:16

File Type:pdf, Size:1020Kb

Species and Subject Index* Environmental Biology of Fishes 52: 395-405, 1998. Species and subject index* 5th International Congress of Ecology Hypomesus pretiosus japonicus 218, migration 299-302 (INTECOL '90) 28 220-221 Sr/Ca ratios in otoliths 299-302 Abboltina rivularis (Chinese false at maturity of Coitus nozawae Anguilla marmorata (marbled eel, 00- gudgeon, tsuchifuki) 120 208-209 unagi) 120, 140-142, 146-147 Abe, Takuya 28-29 ajime-dojou see Niwaella delicata Anguilla mossambica 140-141, 146-147 abura-bote see Tanakia limbata aka-bouzu-haze see Sicyopus Anguilla reinhardti 140-142, 146-147 abura-haya see Phoxinus lagowski zosterophorum Anguilla rostrata 140-147 steindachneri aka-hire-tabira see Acheilognathus tabira Anguilla spp. 139-147 abura-higai see Sarcocheilichthys subsp.l evolution of freshwater eels 139-147 biwaensis akaza see Liobagrus reini geographic distribution of freshwater Acanthaster planci (crown-of-thorns Alcichthys alcicornis 185 eels 140 starfish) 82 allozyme analysis in Lethenteron 151-161 leptocephali larvae 139, 142-143 Acanthopagrus schlegele 184-185 electrophoresis in Cyprinids 174-178 phylogenetic relationships of Acheilognathus cyanostigma (striped Alosa sapidissima (American shad) 203 freshwater eels 140-142 bi tterling, ichimonii -tanago) 121 alpheid shrimp 126, 131 speciation and dispersal of Acheilognathus longipinnis (deep bodied Altolamprologus compressiceps 278, freshwater eels 142-146 bitterling, ita-sen-para) 103, 121 372-377 zoogeography of freshwater eels Acheilognathus melanogaster am ago see Oncorhynchus masou 143-145 (broad striped bitterling, tanago) 121, ishikawae Ankei, Yuji 24 174-178 Ambassis miops (sesuji-takasago­ Anthias squamipinnis 126 Acheilognathus rhombeus (flat bitterling, ishimochi) 123 aobara-yoshinobori see Rhinogobius sp. kanehira) 121,174-175 Ambassis urotaenia (takasago-ishimochi) blue belly BB Acheilognathus spp. 20 123 ao-uo see Mylopharyngodon pice us Acheilognathus tabira subsp. 1 (red rock ame-masu see Salvelinus leucomaenis Aphyocypris chinensis (Venus fish, bitterling, aka-hire-tabira) 121,174-175, leucomaenis hina-moroko) 102, 120 177-178 American shad see Alosa sapidissima Apolemichthys trimaculatus 129 Acheilognathus tabira subsp. 2 (spotted amphidromous sculpin see Coitus aquarium trade in Japan 106-107 rock bitterling, seboshi-tabira) 121 hangiongensis Arctic charr see Salvelinus alpinus Acheilognathus tabira tab ira (white rock Amphiprion bicinctus 132 Arctic lamprey see Lenthenteron bitterling, shiro-hire-tabira) 121, 175 Amphiprion clarkii 81, 128-129, 132 japonicum Acheilognathus typus (netted bitterling, Amphiprion frenatus 128-129 ariake-gibachi see Pseudobagrus zeni-tanago) 102, 121 Amphiprion ocellaris 129 aurantiacus Acipenser medirostris (Sakhalin green Amphiprion perideraion 129 ariake-hime-sirauo see Neosalanx sturgeon, chouzame) 120 Amphiprion sp. 126 reganius Acropora corals 130 anadromy vs. residency artificial triploidy in Rhodeus ocellatus Aethiomastacembelus flavidus 273, 278 in Hypomesus nipponensis 313-314, ocellatus 251-259 Aethiomastacembelus platysoma (spiny 316-318 Asian pond loach see Misgurnus eel) 271-279 in Oncorhynchus masou 317 anguillicaudatus comparison with other brooding in Salmo salar 317 Atlantic cod see Gadus morhua fishes 278-279 in Salvelinus alpinus 318 Atlantic croaker see Micropogonias diet of adults 277 angelfish see Centropyge ferrugatus undulatus diet of young 275 Anguilla anguilla (European eel) 140-147 Atlantic herring see Clupea harengus growth of offspring 275-276 Anguilla australis australis 140-142, 144, Atlantic salmon see Salmo salar parental care 271-279 146-147 Atlantic silverside see Menidia menidia size at maturity 273-274 Anguilla australis schmidti 142-143 Atyid shrimp social