Appendix D Spill Response Plan

Total Page:16

File Type:pdf, Size:1020Kb

Appendix D Spill Response Plan Appendix D Spill Response Plan Intentionally Left Blank City of El Centro Spill Response Plan 1. Introduction Spills and illicit discharges can be a significant source of pollutants to the City of El Centro’s (City) municipal separate storm sewer system (MS4). In accordance with the State Water Resources Control Board (SWRCB) Order No. 2013-0001-DWQ (Phase II Small MS4 General Permit), this Spill Response Plan includes a comprehensive plan for detecting, responding to, investigating, and eliminating spills or illicit discharges to the City’s MS4. The City coordinates with spill response teams to prevent entry of spills into the MS4 to prevent the contamination of surface water, ground water, and soil to the maximum extent practicable. Where necessary, the City will coordinate with other agencies to prevent spills and illicit discharges from upstream sources into the City’s MS4. The general process in which City staff respond to illicit discharges and spills is displayed in the flow chart included as Attachment 1. 2. Sewage Spills The City maintains and implements a Sewer System Management Plan (SSMP) in response to the SWRCB Order No. 2006-003-DWQ. The City also maintains a Sanitary Sewer Overflow Prevention Plan (SSOPP), which is included within the SSMP. The SSMP describes the City’s sewer system and addresses the organization and major activities of the City’s wastewater operations. Specific guidance for sewage spill overflow (SSO) response, clean-up, and reporting is included in the SSMP. The SSOPP has been specifically designed to prevent and minimize the potential for SSOs. Consistent with SWRCB Order No. WQ-2008-0002-EXEC, all publicly owned treatment plants are required to report all spills and other unauthorized discharges to the Colorado River Basin Regional Water Quality Control Board (RWQCB). 3. Hazardous Material Spills Incidents involving hazardous materials are documented by City staff using the Illicit Discharge and Non-SSO Spill Report form (Attachment 2) and a standard California Hazardous Material Incident Report form. The City’s Fire Department Hazardous Materials Team responds directly to spills or illegal dumping of hazardous materials, and provides support services to other agencies that encounter hazardous materials in their routine duties. The Hazardous Materials Team operates 24 hours a day, seven (7) days a week. The team’s duties include, but are not limited to, directing the containment and clean-up of spills that may enter surface waters or flow directly to the MS4. Additionally, the Imperial County Public Health Department (ICPHD) participates on the Imperial County Hazardous Emergency Assistance Team, which assists in the containment and clean-up of accidental hazardous material spills. Specific information regarding the response, clean-up, and reporting procedures for hazardous materials spills can be found in the Imperial County Hazardous Material Area Plan (Attachment 3) and the City of El Centro Fire Department Standard Operating Procedure Number 160 for Hazardous Materials Incident Management (Attachment 4). City of El Centro Spill Response Plan June 2014 1 4. Spill Prevention and Mitigation Procedures The City coordinates spill prevention, containment, and response activities throughout all appropriate departments, programs, and agencies so that maximum water quality protection is available at all times. Public Works staff, such as building inspectors, fire department personnel, and community service staff are trained to report illicit discharges or spill incidents while in the field performing their specific duties. 