Oogenesis and Egg Quality in Finfish: Yolk Formation and Other Factors

Total Page:16

File Type:pdf, Size:1020Kb

Oogenesis and Egg Quality in Finfish: Yolk Formation and Other Factors fishes Review Oogenesis and Egg Quality in Finfish: Yolk Formation and Other Factors Influencing Female Fertility Benjamin J. Reading 1,2,*, Linnea K. Andersen 1, Yong-Woon Ryu 3, Yuji Mushirobira 4, Takashi Todo 4 and Naoshi Hiramatsu 4 1 Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA; [email protected] 2 Pamlico Aquaculture Field Laboratory, North Carolina State University, Aurora, NC 27806, USA 3 National Institute of Fisheries Science, Gijang, Busan 46083, Korea; [email protected] 4 Faculty of Fisheries Sciences, Hokkaido University, Minato, Hakodate, Hokkaido 041-8611, Japan; [email protected] (Y.M.); todo@fish.hokudai.ac.jp (T.T.); naoshi@fish.hokudai.ac.jp (N.H.) * Correspondence: [email protected]; Tel.: +1-919-515-3830 Received: 28 August 2018; Accepted: 16 November 2018; Published: 21 November 2018 Abstract: Egg quality in fishes has been a topic of research in aquaculture and fisheries for decades as it represents an important life history trait and is critical for captive propagation and successful recruitment. A major factor influencing egg quality is proper yolk formation, as most fishes are oviparous and the developing offspring are entirely dependent on stored egg yolk for nutritional sustenance. These maternally derived nutrients consist of proteins, carbohydrates, lipids, vitamins, minerals, and ions that are transported from the liver to the ovary by lipoprotein particles including vitellogenins. The yolk composition may be influenced by broodstock diet, husbandry, and other intrinsic and extrinsic conditions. In addition, a number of other maternal factors that may influence egg quality also are stored in eggs, such as gene transcripts, that direct early embryonic development. Dysfunctional regulation of gene or protein expression may lead to poor quality eggs and failure to thrive within hours of fertilization. These gene transcripts may provide important markers as their expression levels may be used to screen broodstock for potential spawning success. In addition to such intrinsic factors, stress may lead to ovarian atresia or reproductive failure and can impact fish behavior, fecundity, and ovulation rate. Finally, postovulatory aging may occur when eggs become overripe and the fish fails to spawn in a timely fashion, leading to low fertility, often encountered during manual strip spawning of fish. Keywords: egg quality; vitellogenin; aquaculture; fish; fertility; oogenesis; yolk; reproduction 1. Introduction Reproductive fitness is a critical component to the success of wild and domestic animals and egg quality of fishes has been a topic of research for decades in regards to aquaculture and fisheries. The study of egg quality is complex, as “quality” can be defined in different contexts and also is influenced by a variety of factors both intrinsic and extrinsic to the animal. The term egg quality has generally been defined as the ability of developmentally competent eggs to produce viable embryos once fertilized by a sperm [1–4]. Although simple in context, this is a much more complicated concept to understand in practice. The intent of this review is to provide an overview of oogenesis, yolk formation, ovarian maturation, and ovulation with special attention paid to our understanding of how these processes may become dysfunctional leading to poor egg quality. Identifying what makes a “poor quality” egg first requires an understanding of how a “good quality” egg is formed. Fishes 2018, 3, 45; doi:10.3390/fishes3040045 www.mdpi.com/journal/fishes Fishes 2018, 3, 45 2 of 28 Fishes 2018, 3, x FOR PEER REVIEW 2 of 27 2.2. Ovarian Ovarian Growth Growth and and Yolk Yolk Formation Formation GrowthGrowth of of ovarian ovarian follicles follicles can can be be broadly broadly divided divided into into previtellogenic previtellogenic and and vitellogenic vitellogenic growth growth stages,stages, during during which which the the major major lipid lipid and and protein protein nutrients nutrients required required for for embryonic embryonic and and larval larval developmentdevelopment are are stored stored within within the the oocyte oocyte (this (this review review will will generally generally follow follow those those processes processes outlined outlined inin Figure Figure 