organization 271-279 Anguilla celebesensis 139-141, 144, 146 as food resources of cichlid fishes territoriality 272, 274-275 Anguilla dieffenbachi (New Zealand long 371-377 underwater observation 272 fin eel) 142-143 in Lake Tanganyika 371-377 age Anguilla japonica (Japanese eel, unagi) prey for largemouth bass in a and growth of larvae in Rhinogobius 82,108,120,140-142,145-147,299-302, Japanese lake 380-387 brunneus 324-325 332,380 and sex composition of spawners of comparison of otolith Sr/Ca ratios with other marine fishes 302 , Prepared by Samantha J. Rayroux and Kurt D. Fausch, Department of Fishery and Wildlife Biology, Colorado State University, Fort Collins, CO 80523, U.S.A. 396 Australian sharpnose shark see Caecomastacembelus plagiostomus 273. chum salmon see Oncorhynchus keta Rhizoprionodon taylori 277-279 cichlids Awaous melanocephalus (kuro-minami­ Caecomastacembelus tanganicae 273, Atyid shrimp as food resources for haze) 124 278-279 371-377 Awaous ocellaris (ocellated river goby, California grunion see Lauresthes tenuis commensalism and mutualism 81 minami-haze) 124 Calotomus japonicus 127 endemic cichlids in Lake Victoria aya-yoshinobori see Rhinogobius sp. capelin see Mallotus villosus 392 mosaicMO Carassius auratus (goldfish) 107, 257-258, exploitative mutualism in Lake ayu see Plecoglossus altivelis altivelis 302 Tanganyika 377 ayu-kake see Cottus kazika Carassius auratus auratus 107 facultative commensalism in Lake ayu-modoki see Leptobotia curta Carassius auratus buergeri (oo-kin-buna) Tanganyika 377 Azuma, Mikio 20 121 in Lake Tanganyika 261-268. 271 Balon, Eugene K. 8,67,71 Carassius auratus grandoculis (round diet 371-377 bamboo leaf wrasse see Pseudolabrus crucian carp, nigoro-buna) 20, 113, 121 polymorphism in scale-eaters 81 japonicus Carassius auratus langsdorfi (silver territoriality 80-81 Barilius baruna 164 crucian carp, gin-buna) 101, 108, 121 Cirrhilabrus temmincki 127.189.198-200 beni-zake see Oncorhynchus nerka nerka Carassius auratus subsp. 1 (naga-buna) key to embryos 198-200 Biwa catfish see Silurus biwaensis 121 Cirrhitichthys aprinus 129 Biwa go by see Chaenogobius isaza Carassius auratus subsp. 2 (golden crucian Cirrhitichthys aureus 129. 131 Biwa gudgeon see Biwia zezera, carp, kin-buna) 121 Cirrhitichthys falco 129 Gnathopogon caerulescens, Carassius cuvieri (deepbodied crucian Cirrhitopus hubbardi 129 Sarcocheilichthys variegatus carp, gengorou-buna) 20, 106, 111, 113, Clarias fuscus (hire-namazu) 122 microoculus 121 Clupea harengus (Atlantic herring) 302 Biwa pearly mussel see Hyriopsis Carassius gibelio langsdorfi 380, 383, 385 Clupea pallasii 317 schlegeli Carassius sp. 20. 104 Cobitidae. diets of 18 Biwa salmon or Biwa trout see diets 18 Cobitis biwae (sand loach. shima-dojou) Oncorhynchus masou subsp. carp-like sleeper see Hypseleotris 101. 121 Biwa-higai see Sarcocheilichthys cyprinoides Cobitis matsubarai (spined loach. variegatus microoculus cave goby see Luciogobius albus yamato-sima-dojou) 121 Biwako-oo-namazu see Silurus biwaensis Centropyge acanthops 129 Cobitis sp. 108 Biwa-masu see Oncorhynchus masou Centropyge ferrugatus (angelfish) 128 Cobitis sp. 1 (striped spined loach [large]. subsp. Centropyge fisheri 129 suji-sima-dojou [large]) 121 Biwamelania 109 Centropyge flavissimus 129 Cobitis sp. 2 subsp. 1 (striped spined loach Biwia zezera (Biwa gudgeon, zezera) 120 Chaenogobius isaza (Biwa goby, isaza) [small-San·you]. suji-sima-dojou [small­ black Chinese roach see 20. 80, 111, 124 San'you]) 121 Mylopharyngodon piceus Chaenogobius laevis (juzukake-haze) 124 Cobitis sp. 2 subsp. 2 (striped spined loach black kokanee see Oncorhynchus nerka Chaenogobius sp. 359 [small-Toukai]. suji-sima-dojou [small­ kawamurai Chaenogobius sp. 1 (sumi-uki-gori) 124 Toukai]) 121 black stripe gudgeon see Pungtungia Chaenogobius sp. 2 (shima-uki-gori) 124 Cobitis sp. 2 subsp. 