5. Responding to Complaints The public is encouraged to contact the City’s Public Works Department to report spills, illicit discharges, or other violations to (760) 337-4505 or to (760) 352-2113 after business hours. The City validates, investigates, inspects, and appropriately follows-up on spills and illicit discharges that are reported to identify the source(s) of the discharge. Complaints are typically validated through field reconnaissance. Spills or illicit discharges potentially harming human health are placed at the highest priority, with spills or discharges potentially threatening aquatic health or reaching a receiving water body as the next most important priority for investigation. The City has developed an Illicit Discharge and Non-SSO Spill Report form (Attachment 2) to document reports of illicit discharges and spills occurring within the City’s jurisdiction. The criteria listed below will be used to determine the human or environmental health threats of a spill or illicit discharge, either from storm water or non-storm water discharges, where applicable: Estimated pollutant load discharged from site Estimated volume of discharge Types of pollutants discharged, including if toxic materials were discharged Sensitivity of the receiving water body, including if it is 303(d) listed for any of the pollutants in the discharge Proximity of site to sensitive habitat/endangered species Proximity of site to public water supply (well head, monitoring wells) How much, if any of the discharge reached the receiving water body Beneficial uses for affected water bodies 6. Field and Laboratory Sampling In order to verify a source of an a discharge/spill to the City’s MS4, the City can perform field or laboratory sampling for any of the parameters identified in Table 1, or any others that may provide useful data in identifying the discharge. For example, elevated ammonia levels measured in a storm water sample can indicate a sewage spill or leak to the MS4. City of El Centro Spill Response Plan June 2014 2 Table 1. Parameter Action Levels and Methods Action Level Laboratory Analysis Parameter Example Field Test Kit/Method2 Concentration1 Method Ammonia (mg/L) ≥ 50 mg/L CHEMetrics test kit K-1410 or K-1403 SM 4500-NH3 B, C Hanna Instruments HI 727 CheckerHC Color ≥ 500 unit EPA 110.2 Handheld Colorimeter Conductivity (µS/cm) ≥ 2,000 µS/cm Conductivity meter SM 2510 B Fluoride (mg/L) N/A CHEMetrics test kit K-4009 or I-2021 EPA 9214 or SM 4500 F C Hardness ≤ 10 mg/L CaCO3 or ≥ CHEMetrics test kit K-4502 and K-4530 SM 2340B or EPA 200.7 (CaCO3 mg/L) 2,000 mg/L CaCO3 MBAS (Detergents) N/A CHEMetrics test kit K-9400 or I-2017 SM 5540 C (mg/L) pH (pH units) ≤ 5 or ≥ 9 pH meter or pH paper SM4500-H+ B Potassium (mg/L) ≥ 20 mg/L La Motte Test Kit 3138-01 EPA 258.1 Turbidity (NTU) ≥ 1,000 NTU Turbidity meter SM 2130 B Notes: 1. If an action level is exceeded, an illicit discharge investigation is required during routine outfall monitoring (Section E.9.c.ii.(b). of the Phase II Small MS4 General Permit). For the purposes of this document, these action levels are used solely as guidance for identifying pollutant concentrations that may be indicative of an illicit discharge. 2. The listed test kits/methods are included as examples only; other equivalent methods may be used. mg/L = milligrams per Liter; µS/cm = microsiemens per centimeter; MBAS = methylene blue active substances; mg/L CaCO3 = milligrams per Liter as calcium carbonate; ppm = parts per million; NTU = Nephelometric Turbidity Unit 7. Spill and Illicit Discharge Clean-Up In the event of a spill, leak, or illicit discharge to the City’s MS4, the City initiates an investigation as soon as possible after becoming aware of the spill. If investigators find evidence of a violation with the potential to release pollutants or an actual illicit discharge or spill, every effort is made to find the responsible party and inform them of the complaint or implement enforcement. Parties found to be responsible for a violation or illicit discharge/spill are required to clean-up or remove pollutants to the maximum extent practicable. Any refusal by the responsible party to perform clean up of a violation or discharge will be handled by the City’s Code Enforcement staff and appropriate enforcement