11).). Previtellogenic oocytes begin to accumulate neutral lipids, which are stored as lipidlipid dropletsdroplets in in the the ooplasm, ooplasm, and and also also accumulate accumulate matern maternalal gene gene transcripts, transcripts, wh whichich function function to to direct direct earlyearly embryonic embryonic development development shortly shortly following following fert fertilization.ilization. Vitellogenic Vitellogenic stage stage oocytes oocytes accumulate accumulate phospholipid-richphospholipid-rich lipoproteins,lipoproteins, which which are storedare stored as yolk as inclusions yolk inclusions in the ooplasm. in the When ooplasm. vitellogenesis When vitellogenesisends, the ovary ends, is filled the with ovary fully is yolked filled oocytes with fully that subsequentlyyolked oocytes undergo that maturationsubsequently and ovulation.undergo maturationThe entire and period ovulation. encompassed The entire by period previtellogenic encompassed and by vitellogenic previtellogenic growth and is vitellogenic typically a growth critical istimeframe typically a for critical captive timeframe broodstock for managementcaptive broodstock as appropriate management conditioning as appropriate and diet conditioning are required and for dietthe animalsare required to produce for the goodanimal qualitys to produce eggs. good quality eggs. MGT Meiosis Em bryonic gene expression O ocyte grow th Ovary maturation E a rly & la te e m b ry o g e n e s is fo llic u lo - m a tu ra tio n a l ovulation hatch genesis com petence deposition of fe rtiliz a tio n em bryo y o lk & o th e r larval maternal genom ic and cytoplasmic nutrition & developm ent nutrition & factors m a tu ra tio n developm ent Vitellogenesis Yolk processing Em bryo survival Larval survival Lipidation G erm inal vesicle breakdow n Physical deform ities M aternal gene transcripts Postovulatory aging O varian atresia F e rtility Proper Broodstock Proper Induction of Proper Hatchery Conditions H usbandry and Diet O vulation and Spaw ning and Juvenile Rearing FigureFigure 1. ModelModeldepicting depicting the the summary summary of processes of processe ands events and duringevents oocyteduring growth, oocyte ovary growth, maturation, ovary maturation,and early and and late early embryogenesis and late embryogenesis in fishes. Vertical in greyfishes. arrows Vertical indicate grey critical arrows physiological indicate critical events, physiologicalhorizontal black events, arrows horizontal indicate bl importantack arrows processes, indicate important and open arrowsprocesses, indicate and open potential arrows problems indicate or potentialevaluations problems of egg quality. or evaluations These topics of egg are quality. detailed Th inese corresponding topics are detailed sections ofin thiscorresponding review and thesections figure ofhas this been review compiled and from the several figure studies has includingbeen comp thoseiled on: from folliculogenesis, several studies vitellogenesis, including lipidation, those on: and folliculogenesis,yolk processing [vitellogenesis,5–41]; maternal lip geneidation, transcripts and yolk [2–4 ,processing42–51]; maturational [5–41]; maternal competence, gene germinaltranscripts vesicle [2– 4,42–51];breakdown, maturational cytoplasmic competence, maturation, andgerminal ovulation vesi [15cle,25 breakdown,,26,30,31,35,52 cytopl–57]; ovarianasmic maturation, atresia (including and ovulationbroodstock [15,25,26,30,31,35,52–57]; stress) [48,52,58–70]; postovulatory ovarian atre agingsia [ 48(including,71–85]; and broodstock methods of stress) evaluating [52,48,58–70]; egg quality postovulatoryincluding fertility, aging embryo [48,71–85]; survival, and larval methods survival, of andevalua incidenceting egg of physicalquality deformitiesincluding fertility, [3,42,43, 45embryo–51,86]. survival,Proper broodstock larval survival, husbandry and incidence and diet, of physic conditioningal deformities for spawning, [3,42,43,45–51,86]. ovulation, Proper fertilization, broodstock and husbandryhatchery conditions and diet, conditioning are required for to spawning, produce high ovul qualityation, fertilization, eggs, see also: and [ 1hatchery,3,15,25,52 conditions,53,58,87– 131are]. requiredMGT = translation to produce of maternalhigh quality gene eggs, transcripts. see also: [1,3,52,53,15,25,58,87–131]. MGT = translation of maternal gene transcripts. In many teleosts, large amounts of neutral lipids are accumulated in oocyte lipid droplets during early oocyte growth in a process termed ‘oocyte lipidation’. The occurrence of lipid droplets is generally firstIn observed many teleosts, at the large previtellogenic amounts of oocyteneutral growthlipids are stage, accumulated and ongoing in oocyte accumulation lipid droplets continues during earlyas development oocyte growth proceeds in a process through termed vitellogenesis ‘oocyte li [132pidation’.]