3 (striped spined loach herzi Chaenogobius urotaenia (floating goby. [small-spotted]. suji-sima-dojou [small­ blacks potted go by see Redigobius uki-gori) 124, 359. 380, 383. 385 tenkogata]) 121 bikolanus Channa argus (northern snakehead. Cobitis sp. 2 subsp. 4 (striped spined loach Blepsias cirrhosus 185 kamuruchii) 124 [small-Biwako]. suji-sima-dojou [small­ blue tilapia see Oreochromis au reus Channa asiatica (koutai) 124 Biwako]) 121 bluegill see Lepomis macrochirus Channa maculata (Formosan snakehead, Cobitis sp. 3 (striped spined loach bluehead wrasse see Thalassoma Taiwan-dojou) 124 [middle], suji-sima-dojou [middle]) 121 bifasciatum chichibu see Tridentiger obscurus Cobitis takatsuensis (secret loach, ishi­ bouzu-haze see Sicyopterus japonicus chichibu-modoki see Eleotris dojou) 121 Brachaluteres ulvarum (filefish) 305 acanthopoma coelonotous pipefish see Microphis Brachionus plicatilis 188 Chinese false gudgeon see Abbottina (Coelonotus) leiaspis broadstriped bitterling see rivularis coexistence through male mating Acheilognathus melanogaster Chinese minnow see Phoxinus aggression in sticklebacks 240 brook trout see Salvelinus fontinalis oxycephalus jouvi coho salmon see Oncorhynchus kisutch brown trout see Salmo trutta Chinese ninespine stickleback see Coilia nasus (etsu) 120 bull charr see Salvelinus confluentus Pungitius sinensis common carp see Cyprinus carpio Caecomastacembelus albomaculatus 273, chinook salmon see Oncorhynchus common freshwater goby (BB) see 276, 278-279 tshawytscha Rhinogobius sp. blue belly BB Caecomastacembelus micropectus 273, Choerodon azurio 127 common freshwater goby (CB) see 278-279 Choerodon schoenleinii 127 Rhinogobius sp. cross-band CB Caecomastacembelus moorii 273, 278 Chondrostoma polylepis willkommi 310 common freshwater goby (CO) see Caecomastacembelus ophidium 273, 278 chousen-buna see Macropodus chinenis Rhinogobius sp. cobalt CO chouzame see Acipenser medirostris 397 common freshwater
Recommended publications
  • The Complete Mitochondrial Genome of the Small Yellow Croaker and Partitioned Bayesian Analysis of Sciaenidae Fish Phylogeny
    Genetics and Molecular Biology, 35, 1, 191-199 (2012) Copyright © 2012, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Research Article The complete mitochondrial genome of the small yellow croaker and partitioned Bayesian analysis of Sciaenidae fish phylogeny Yuanzhi Cheng, Rixin Wang, Yuena Sun and Tianjun Xu Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China. Abstract To understand the phylogenetic position of Larimichthys polyactis within the family Sciaenidae and the phylogeny of this family, the organization of the mitochondrial genome of small yellow croaker was determined herein. The com- plete, 16,470 bp long, mitochondrial genome contains 37 mitochondrial genes (13 protein-coding, 2 ribosomal RNA and 22 transfer RNA genes), as well as a control region (CR), as in other bony fishes. Comparative analysis of initia- tion/termination codon usage in mitochondrial protein-coding genes of Percoidei species, indicated that COI in Sciaenidae entails an ATG/AGA codon usage different from other Percoidei fishes, where absence of a typical con- served domain or motif in the control regions is common. Partitioned Bayesian analysis of 618 bp of COI sequences data were used to infer the phylogenetic relationships within the family Sciaenidae. An improvement in harmonic mean -lnL was observed when specific models and parameter estimates were assumed for partitions of the total data. The phylogenetic analyses did not support the monophyly of Otolithes, Argyrosomus, and Argyrosominae. L. polyactis was found to be most closely related to Collichthys niveatus, whereby, according to molecular systematics studies, the relationships within the subfamily Pseudosciaenidae should be reconsidered.