actions will be taken. Public Works department personnel will respond to and commence the clean-up of minor spills to the City’s MS4 when spills are of non-hazardous materials. Otherwise, the clean-up will be deferred to the next most appropriate agency depending on the spill such as the City’s Fire Department Hazardous Materials Team or the ICPHD. Specific procedures for containing and cleaning up a spill resulting from an SSO can be found in the City’s SSMP. Procedures for containing and clean up of a hazardous material spill or discharge are included in Attachment 3 and 4 of this spill response plan. The City of El Centro Public Works Department also has specific procedures for responding to both small and large spills. 8. Spill Reporting For each reported illicit discharge or spill the City records information on the Non-SSO Spill and Illicit Discharge Report form, included as Attachment 2. City of El Centro Spill Response Plan June 2014 3 The City follows additional reporting requirements specific to discharges resulting in an immediate threat to human health or the environment, or spills of hazardous materials or sewage, including sewage spills from private laterals and failing septic systems, which are summarized below and in the illicit discharge and non-SSO spill response flow chart included as Attachment 1. State Office of Emergency Services (OES) Consistent with SWRCB Order No. WQ-2008-0002-EXEC, and California Water Code Sections 13267, 13271, and 13383, the State OES will be notified of any significant hazardous material spill or any sewage spill of 1,000 gallons or more that resulted in, or will probably result in, a discharge to any waters of the state by telephone at (800) 852-7550 or (916) 845-8911 and by fax at (916) 262-1677 (follow-up only). The complete procedure for SSO response is included in the City’s SSMP. In order to determine if a substance is considered to be hazardous or to determine what constitutes a “significant” spill, please refer to the Code of Federal Regulations List of Hazardous Substances and Reportable Quantities included in Attachment 5.
Recommended publications
  • Itetall IC BROMIDES AS CATALYSTS in THE
    QUANTITATIVE COMPARISON OF ;itETALL IC BROMIDES AS CATALYSTS IN THE FRIED.liL-CRAFTS KETONE SYNTHESIS i QUANTITATIVE COMPARISON OF MET ALLIC BROMIDES AS CATAL YSTS IN THE FRIEDEL-CRAFTS KETONE SYNTHESIS By Peter Taketoshi M,, ori Bachelor of .Arts Park College Parkville, Missouri 1945 Submitted to the Department of Chemistry Oklahoma Agricultural and Mechanical College In partial fulfillment of the r equirement for t he Degree of Master of Science 194'~ ii \ APPROVED BY: Chairman, Thesis Committee Head of the Department ~he~ ( ~uate~~ School 2174~10 iii ACKNOWLEDGEMENT The author wis hes to express his s i neere gr atitude to Dr . O. C. Dermer under whose guidance t his work has been accomplished . He also wi s hes to express hi s a ppreciation to the Chemi stry Department for t he s uppl y of chemicals used. iv TABLE OF CONTENTS "P age Introduction • • l Historical • • • • 2 Experimental • • • • 5 Procadure • • • • • • • • 9 Table of results . • • • • • • • 12 Discussion of results • .. • • • • • • 15 Summary • • • • • • • • 22 Bibliography • • • • • • • • • • 23 Biography • • • • • • • • • • • 25 1 I NTRODCCT ION T~lis is a continuation of the s t udy of catalystf for the Friedel­ Crafts ketone synt hesis star ted by Wilson ( .38 ), a nd continued by Suguj.­ tan (34), Johnson (17), and Billme ier (4). Ma ny metallic chlorides have been used in t his reacti on, but metallic bromides, as cat alyst s, have been rather neelected . It is the purpose of this work to study the ef fectiveness of some of the metallic bromides by following essentially the experimental pro­ cedure of Billmeier (4). 2 HISTORICAL In 1877, the French chemist Friedel and his American colleague Crafts (12) discovered the f amous Friedel-Crafts reaction, which now has s uch great industrial a pplication (7 , 13, 18, 35).
