Final Report
Total Page:16
File Type:pdf, Size:1020Kb
2011 Project Abstract For the Period Ending June 30, 2014 PROJECT TITLE: Mississippi River Water Quality Assessment PROJECT MANAGER: Michael Sadowsky AFFILIATION: University of Minnesota MAILING ADDRESS: 140 Gortner Lab, 1479 Gortner Ave CITY/STATE/ZIP: Saint Paul, MN 55108 PHONE: (612) 626-0977 E-MAIL: [email protected] WEBSITE: http://www.cbs.umn.edu/main/news/inthefield/m3p.shtml FUNDING SOURCE: Environment and Natural Resources Trust Fund LEGAL CITATION: M.L. 2011, First Special Session, Chp. 2, Art.3, Sec. 2, Subd. 05c APPROPRIATION AMOUNT: $ 557,000 Overall Project Outcome and Results A metagenomics-based sequencing approach was utilized to characterize the bacterial community at sites along the Mississippi River in Minnesota to understand how these communities were influenced by or indicative of water quality. Results of this study revealed that the bacterial community throughout the river primarily consisted of a small number of highly abundant species that comprise a “core microbial community” that was stable both in terms of community membership and inferred functional traits. Variation in community membership and species abundances were primarily influenced by physicochemical parameters (e.g. pH and temperature) rather than spatial distance, and a reproducible community structure occurred annually toward the late summer. Furthermore, specific bacterial orders were related to chemical concentrations that co-varied with surrounding land use, suggesting that increases in abundance of these orders may be indicative of specific types of contamination throughout the river. Therefore, assessment of the total bacterial community provides more information about water quality and contamination sources than could be previously gleaned from traditional enumeration of indicator bacteria like Escherichia coli. In addition to these findings, construction of fosmid libraries to assess resistance of the bacterial community to antibiotics and heavy metals revealed that levels of resistance to both were low throughout the river. Municipal wastewater treatment was not associated with increased antibiotic resistance, but proximity to agricultural wastewater increased the frequency of resistance to the antibiotics kanamycin and ampicillin. Furthermore, the resistances to the heavy metals Cd and Cr were significantly elevated in primarily developed (urban) areas. These results indicate the influence of anthropogenic contaminants on the distribution of functional traits throughout the river. Results of this project as well as dissemination of these results are further discussed in an attached Final Report. Project Results Use and Dissemination Results of this study have been presented at national meetings of the American Society for Microbiology and submitted to peer-reviewed scientific journals for publication. In addition, exhibits have been prepared at the Bell Museum, the Science Museum of Minnesota, and Itasca State Park to inform the general community about the findings of this study. Summer workshops were also held in order to disseminate details of the methodology used in this study to high school teachers. Environment and Natural Resources Trust Fund (ENRTF) M.L. 2011 Work Plan Final Report Date of Status Update: 9/3/14 Final Report Date of Work Plan Approval: 6/23/2011 Project Completion Date: 6/30/2014 Is this an amendment request? Yes _No_ X __ Project Title: Mississippi River Water Quality Assessment Project Manager: Michael Sadowsky Affiliation: U of MN Address: 140 Gortner Lab, 1479 Gortner Ave City: St Paul State: MN Zipcode: 55108 Telephone Number: (612) 626-0977 Email Address: [email protected] Web Address: http://www.cbs.umn.edu/main/news/inthefield/m3p.shtml Location: Counties Impacted: Statewide Ecological Section Impacted: Lake Agassiz Aspen Parklands (223N), Minnesota and Northeast Iowa Morainal (222M), North Central Glaciated Plains (251B), Northern Minnesota and Ontario Peatlands (212M), Northern Minnesota Drift and lake Plains (212N), Northern Superior Uplands (212L), Paleozoic Plateau (222L), Red River Valley (251A), Southern Superior Uplands (212J), Western Superior Uplands (212K) Total ENRTF Project Budget: ENRTF Appropriation: $557,000 Amount Spent: $499,801 Balance: $ 57,199 Legal Citation: M.L. 2011, First Special Session, Chp. 2, Art.3, Sec. 2, Subd. 05c Appropriation Language: $278,000 the first year and $279,000 the second year are from the trust fund to the Board of Regents of the University of Minnesota to assess water quality in the Mississippi River using DNA sequencing approaches and chemical analyses. The assessments shall be incorporated into a Web-based educational tool for use in classrooms and public exhibits. This appropriation is available until June 30, 