    [Show full text]
  • A Synopsis of the Parasites of Medaka (Oryzias Latipes) of Japan (1929-2017)
    生物圏科学 Biosphere Sci. 56:71-85 (2017) A synopsis of the parasites of medaka (Oryzias latipes) of Japan (1929-2017) Kazuya NAGASAWA Graduate School of Biosphere Science, Hiroshima University 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan Published by The Graduate School of Biosphere Science Hiroshima University Higashi-Hiroshima 739-8528, Japan November 2017 生物圏科学 Biosphere Sci. 56:71-85 (2017) REVIEW A synopsis of the parasites of medaka (Oryzias latipes) of Japan (1929-2017) Kazuya NAGASAWA* Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan Abstract Information on the protistan and metazoan parasites of medaka, Oryzias latipes (Temminck and Schlegel, 1846), from Japan is summarized based on the literature published for 89 years between 1929 and 2017. This is a revised and updated checklist of the parasites of medaka published in Japanese in 2012. The parasites, including 27 nominal species and those not identified to species level, are listed by higher taxa as follows: Ciliophora (no. of nominal species: 6), Cestoda (1), Monogenea (1), Trematoda (9), Nematoda (3), Bivalvia (5), Acari (0), Copepoda (1), and Branchiura (1). For each parasite species listed, the following information is given: its currently recognized scientific name, any original combination, synonym(s), or other previous identification used for the parasite from medaka; site(s) of infection within or on the host; known geographical distribution in Japanese waters; and the published source of each record. A skin monogenean, Gyrodatylus sp., has been encountered in research facilities and can be regarded as one of the most important parasites of laboratory-reared medaka in Japan.
    [Show full text]
  • Preliminary Researches on the Effect of Essential Oils on Moulds Isolated
    Popa G. O. et al./Scientific Papers: Animal Science and Biotechnologies, 2018, 51 (2) SaMSTNb23 and SaMSTNb33: Emerging Markers for Growth Traits in Huchen (Hucho hucho, Linnaeus, 1758) 1, 1, 1 1 Gina–Oana Popa ‡, *, Ramona Nechifor ‡, Alexandru Burcea , Maria Samu , Andreea Dudu1, Marieta Costache1, Marilena Maereanu2, Sergiu Emil Georgescu1 1University of Bucharest, Faculty of Biology, Department of Biochemistry and Molecular Biology, 91-95 Splaiul Independenței, 050095, Bucharest, Romania 2S.C. Danube Research-Consulting S.R.L., 89bis Câmpia Libertății Street, 825200, Isaccea, Romania ‡The first two authors contributed equally to this work. Abstract Huchen or Danube salmon (Hucho hucho, Linnaeus, 1758) is an economically and ecologically valuable salmonid species, among the most endangered fish species inhabiting the Danube basin. Consequently, appropriate conservation measures are required to prevent the species extinction. Although H. hucho is a poorly studied species, there are several studies on other salmonid species regarding fast growth markers. Following these studies, the main purpose of the current study was to determine growth-related SNPs in myostatin gene in H. hucho. Therefore, we analysed 20 aquaculture individuals of same age separated in two groups according length and weight, by sequencing the amplification product of SaMSTNb23 and SaMSTNb33 primers pairs. We also statistically analysed the differences in the development of individuals over time regarding total length, weight and head length. Significantly variations were observed (p < 0.001) for the measured traits in both groups. Regarding the genetic analysis, we observed nine SNPs in the mstn gene structure. Considering these results, it appears that the analysed markers are not appropriate for genetic analysis of growth traits in H.