. Recent The studies occurrence in Japanese of lipid eel droplets (Anguilla is generallyjaponica)[ 5first], shortfinned observed eelat (theAnguilla previtellogenic australis)[ 6oocyte], cutthroat growth trout st (age,Oncorhynchus and ongoing clarkii accumulation), [7], medaka, continues as development proceeds through vitellogenesis [132]. Recent studies in Japanese
Recommended publications
  • A Synopsis of the Parasites of Medaka (Oryzias Latipes) of Japan (1929-2017)
    生物圏科学 Biosphere Sci. 56:71-85 (2017) A synopsis of the parasites of medaka (Oryzias latipes) of Japan (1929-2017) Kazuya NAGASAWA Graduate School of Biosphere Science, Hiroshima University 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan Published by The Graduate School of Biosphere Science Hiroshima University Higashi-Hiroshima 739-8528, Japan November 2017 生物圏科学 Biosphere Sci. 56:71-85 (2017) REVIEW A synopsis of the parasites of medaka (Oryzias latipes) of Japan (1929-2017) Kazuya NAGASAWA* Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan Abstract Information on the protistan and metazoan parasites of medaka, Oryzias latipes (Temminck and Schlegel, 1846), from Japan is summarized based on the literature published for 89 years between 1929 and 2017. This is a revised and updated checklist of the parasites of medaka published in Japanese in 2012. The parasites, including 27 nominal species and those not identified to species level, are listed by higher taxa as follows: Ciliophora (no. of nominal species: 6), Cestoda (1), Monogenea (1), Trematoda (9), Nematoda (3), Bivalvia (5), Acari (0), Copepoda (1), and Branchiura (1). For each parasite species listed, the following information is given: its currently recognized scientific name, any original combination, synonym(s), or other previous identification used for the parasite from medaka; site(s) of infection within or on the host; known geographical distribution in Japanese waters; and the published source of each record. A skin monogenean, Gyrodatylus sp., has been encountered in research facilities and can be regarded as one of the most important parasites of laboratory-reared medaka in Japan.
    [Show full text]
  • Full Text in Pdf Format
    Vol. 1: 117–132, 2015 SEXUALITY AND EARLY DEVELOPMENT IN AQUATIC ORGANISMS Published online June 11 doi: 10.3354/sedao00012 Sex Early Dev Aquat Org OPENPEN ACCESSCCESS Sexual development and maturity scale for the angel shark Squatina squatina (Elasmobranchii: Squatinidae), with comments on the adequacy of general maturity scales Filip Osaer1,2,3,*, Krupskaya Narváez1,2,3, José G. Pajuelo2, José M. Lorenzo2 1ELASMOCAN, Asociación Canaria para la Investigación y Conservación de los Elasmobranquios, 35001 Las Palmas de Gran Canaria, Spain 2Departamento de Biología, Universidad de Las Palmas de Gran Canaria, Edificio de Ciencias Básicas, Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain 3Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas, SQUALUS, Carrera 60A No 11−39, Cali, Colombia ABSTRACT: This paper contributes to the reproductive biology of the genus Squatina and aims to complement the criteria, uniformity and adaptable staging of sexual maturity scales for elasmo- branchs based on data from the angel shark S. squatina captured near the island of Gran Canaria (Canary Islands, Central-East Atlantic). Both sexes presented a paired reproductive tract with both sides active and asymmetric gonad development. Microscopic and macroscopic observations of the testes were consistent and indicated seasonality of spermatogenesis. The spermatocyst de - velopment pattern in mature individuals could not be assigned to any of the categories described in the literature. The ovaries−epigonal organ association was of the external type. Although all Squatinidae share a conservative morphology, they show differences across species in the func- tionality of the paired reproductive tract, seasonality of spermatogenesis, coiled spermatozoa and the presence of egg candles.