    [Show full text]
  • Toxic Or Hazardous Substance List
    301 CMR: EXECUTIVE OFFICE OF ENERGY AND ENVIRONMENTAL AFFAIRS 301 CMR 41.00: TOXIC OR HAZARDOUS SUBSTANCE LIST Section 41.01: Authority and Purpose 41.02: Definitions 41.03: Toxic or Hazardous Substance List 41.04: Amendment of the Toxic or Hazardous Substance List 41.05: Designation of Higher and Lower Hazard Substances 41.06: Higher Hazard Substances 41.07: Lower Hazard Substances 41.01: Authority and Purpose (1) Authority. The Administrative Council On Toxics Use Reduction adopts 301 CMR 41.00 pursuant to M.G.L. c. 21I, §§ 4(C) and 9. (2) Purpose. The Administrative Council on Toxics Use Reduction promulgates 301 CMR 41.00 to carry out its authority and responsibility: (a) to promote the coordination and enforcement of federal and state laws and regulations pertaining to toxics production and use, hazardous waste, industrial hygiene, worker safety, public exposure to toxics and the release of toxics into the environment; (b) to coordinate state programs in order to promote, most effectively, toxics use reduction in the Commonwealth; (c) to minimize unnecessary duplication of reporting requirements concerning toxic or hazardous substance production, use, release, disposal, and worker exposure; (d) to provide up-to-date and consistent information about manufacturing, worker exposure, distribution, process, sale, storage, release or other use of toxics on a facility, regional and statewide basis; (e) to adjust the toxic or hazardous substance list under M.G.L. c. 21I, § 9 by adding or deleting substances consistent with the changes on the Toxic Chemical List established pursuant to Section 313 of the Emergency Planning and Community Right-to-Know Act (EPCRA); (f) to adjust the toxic or hazardous substance list under M.G.L.
    [Show full text]
  • High Refractive Index Immersion Liquid for Super-Resolution 3D Imaging Using Sapphire-Based Anail Optics
    High refractive index immersion liquid for super-resolution 3D imaging using sapphire-based aNAIL optics Junaid M. Laskar1, P. Shravan Kumar2, Stephan Herminghaus1, Karen E. Daniels3, Matthias Schr¨oter1;4 1Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 G¨ottingen,Germany 2Dept. of Physics, IIT Guwahati, Guwahati, Assam, India 3Dept. of Physics, NC State University, Raleigh, NC, USA 4Institute for Multiscale Simulation, Friedrich-Alexander-Universit¨atErlangen-N¨urnberg, Erlangen, Germany (Dated: April 21, 2016) Optically-transparent immersion liquids with refractive index (n ∼ 1:77) to match sapphire-based aplanatic numerical aperture increasing lens (aNAIL) are necessary for achieving deep 3D imaging with high spatial resolution. We report that antimony tribromide (SbBr3) salt dissolved in liquid diiodomethane (CH2I2) provides a new high refractive index immersion liquid for optics applications. The refractive index is tunable from n = 1:74 (pure) to n = 1:873 (saturated), by adjusting either salt concentration or temperature; this allows it to match (or even exceed) the refractive index of sapphire. Importantly, the solution gives excellent light transmittance in the ultraviolet to near- infrared range, an improvement over commercially-available immersion liquids. This refractive index matched immersion liquid formulation has enabled us to develop a sapphire-based aNAIL objective that has both high numerical aperture (NA = 1:17) and long working distance (WD = 12 mm). This opens up new possibilities for deep 3D imaging with high spatial resolution. Copyright 2016 Optical Society of America. One print (phenyldi-iodoarsine (C6H5AsI2) with n = 1:85 and se- or electronic copy may be made for personal use only. lenium monobromide (Se2Br2) with n = 2:1 [10]), di- Systematic reproduction and distribution, duplication iodomethane has the key advantage of being commer- of any material in this paper for a fee or for commercial cially available.