    [Show full text]
  • Towada-Hachimantai National Park Guide Book
    Towada-Hachimantai National Park Guide Book 十和田八幡平国立公園 Feel the landscapes of Northern Tohoku that change from season to season in the vast nature 四季それぞれに美しい北東北を自然の中で体感 In Japan, each of the four seasons has its own colour that allows visitors to truly feel its atmosphere. Especially in Tohoku, where winter is crucially rigorous, people wait for the arrival of spring, sing the joys of summer, and appreciate the rich harvests of autumn. There are many things in Tohoku that bring joy to people throughout the year. Towada-Hachimantai National Park is located in the mountainous area of Northern Japan, and lies upon the three prefectures of Northern Tohoku. It is composed of “Towada-Hakkoda Area” , on the northern side that consists of Lake Towada, Oirase Gorge and Hakkoda Mountains and “Hachimantai Area” , on the southern side that consists of Mt. Hachimantai, Mt. Akita-Komagatake and Mt. Iwate. Both areas are very rich in natural resources, such as forests, lakes and marshes, and a wide variety of fauna and flora. There are also many onsen spots where you can immerse your body and soul. 01 Shin-Hakodate-Hokuto Hakodate Airport Oma To Tomakomai Aomori Contents ● Tohoku Shinkansen about 3hr 10 min. Tokyo Station Shin-Aomori Station Towada-Hakkoda Area Shin-Aomori Station Airplane about 1hr 20 min. Haneda Airport Misawa Airport Airplane about 1hr 15 min. Haneda Airport Aomori Airport Tohoku Shinkansen about 1hr 30 min. Sendai Station Shin-Aomori Station Hokkaido / Tohoku Shinkansen about 1hr Shin-Hakodate-Hokuto Station Shin-Aomori Station Highway Bus about 4hr 50 min. Sendai Station Aomori Station Joy of Spring Iwate 04 春の歓喜 Tohoku Shinkansen about 2hr 20 min.
    [Show full text]
  • Huchen (Hucho Hucho) ERSS
    Huchen (Hucho hucho) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, April 2011 Revised, January 2019, February 2019 Web Version, 4/30/2019 Photo: Liquid Art. Licensed under CC-SA 4.0 International. Available: https://commons.wikimedia.org/wiki/File:Danube_Salmon_-_Huchen_(Hucho_hucho).jpg. (January 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019): “Europe: Danube drainage [Austria, Bosnia and Herzegovina, Bulgaria, Croatia, Germany, Hungary, Italy, Romania, Serbia, Slovakia, Slovenia, Switzerland, and Ukraine].” “Population has declined [in Slovenia] due to pollution and river regulation. Conservation measures include artificial propagation and stocking [Povz 1996]. Status of threat: Regionally extinct [Bianco and Ketmaier 2016].” 1 “Considered locally extinct (extirpated) in 1990 [in Switzerland] [Vilcinskas 1993].” “Extinct in the wild in 2000 [in Czech Republic] [Lusk and Hanel 2000]. This species is a native species in the basin of the Black Sea (the rivers Morava and Dyje). At present, its local and time- limited occurrence depends on the stocking material from artificial culture. Conditions that will facilitate the formation of a permanent population under natural conditions are not available [Lusk et al. 2004]. […] Status of threat: extinct in the wild [Lusk et al. 2011].” From Freyhof and Kottelat (2008): “The species is severely fragmented within the Danube drainage, where most populations exclusively depend on stocking and natural reproduction is very limited due to habitat alterations and flow regime changes.” From Grabowska et al. (2010): “The exceptional case is huchen (or Danubian salmon), Hucho hucho. The huchen’s native range in Poland was restricted to two small rivers (Czarna Orawa and Czadeczka) of the Danube River basin, […]” Status in the United States Froese and Pauly (2019) report an introduction to the United States between 1870 and 1874 that did not result in an established population.