    [Show full text]
  • Gametogenesis: Spermatogenesis & Oogenesis -Structure of Sperm and Egg Fertilization
    Gametogenesis: Spermatogenesis & Oogenesis ‐Structure of Sperm and Egg Fertilization ‐ Definition, Mechanism Early development in Frog ‐ Cleavage, Blas tu la, GtlGastrula, DitiDerivatives of Germ layers Vikasana - CET 2012 y Human reproduction y Brief Account of Fertilization: Implantation, Placenta, Role of Gonadotropins and sex hormones , Menstrual cycle. y Fertility Control: Family Planning Methods- y Infertility Control: Meaning, Causes,Treatment y STD: AIDS , Syphilis and Gonorrhea Vikasana - CET 2012 1.Primary Oocyte is a) Haploid (n) b) Diploid (2n) c) Polyploid d) None of the above Vikasana - CET 2012 2.Secondary Oocyte is a) Haploid (n) b) Diploid (2n) c) Polyploid d) None of the above Vikasana - CET 2012 3.Centrioles of sperm control a) Movement of tail b) Hap lo id numb er of ch romosomes c) Help in fertilization d) None of the above. Vikasana - CET 2012 4.The Fertilization membrane is secreted because a) It checks the entry of more sperms after fertilization b) it checks the entry of antigens in ovum c))p it represents the left out tail of the sperm d) it represen tVikasanas the p - l CETasma 2012 mem brane of the sperm 5.Meiosis I occurs in a) Primary spermatocytes b) Secondary spermatocytes c) Both a and b d) Spermatogonia Vikasana - CET 2012 6.Meiosis II occurs in a) Secondary oocyte b))y Primary oocyte c) Spermatogonia d) Oogonia Vikasana - CET 2012 7.Axial filament of sperm is formed by a) Distal centriole b) Prox ima l centitrio le c) Mitochondria d) DNA Vikasana - CET 2012 8.Polar bodies are formed during a) oogenesis
    [Show full text]
  • Classification of Egg
    EMBRYOLOGY- LECTURE NOTES-I DIFFERENT TYPES OF EGGS WITH EXAMPLES Classification of Egg On the Basis of the Amount of yolk Eggs are grouped into three types on the basis of the amount of yolk present in them. 1. Alecithal Egg: When the egg contains no yolk, it is called alecithal egg. Eg. The eggs of eutherian mammals 2. Microlecithal Egg: When the egg contain. Small or negligible amount of yolk it is said to be microlecithal. Romer and Balinsky named these eggs as oligolecithal eggs Eg'. Amphioxus, Tunicates 3.Mesolecithal Egg: In amphibian, Dipnoi and Petromyzon the amount of yolk present is moderate and is not high Hence these eggs are also named as mesolecithal eggs 4. Macrolecithal or Megalecithal or Polylecithal Egg When the egg contains large amount of yolk it is said to be macrolecithal or megalecithal egg. It is also called Polylecithal egg. Eg. Reptiles, Birds, Prototheria (Monotremata) Egg laying mammals. On the Basis of the distribution of yolk a. Isolecithal or Homolecithal Egg: In isolecithal eggs, the very little amount of yolk present is uniformly distributed throughout the ooplasm (eg. echinoderms, Amphioxus, mammals). This condition is usually observed in eggs with very little amount of yolk. b. Telolecithal Egg: In eggs containing moderate or large quantity of yolk, the distribution of yolk is not uniform. lt is concentrated more towards the vegetal pole. Such a type of egg, in which the yolk is concentrated towards one pole, is called telolecithal egg. Telolecithal eggs may further classified into three types: i. Slightly Telolecithal- This type of egg contains only a small quantity of yolk which is distributed unevenly.
    [Show full text]
  • Anatomy of Male Reproductive System
    Reproductive System Anatomy of Male Reproductive System Function: producing offspring Major Organs propagation of the species External Reproductive Organs !in terms of evolution penis and scrotum – the only reason all the other systems exist Internal Organs: only major system that doesn’t work continuously ! only activated at puberty these structures form continuous tube: unlike most other organisms on planet Testes ! mammals only reproduce sexually epididymus humans are dieocious vas deferens ! separate sexed (many animals are monoecious or ejaculatory duct hermaphrodites) urethra in penis th in 7 week of embryonic development genes are activated that trigger differentiation of gonads Accessory organs seminal vesicles prostate gland bulbourethral glands 1. Penis and Scrotum penis is transfer organ glans ! expanded head prepuce ! foreskin both have modified sebaceous glands that produce waxy secretion = smegma Human Anatomy & Physiology: Reproductive System; Ziser Lecture Notes, 2013.4 1 Human Anatomy & Physiology: Reproductive System; Ziser Lecture Notes, 2013.4 2 a. seminiferous tubules penis contains erectile tissues that surrounds (700’ of seminiferous tubules in testes) the urethra ! functions in spermatogenesis: ! fill with blood during sexual arousal formation and maturation of sperm cells corpus spongiosum (lower – surrounds urethra) passes along ventral side of penis and in cross section: encloses urethra seminiferous tubules appear roughly circular and contain germinal epithelium 2 coropora cavernosum (upper) (containing germ cells) and sustentacular on dorsal side (Sertoli) cells Sertoli cells protect germ cells and promote all contain numerous tiny blood sinuses their development = lacunae b. interstitial cells scrotum keeps testes at cooler temperature are scattered between the seminiferous tubules ! sperm can only be produced at several degrees below function in hormone secretion normal body temp !testosterone 2.