    [Show full text]
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Antimony in Switzerland. a Substance Flow Analysis
    > Environmental studies > Chemicals / Substance flow analysis 24 > Antimony in Switzerland 07 A substance flow analysis > Environmental studies > Chemicals / Substance flow analysis > Antimony in Switzerland A substance flow analysis Mit deutscher Zusammenfassung – Avec résumé en français – Con riassunto in italiano Published by the Federal Office for the Environment FOEN Bern, 2007 Impressum Issued by Federal Office for the Environment (FOEN) FOEN is an office of the Federal Department of Environment, Transport, Energy and Communications (DETEC). Authors Renata Mathys, Jessica Dittmar & C. Annette Johnson FOEN consultant Patrick Krähenbühl, Substances, Soil, Biotechnology Divison Suggested form of citation Mathys R., Dittmar J., Johnson C.A. 2007: Antimony in Switzerland: A substance flow analysis. Environmental studies no. 0724. Federal Office for the Environment, Bern.149 pp. Design Ursula Nöthiger-Koch, 4813 Uerkheim Cover picture Antimonite (Antimony sulphide) © Musée d’histoire naturelle Fribourg, Suisse Downloadable PDF file www.environment-switzerland.ch/uw-0724-e (no printed version available) Code: UW-0724-E © FOEN 2007 > Table of contents 3 > Table of contents Abstracts 5 3.3.1 Classification of major products 50 Foreword 7 3.3.2 Classification of minor products 54 Vorwort 8 3.3.3 Trade 55 Avant-propos 9 3.3.4 Production 56 Premessa 10 3.3.5 Consumption 57 Summary 11 3.3.6 Stock 57 Zusammenfassung 14 3.4 Flame retardants 58 Résumé 17 3.4.1 Classification of products 58 Riassunto 20 3.4.1.1 Brominated flame retardants 60 3.4.1.2
    [Show full text]
  • The Par Infrared Spectra Op Several Pyramidal
    THE PAR INFRARED SPECTRA OP SEVERAL PYRAMIDAL TRIHALIDES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Gradxiate School of The Ohio State University By / PHILIP DAVIS, B. Sc. The Ohio State University 1954 Approved by: Adviser ACKNOWLEDGEMENT I 3hould. like to express my appreciation to Dr. Robert A. Oetjen and to Dr. Ely E. Bell for their guidance and patience during the course of this work. The ever­ present aid of the indefatigable Raymond L. Brown and Edward D. Palik of this laboratory was of great assistance to me throughout the time the work was in progress. I am indebted to The Ohio State University Research Foundation for allowing me a Fellowship for the year 1952- 53 and to the Wright Air Development Center for permitting me to use the far infrared spectrometer to carry out this investigation. Finally the excellent work of Mr. Carl McWhirt and the staff of the Physics Department shop is gratefully acknowledged. iii TABLE OB1 CONTENTS Introduction................. 1 H i s t o r y ............ 3 Experimental Procedure .............................. 6 Instrumentation ................... 6 Samples ................. 1 5 Cells ........... 1 6 Theory ............... .......... ......... 26 Group Theory ........... ........... 26 Normal Vibrations ..... ................. 43 Experimental Results ................................ 55 Phosphorus Trichloride ....................... 55 Arsenic Trichloride .......................... 62 Phosphorus Tribromide .......................
    [Show full text]
  • Download the Scanned
    SOLVENTS AND SOLUTES FOR THE PREPARATION OF IMMERSION LIQUIDS OF HIGH INDEX OF REFRACTION* Roennr lVlBvnowrrz, U.S.GeologicalSurley, Washington25, D. C. Assrnacr The types of compounds that should be suitable as solvents and solutes for the prepara- tion of immersion liquids of high index of refraction are covalent inorganic, organic, and metal-organic compounds containing the nonmetallic elements of the carbon, nitrogen, oxygen, and fluorine groups of the periodic table, and mercury and thallium. Many of these compounds have already been used to make immersion liquids of. high index of refraction. Other compounds of these types that might be suitable are suggested. X{ost of the developmental work on immersion liquids of high index of refraction has generally been either one of trial and error or an exten- sion of an earlier experimenter's work. The purpose of this paper is to define the types of inorganic and organic compounds that are most Iikely to be suitable as solvents and solutes in the preparation of liquids of high index of refraction. Practical considerations such as solubility, stability, and toxicity will limit the use of individual compounds and small groups of compounds although their indices of refraction may be high. D6verin (193a) has listed 12 extensivegroups of organic compounds which he consideredfertile fields for investigation becausethese groups of compounds would tend to have relatively high indices of refraction. Liquids of high index of refraction will generally be composed of sub- stancesthat have high indices of refraction. fn the preparation of these Iiquids the solvent should be a liquid of relatively high index of refrac- tion, or a solid of high index of refraction whose melting point is very ciose to room temperature, so that if one dissolves some solute in it, the freezing point will be depressedbelow room temperature and a liquid will result.