    [Show full text]
  • Na+/K+-Atpase Expression in Gills of the Euryhaline Sailfin Molly, Poecilia Latipinna, Is Altered in Response to Salinity Challe
    Journal of Experimental Marine Biology and Ecology 375 (2009) 41–50 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Na+/K+-ATPase expression in gills of the euryhaline sailfin molly, Poecilia latipinna, is altered in response to salinity challenge Wen-Kai Yang a, Jinn-Rong Hseu b, Cheng-Hao Tang a, Ming-Ju Chung c, Su-Mei Wu c,⁎, Tsung-Han Lee a,⁎ a Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan b Mariculture Research Center, Fisheries Research Institute, Tainan 724, Taiwan c Department of Aquatic Biosciences, National Chiayi University, Chiayi 600, Taiwan article info abstract Article history: Sailfin molly (Poecilia latipinna) is an introduced species of euryhaline teleost mainly distributed in the lower reaches Received 23 December 2008 and river mouths over the southwestern part of Taiwan. Upon salinity challenge, the gill is the major organ Received in revised form 5 May 2009 responsible for ion-regulation, and the branchial Na+–K+-ATPase (NKA) is a primary driving force for the other ion Accepted 6 May 2009 transporters and channels. Hence we hypothesized that branchial NKA expression changed in response to salinity stress of sailfin molly so that they were able to survive in environments of different salinities. Before sampling, the Keywords: fish were acclimated to fresh water (FW), brackish water (BW, 15‰), or seawater (SW, 35‰) for at least one month. Gill The physiological (plasma osmolality), biochemical (activity and protein abundance of branchial NKA), cellular Glucose Heat shock protein (number of NKA immunoreactive cells), and stress (plasma glucose levels and protein abundance of hepatic and Na+/K+-ATPase branchial heat shock protein 90) indicators of osmoregulatory challenge in sailfinmollyweresignificantly increased Salinity in the SW-acclimated group compared to the FW- or BW-acclimated group.
    [Show full text]
  • {Replace with the Title of Your Dissertation}
    Induced nest failure as a mechanism for controlling invasive smallmouth (Micropterus dolomieu) and largemouth bass (Micropterus salmoides) A Dissertation SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Grace L. Loppnow IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Advised by Paul A. Venturelli February 2017 © Grace L. Loppnow 2017 Acknowledgements “Nobody achieves anything alone.” -Leslie Knope, Parks and Recreation That is certainly true of this dissertation, which would not have been possible without the collaboration and support of many. First, a huge thank you to my advisor, Paul Venturelli. From our first meeting onward, you have gone out of your way to make grad school an enjoyable experience. Thank you for building me into a scientist, and for always encouraging me to grow. Thanks especially for knowing when to push me and when to let me hole up in “the writing cave.” When I was choosing an advisor 6 years ago, someone warned me that joining a new lab might be difficult. I found it to be quite the opposite. I’ve enjoyed growing with you, and have benefitted from your mentorship right from the start. Most of all, thank you for always having a sense of humor. Google will never be the same… Special thanks to my advisory committee: Bruce Vondracek, Ray Newman, Don Pereira, Tom Hrabik, and a guest appearance by Przemek Bajer. Your insights and willingness to help have been of great assistance. Thanks also to the fellow students who accompanied me on this journey. I’d like to acknowledge the support and fellowship of my “academic brothers and sisters,” my labmates: Kyle Chezik, Jason Papenfuss, Fernanda Cabrini Araujo, Cha Thao, Andrew Honsey, Megan Tomamichel, Leslie Schroeder, Tim Martin, Nate Huempfner, Natnael i Hamda, and Manu Garcia.