    [Show full text]
  • Reproductive Biology of the Bonnethead (Sphyrna Tiburo) from the Southeastern U.S
    University of North Florida UNF Digital Commons UNF Graduate Theses and Dissertations Student Scholarship 2014 Reproductive Biology of the Bonnethead (Sphyrna tiburo) from the Southeastern U.S. Atlantic Coast Melissa I. Gonzalez De Acevedo University of North Florida, [email protected] Follow this and additional works at: https://digitalcommons.unf.edu/etd Part of the Biology Commons, and the Ecology and Evolutionary Biology Commons Suggested Citation Gonzalez De Acevedo, Melissa I., "Reproductive Biology of the Bonnethead (Sphyrna tiburo) from the Southeastern U.S. Atlantic Coast" (2014). UNF Graduate Theses and Dissertations. 534. https://digitalcommons.unf.edu/etd/534 This Master's Thesis is brought to you for free and open access by the Student Scholarship at UNF Digital Commons. It has been accepted for inclusion in UNF Graduate Theses and Dissertations by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © 2014 All Rights Reserved REPRODUCTIVE BIOLOGY OF THE BONNETHEAD (SPHYRNA TIBURO) FROM THE SOUTHEASTERN U.S. ATLANTIC COAST by Melissa Gonzalez De Acevedo A thesis submitted to the Department of Biology in partial fulfillment of the requirements for the degree of Masters of Science in Biology UNIVERSITY OF NORTH FLORIDA COLLEGE OF ARTS AND SCIENCES December 2014 Unpublished work, © Melissa Gonzalez De Acevedo CERTIFICATE OF APPROVAL The thesis “Reproductive biology of the bonnethead (Sphyrna tiburo) from the southeastern U.S. Atlantic coast” submitted by Melissa Gonzalez De Acevedo Approved by the thesis committee: Date Dr. Jim Gelsleichter Committee Chair Dr. Carolyn Belcher Dr. Eric Johnson Accepted for the Department of Biology: Dr. Cliff Ross Assistant Chair Accepted for the College of Arts and Sciences: Dr.
    [Show full text]
  • Na+/K+-Atpase Expression in Gills of the Euryhaline Sailfin Molly, Poecilia Latipinna, Is Altered in Response to Salinity Challe
    Journal of Experimental Marine Biology and Ecology 375 (2009) 41–50 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Na+/K+-ATPase expression in gills of the euryhaline sailfin molly, Poecilia latipinna, is altered in response to salinity challenge Wen-Kai Yang a, Jinn-Rong Hseu b, Cheng-Hao Tang a, Ming-Ju Chung c, Su-Mei Wu c,⁎, Tsung-Han Lee a,⁎ a Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan b Mariculture Research Center, Fisheries Research Institute, Tainan 724, Taiwan c Department of Aquatic Biosciences, National Chiayi University, Chiayi 600, Taiwan article info abstract Article history: Sailfin molly (Poecilia latipinna) is an introduced species of euryhaline teleost mainly distributed in the lower reaches Received 23 December 2008 and river mouths over the southwestern part of Taiwan. Upon salinity challenge, the gill is the major organ Received in revised form 5 May 2009 responsible for ion-regulation, and the branchial Na+–K+-ATPase (NKA) is a primary driving force for the other ion Accepted 6 May 2009 transporters and channels. Hence we hypothesized that branchial NKA expression changed in response to salinity stress of sailfin molly so that they were able to survive in environments of different salinities. Before sampling, the Keywords: fish were acclimated to fresh water (FW), brackish water (BW, 15‰), or seawater (SW, 35‰) for at least one month. Gill The physiological (plasma osmolality), biochemical (activity and protein abundance of branchial NKA), cellular Glucose Heat shock protein (number of NKA immunoreactive cells), and stress (plasma glucose levels and protein abundance of hepatic and Na+/K+-ATPase branchial heat shock protein 90) indicators of osmoregulatory challenge in sailfinmollyweresignificantly increased Salinity in the SW-acclimated group compared to the FW- or BW-acclimated group.