2014, by which time the project must be completed and final products delivered. I. PROJECT TITLE: Mississippi River Water Quality Assessment II. FINAL PROJECT STATEMENT: A metagenomics-based sequencing approach was utilized to characterize the bacterial community at sites along the Mississippi River in Minnesota to understand how these communities were influenced by or indicative of water quality. Results of this study revealed that the bacterial community throughout the river primarily consisted of a small number of highly abundant species that comprise a “core microbial community” that was stable both in terms of community membership and inferred functional traits. Variation in community membership and species abundances were primarily influenced by physicochemical parameters (e.g. pH and temperature) rather than spatial distance, and a reproducible community structure occurred annually toward the late summer. Furthermore, specific bacterial orders were related to chemical concentrations that co-varied with surrounding land use, suggesting that increases in abundance of these orders may be indicative of specific types of contamination throughout the river. Therefore, assessment of the total bacterial community provides more information about water quality and contamination sources than could be previously gleaned from traditional enumeration of indicator bacteria like Escherichia coli. In addition to these findings, construction of fosmid libraries to assess resistance of the bacterial community to antibiotics and heavy metals revealed that levels of resistance to both were low throughout the river. Municipal wastewater treatment was not associated with increased antibiotic resistance, but proximity to agricultural wastewater increased the frequency of resistance to the antibiotics kanamycin and ampicillin. Furthermore, the resistances to the heavy metals Cd and Cr were significantly elevated in primarily developed (urban) areas. These results indicate the influence of anthropogenic contaminants on the distribution of functional traits throughout the river. Results of this project as well as dissemination of these results are further discussed in an attached Final Report. Concurrent with the research on the microbial communities of the Mississippi River, the project also engaged high school teachers through two summer workshops and engaged the public through exhibits at the Science Museum of Minnesota, the Bell Museum of Natural History, and Itasca State Park. These exhibits will continue to be on display past the end of this funding. III. PROJECT STATUS UPDATES: Project Status as of December 31, 2011: Work on this project began in earnest. Our first round of water samples from the Mississippi and Zumbro rivers were collected and processed in the lab during the summer of 2011. In addition to the 11 different sites we sampled, we also took water samples from two depths at one site (Hidden falls) every two weeks for DNA sequence analysis. This was done to access variability in sequence data over time and by depth. Water chemistry (nutrients, metals, and chemicals) and physical site data were also taken for all samples and are currently being analyzed. DNA sequencing and fosmid library production are currently underway and will be completed within 8 weeks. Sequence analysis will start right after this. We have hired a laboratory technician (Trevor Gould) who is working on the data analysis and we have hired a post-doc who will begin work on the project in April 2012. Work has begun on developing teacher workshops for August 2012 and 2013. Materials for the workshops are being developed. Shotgun gene sequencing of several samples is being used to produce sequence assemblies for teacher and student bioinformatics activities. Infrastructure and software for 2 hosting bioinformatics activities is in place and the interface is being developed for the teacher workshops. The workshop coordinators are creating modules for student use and identifying textbook materials for use by teachers in the classroom. Because this planning is not yet complete, the design for a website to host the materials has been postponed until spring semester, 2012. Coordination of exhibits at the Science Museum of Minnesota, the Bell Museum of Natural History and at Itasca State Park has begun and all parties are excited to work together in developing this material for the public. We will be hosting a coordination meeting for all museum personnel in January 2012. Project Status as of June 30, 2012: Because of the State Shutdown last July, some of the work on this project has been delayed. However, despite this setback, we are well on track for completing the project on time. Our first round of water samples from the Mississippi and Zumbro rivers and the water samples from