    [Show full text]
  • Synthesis of (3S,3′S)- and Meso-Stereoisomers of Alloxanthin and Determination of Absolute Configuration of Alloxanthin Isolated from Aquatic Animals
    Mar. Drugs 2014, 12, 2623-2632; doi:10.3390/md12052623 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Synthesis of (3S,3′S)- and meso-Stereoisomers of Alloxanthin and Determination of Absolute Configuration of Alloxanthin Isolated from Aquatic Animals Yumiko Yamano 1,*, Takashi Maoka 2 and Akimori Wada 1 1 Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan; E-Mail: [email protected] 2 Research Institute for Production Development, 15 Shimogamo-morimoto-cho, Sakyo-ku, Kyoto 606-0805, Japan; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax.: +81-78-441-7562. Received: 20 March 2014; in revised form: 15 April 2014 / Accepted: 15 April 2014 / Published: 8 May 2014 Abstract: In order to determine the absolute configuration of naturally occurring alloxanthin, a HPLC analytical method for three stereoisomers 1a–c was established by using a chiral column. Two authentic samples, (3S,3′S)- and meso-stereoisomers 1b and 1c, were chemically synthesized according to the method previously developed for (3R,3′R)-alloxanthin (1a). Application of this method to various alloxanthin specimens of aquatic animals demonstrated that those isolated from shellfishes, tunicates, and crucian carp are identical with (3R,3′R)-stereoisomer 1a, and unexpectedly those from lake shrimp, catfish, biwa goby, and biwa trout are mixtures of three stereoisomers of 1a–c. Keywords: carotenoid; alloxanthin; synthesis; chiral HPLC separation; absolute configuration 1. Introduction Alloxanthin (1) (Figure 1) was first isolated from Cryptomonas algae [1] and its structure was determined to be 7,8,7′,8′-tetreradehydro-β,β-carotene-3,3′-diol by MS, IR and 1H-NMR spectroscopies [2].
    [Show full text]
  • And Intra-Species Replacements in Freshwater Fishes in Japan
    G C A T T A C G G C A T genes Article Waves Out of the Korean Peninsula and Inter- and Intra-Species Replacements in Freshwater Fishes in Japan Shoji Taniguchi 1 , Johanna Bertl 2, Andreas Futschik 3 , Hirohisa Kishino 1 and Toshio Okazaki 1,* 1 Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; [email protected] (S.T.); [email protected] (H.K.) 2 Department of Mathematics, Aarhus University, Ny Munkegade, 118, bldg. 1530, 8000 Aarhus C, Denmark; [email protected] 3 Department of Applied Statistics, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria; [email protected] * Correspondence: [email protected] Abstract: The Japanese archipelago is located at the periphery of the continent of Asia. Rivers in the Japanese archipelago, separated from the continent of Asia by about 17 Ma, have experienced an intermittent exchange of freshwater fish taxa through a narrow land bridge generated by lowered sea level. As the Korean Peninsula and Japanese archipelago were not covered by an ice sheet during glacial periods, phylogeographical analyses in this region can trace the history of biota that were, for a long time, beyond the last glacial maximum. In this study, we analyzed the phylogeography of four freshwater fish taxa, Hemibarbus longirostris, dark chub Nipponocypris temminckii, Tanakia ssp. and Carassius ssp., whose distributions include both the Korean Peninsula and Western Japan. We found for each taxon that a small component of diverse Korean clades of freshwater fishes Citation: Taniguchi, S.; Bertl, J.; migrated in waves into the Japanese archipelago to form the current phylogeographic structure of Futschik, A.; Kishino, H.; Okazaki, T.