    [Show full text]
  • Dielectric Constant Chart
    Dielectric Constants of Common Materials DIELECTRIC MATERIALS DEG. F CONSTANT ABS RESIN, LUMP 2.4-4.1 ABS RESIN, PELLET 1.5-2.5 ACENAPHTHENE 70 3 ACETAL 70 3.6 ACETAL BROMIDE 16.5 ACETAL DOXIME 68 3.4 ACETALDEHYDE 41 21.8 ACETAMIDE 68 4 ACETAMIDE 180 59 ACETAMIDE 41 ACETANILIDE 71 2.9 ACETIC ACID 68 6.2 ACETIC ACID (36 DEGREES F) 36 4.1 ACETIC ANHYDRIDE 66 21 ACETONE 77 20.7 ACETONE 127 17.7 ACETONE 32 1.0159 ACETONITRILE 70 37.5 ACETOPHENONE 75 17.3 ACETOXIME 24 3 ACETYL ACETONE 68 23.1 ACETYL BROMIDE 68 16.5 ACETYL CHLORIDE 68 15.8 ACETYLE ACETONE 68 25 ACETYLENE 32 1.0217 ACETYLMETHYL HEXYL KETONE 66 27.9 ACRYLIC RESIN 2.7 - 4.5 ACTEAL 21 3.6 ACTETAMIDE 4 AIR 1 AIR (DRY) 68 1.000536 ALCOHOL, INDUSTRIAL 16-31 ALKYD RESIN 3.5-5 ALLYL ALCOHOL 58 22 ALLYL BROMIDE 66 7 ALLYL CHLORIDE 68 8.2 ALLYL IODIDE 66 6.1 ALLYL ISOTHIOCYANATE 64 17.2 ALLYL RESIN (CAST) 3.6 - 4.5 ALUMINA 9.3-11.5 ALUMINA 4.5 ALUMINA CHINA 3.1-3.9 ALUMINUM BROMIDE 212 3.4 ALUMINUM FLUORIDE 2.2 ALUMINUM HYDROXIDE 2.2 ALUMINUM OLEATE 68 2.4 1 Dielectric Constants of Common Materials DIELECTRIC MATERIALS DEG. F CONSTANT ALUMINUM PHOSPHATE 6 ALUMINUM POWDER 1.6-1.8 AMBER 2.8-2.9 AMINOALKYD RESIN 3.9-4.2 AMMONIA -74 25 AMMONIA -30 22 AMMONIA 40 18.9 AMMONIA 69 16.5 AMMONIA (GAS?) 32 1.0072 AMMONIUM BROMIDE 7.2 AMMONIUM CHLORIDE 7 AMYL ACETATE 68 5 AMYL ALCOHOL -180 35.5 AMYL ALCOHOL 68 15.8 AMYL ALCOHOL 140 11.2 AMYL BENZOATE 68 5.1 AMYL BROMIDE 50 6.3 AMYL CHLORIDE 52 6.6 AMYL ETHER 60 3.1 AMYL FORMATE 66 5.7 AMYL IODIDE 62 6.9 AMYL NITRATE 62 9.1 AMYL THIOCYANATE 68 17.4 AMYLAMINE 72 4.6 AMYLENE 70 2 AMYLENE BROMIDE 58 5.6 AMYLENETETRARARBOXYLATE 66 4.4 AMYLMERCAPTAN 68 4.7 ANILINE 32 7.8 ANILINE 68 7.3 ANILINE 212 5.5 ANILINE FORMALDEHYDE RESIN 3.5 - 3.6 ANILINE RESIN 3.4-3.8 ANISALDEHYDE 68 15.8 ANISALDOXINE 145 9.2 ANISOLE 68 4.3 ANITMONY TRICHLORIDE 5.3 ANTIMONY PENTACHLORIDE 68 3.2 ANTIMONY TRIBROMIDE 212 20.9 ANTIMONY TRICHLORIDE 166 33 ANTIMONY TRICHLORIDE 5.3 ANTIMONY TRICODIDE 347 13.9 APATITE 7.4 2 Dielectric Constants of Common Materials DIELECTRIC MATERIALS DEG.