    [Show full text]
  • Oogenesis [PDF]
    Oogenesis Dr Navneet Kumar Professor (Anatomy) K.G.M.U Dr NavneetKumar Professor Anatomy KGMU Lko Oogenesis • Development of ovum (oogenesis) • Maturation of follicle • Fate of ovum and follicle Dr NavneetKumar Professor Anatomy KGMU Lko Dr NavneetKumar Professor Anatomy KGMU Lko Oogenesis • Site – ovary • Duration – 7th week of embryo –primordial germ cells • -3rd month of fetus –oogonium • - two million primary oocyte • -7th month of fetus primary oocyte +primary follicle • - at birth primary oocyte with prophase of • 1st meiotic division • - 40 thousand primary oocyte in adult ovary • - 500 primary oocyte attain maturity • - oogenesis completed after fertilization Dr Navneet Kumar Dr NavneetKumar Professor Professor (Anatomy) Anatomy KGMU Lko K.G.M.U Development of ovum Oogonium(44XX) -In fetal ovary Primary oocyte (44XX) arrest till puberty in prophase of 1st phase meiotic division Secondary oocyte(22X)+Polar body(22X) 1st phase meiotic division completed at ovulation &enter in 2nd phase Ovum(22X)+polarbody(22X) After fertilization Dr NavneetKumar Professor Anatomy KGMU Lko Dr NavneetKumar Professor Anatomy KGMU Lko Dr Navneet Kumar Dr ProfessorNavneetKumar (Anatomy) Professor K.G.M.UAnatomy KGMU Lko Dr NavneetKumar Professor Anatomy KGMU Lko Maturation of follicle Dr NavneetKumar Professor Anatomy KGMU Lko Maturation of follicle Primordial follicle -Follicular cells Primary follicle -Zona pallucida -Granulosa cells Secondary follicle Antrum developed Ovarian /Graafian follicle - Theca interna &externa -Membrana granulosa -Antrial
    [Show full text]
  • Salmo Gairdneri R.) S.N
    Ultrastructural studies on experimentally induced vitellogenesis in juvenile rainbow trout (Salmo gairdneri R.) S.N. Upadhyay, Bernard Breton, Roland Billard To cite this version: S.N. Upadhyay, Bernard Breton, Roland Billard. Ultrastructural studies on experimentally induced vitellogenesis in juvenile rainbow trout (Salmo gairdneri R.). Annales de biologie animale, biochimie, biophysique, 1978, 18 (4), pp.1019-1025. 10.1051/rnd:19780541. hal-00897383 HAL Id: hal-00897383 https://hal.archives-ouvertes.fr/hal-00897383 Submitted on 1 Jan 1978 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ultrastructural studies on experimentally induced vitellogenesis in juvenile rainbow trout (Salmo gairdneri R.) S. N. UPADHYAY B. BRETON, R. BILLARD Laboratoire de Physiologie des Poissons, I. N. R. A., 78350 Jouy en Josas, France. Summary. Juvenile rainbow trout (weighing 10 or 20 g) were treated thrice weekly for 10 weeks with salmon-gonadotropin (S-GTH), salmon pituitary extract (S-PE), S-GTH plus estradiol-17!, and estradiol-17p alone. The effects of these treatments on the oocytes were studied at ultrastructural level. Saline-injected control fish contained oocytes at previtellogenic stage of development. S-GTH (0.1 or 0.5 pg/g) induced a synthesis of endogenous yolk in the oocyte cytoplasm but failed to initiate incorporation of exogenous yolk or vitellogenin into the oocytes.