    [Show full text]
  • The Round Goby (Neogobius Melanostomus):A Review of European and North American Literature
    ILLINOI S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. CI u/l Natural History Survey cF Library (/4(I) ILLINOIS NATURAL HISTORY OT TSrX O IJX6V E• The Round Goby (Neogobius melanostomus):A Review of European and North American Literature with notes from the Round Goby Conference, Chicago, 1996 Center for Aquatic Ecology J. Ei!en Marsden, Patrice Charlebois', Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria Illinois Natural History Survey Lake Michigan Biological Station 400 17th Sti Zion, Illinois 6 Aquatic Ecology Technical Report 96/10 The Round Goby (Neogobius melanostomus): A Review of European and North American Literature with Notes from the Round Goby Conference, Chicago, 1996 J. Ellen Marsden, Patrice Charlebois1, Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria The Round Goby Conference, held on Feb. 21-22, 1996, was sponsored by the Illinois-Indiana Sea Grant Program, and organized by the
    [Show full text]
  • Final Report
    2011 Project Abstract For the Period Ending June 30, 2014 PROJECT TITLE: Mississippi River Water Quality Assessment PROJECT MANAGER: Michael Sadowsky AFFILIATION: University of Minnesota MAILING ADDRESS: 140 Gortner Lab, 1479 Gortner Ave CITY/STATE/ZIP: Saint Paul, MN 55108 PHONE: (612) 626-0977 E-MAIL: [email protected] WEBSITE: http://www.cbs.umn.edu/main/news/inthefield/m3p.shtml FUNDING SOURCE: Environment and Natural Resources Trust Fund LEGAL CITATION: M.L. 2011, First Special Session, Chp. 2, Art.3, Sec. 2, Subd. 05c APPROPRIATION AMOUNT: $ 557,000 Overall Project Outcome and Results A metagenomics-based sequencing approach was utilized to characterize the bacterial community at sites along the Mississippi River in Minnesota to understand how these communities were influenced by or indicative of water quality. Results of this study revealed that the bacterial community throughout the river primarily consisted of a small number of highly abundant species that comprise a “core microbial community” that was stable both in terms of community membership and inferred functional traits. Variation in community membership and species abundances were primarily influenced by physicochemical parameters (e.g. pH and temperature) rather than spatial distance, and a reproducible community structure occurred annually toward the late summer. Furthermore, specific bacterial orders were related to chemical concentrations that co-varied with surrounding land use, suggesting that increases in abundance of these orders may be indicative of specific types of contamination throughout the river. Therefore, assessment of the total bacterial community provides more information about water quality and contamination sources than could be previously gleaned from traditional enumeration of indicator bacteria like Escherichia coli.
    [Show full text]
  • 5Th Indo-Pacific Fish Conference
    )tn Judo - Pacifi~ Fish Conference oun a - e II denia ( vernb ~ 3 - t 1997 A ST ACTS Organized by Under the aegis of L'Institut français Société de recherche scientifique Française pour le développement d'Ichtyologie en coopération ' FI Fish Conference Nouméa - New Caledonia November 3 - 8 th, 1997 ABSTRACTS LATE ARRIVAL ZOOLOGICAL CATALOG OF AUSTRALIAN FISHES HOESE D.F., PAXTON J. & G. ALLEN Australian Museum, Sydney, Australia Currently over 4000 species of fishes are known from Australia. An analysis ofdistribution patterns of 3800 species is presented. Over 20% of the species are endemic to Australia, with endemic species occuiring primarily in southern Australia. There is also a small component of the fauna which is found only in the southwestern Pacific (New Caledonia, Lord Howe Island, Norfolk Island and New Zealand). The majority of the other species are widely distributed in the western Pacific Ocean. AGE AND GROWTH OF TROPICAL TUNAS FROM THE WESTERN CENTRAL PACIFIC OCEAN, AS INDICATED BY DAILY GROWm INCREMENTS AND TAGGING DATA. LEROY B. South Pacific Commission, Nouméa, New Caledonia The Oceanic Fisheries Programme of the South Pacific Commission is currently pursuing a research project on age and growth of two tropical tuna species, yellowfm tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus). The daily periodicity of microincrements forrned with the sagittal otoliths of these two spceies has been validated by oxytetracycline marking in previous studies. These validation studies have come from fishes within three regions of the Pacific (eastem, central and western tropical Pacific). Otolith microincrements are counted along transverse section with a light microscope.
    [Show full text]