    [Show full text]
  • Egg White Foam
    BAFFLING BEATERS Background Egg White Foam Egg white foam is a type of foam (a colloid in which a gas is dispersed or spread throughout a liquid) used in meringues, souffl és, and angel food cake to make them light and porous (airy). To prepare an egg white foam, egg whites are initially beaten (with a wire wisk or electric mixer) until they become frothy. Then an acid (such as cream of tartar) is added. Depending on the application, the beating of the egg white continues until soft (when the peaks stand straight and bend slightly at the tips) or stiff peaks (when the peaks stand straight without bending) are formed. Salt and sugar may also be added. How It Works: Egg whites are made up of water, protein, and small amounts of minerals and sugars. When the egg whites are beaten, air is added and the egg white protein, albumen, is denatured. Denaturation is the change of a protein’s shape under stress (in this case, beating). The denatured protein coats the air bubbles and holds in the water, causing them to References Food Mysteries Case 4: Protein Puzzlers. 1992. Originally developed by 4-H become stiff and stable. When an acid such as cream of tartar is added, Youth Development, Michigan State University Extension, East Lansing. the foam becomes even more stable and less likely to lose water (a process known as syneresis). Himich Freeland-Graves, J and Peckham, GC. 1996. Foundations of Food Preparation. 6th ed. Englewood Cliffs: Prentice Hall. 750 pgs. Several factors affect the formation and stability of egg white foams, including: • Fat: The addition of even a small amount of fat will interfere with the formation of a foam.
    [Show full text]
  • And Intra-Species Replacements in Freshwater Fishes in Japan
    G C A T T A C G G C A T genes Article Waves Out of the Korean Peninsula and Inter- and Intra-Species Replacements in Freshwater Fishes in Japan Shoji Taniguchi 1 , Johanna Bertl 2, Andreas Futschik 3 , Hirohisa Kishino 1 and Toshio Okazaki 1,* 1 Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; [email protected] (S.T.); [email protected] (H.K.) 2 Department of Mathematics, Aarhus University, Ny Munkegade, 118, bldg. 1530, 8000 Aarhus C, Denmark; [email protected] 3 Department of Applied Statistics, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria; [email protected] * Correspondence: [email protected] Abstract: The Japanese archipelago is located at the periphery of the continent of Asia. Rivers in the Japanese archipelago, separated from the continent of Asia by about 17 Ma, have experienced an intermittent exchange of freshwater fish taxa through a narrow land bridge generated by lowered sea level. As the Korean Peninsula and Japanese archipelago were not covered by an ice sheet during glacial periods, phylogeographical analyses in this region can trace the history of biota that were, for a long time, beyond the last glacial maximum. In this study, we analyzed the phylogeography of four freshwater fish taxa, Hemibarbus longirostris, dark chub Nipponocypris temminckii, Tanakia ssp. and Carassius ssp., whose distributions include both the Korean Peninsula and Western Japan. We found for each taxon that a small component of diverse Korean clades of freshwater fishes Citation: Taniguchi, S.; Bertl, J.; migrated in waves into the Japanese archipelago to form the current phylogeographic structure of Futschik, A.; Kishino, H.; Okazaki, T.
    [Show full text]
  • Female and Male Gametogenesis 3 Nina Desai , Jennifer Ludgin , Rakesh Sharma , Raj Kumar Anirudh , and Ashok Agarwal
    Female and Male Gametogenesis 3 Nina Desai , Jennifer Ludgin , Rakesh Sharma , Raj Kumar Anirudh , and Ashok Agarwal intimately part of the endocrine responsibility of the ovary. Introduction If there are no gametes, then hormone production is drastically curtailed. Depletion of oocytes implies depletion of the major Oogenesis is an area that has long been of interest in medicine, hormones of the ovary. In the male this is not the case. as well as biology, economics, sociology, and public policy. Androgen production will proceed normally without a single Almost four centuries ago, the English physician William spermatozoa in the testes. Harvey (1578–1657) wrote ex ovo omnia —“all that is alive This chapter presents basic aspects of human ovarian comes from the egg.” follicle growth, oogenesis, and some of the regulatory mech- During a women’s reproductive life span only 300–400 of anisms involved [ 1 ] , as well as some of the basic structural the nearly 1–2 million oocytes present in her ovaries at birth morphology of the testes and the process of development to are ovulated. The process of oogenesis begins with migra- obtain mature spermatozoa. tory primordial germ cells (PGCs). It results in the produc- tion of meiotically competent oocytes containing the correct genetic material, proteins, mRNA transcripts, and organ- Structure of the Ovary elles that are necessary to create a viable embryo. This is a tightly controlled process involving not only ovarian para- The ovary, which contains the germ cells, is the main repro- crine factors but also signaling from gonadotropins secreted ductive organ in the female.
    [Show full text]