    [Show full text]
  • Fedex Ground Hazardous Materials Shipping Guide Is Intended to Simplify Title 49 CFR
    FedEx Ground Package Systems Inc. is committed to the safe transportation of hazardous materials. It is very important that each person engaged in the transportation of hazardous materials has the proper training and is thoroughly familiar with the Title 49CFR (Code of Federal Regulations) and/or USPS Publication 52. This guide is intended only to assist you in your preparation of hazardous materials shipped via FedEx Ground Package Systems Inc. It is the shipper’s responsibility to ensure each hazardous material package is in compliance with applicable Department of Transportation (D.O.T.) regulations and FedEx Ground Package Systems Inc. requirements. Failure to comply with these regulations and requirements may subject the shipper and carrier to fines and penalties. Improperly prepared hazmat packages or documentation may be subject to an additional charge(s) due to the unexpected hanlding associated with these shipments. Due to the changing nature of D.O.T. regulations and other information, it is impossible to guarantee absolute accuracy of the material contained in this guide. FedEx Ground Package Systems Inc., therefore, cannot assume any responsibility for omissions, errors, misprinting, or ambiguity contained within this guide and shall not be held liable in any degree for any loss or injury caused by such omission or error presented in this publication. Shippers should consult the most current version of the hazardous material regulations. Training is mandatory for those shipping hazardous materials, including limited quantity and other exceptions. The www.shipsafeshipsmart.com battery and hazmat training programs offer shippers an economical source of basic ground battery and/or hazardous materials shipping as well as addressing FedEx Ground specific issues.
    [Show full text]
  • Environmental Protection Agency § 302.4
    Environmental Protection Agency § 302.4 State, municipality, commission, polit- ern Marianas, and any other territory ical subdivision of a State, or any or possession over which the United interstate body; States has jurisdiction; and Release means any spilling, leaking, Vessel means every description of pumping, pouring, emitting, emptying, watercraft or other artificial contriv- discharging, injecting, escaping, leach- ance used, or capable of being used, as ing, dumping, or disposing into the en- a means of transportation on water. vironment (including the abandonment or discarding of barrels, containers, [50 FR 13474, Apr. 4, 1985, as amended at 67 FR 45321, July 9, 2002] and other closed receptacles containing any hazardous substance or pollutant § 302.4 Designation of hazardous sub- or contaminant), but excludes: stances. (1) Any release which results in expo- (a) Listed hazardous substances. The sure to persons solely within a work- place, with respect to a claim which elements and compounds and haz- such persons may assert against the ardous wastes appearing in table 302.4 employer of such persons; are designated as hazardous substances (2) Emissions from the engine ex- under section 102(a) of the Act. haust of a motor vehicle, rolling stock, (b) Unlisted hazardous substances. A aircraft, vessel, or pipeline pumping solid waste, as defined in 40 CFR 261.2, station engine; which is not excluded from regulation (3) Release of source, byproduct, or as a hazardous waste under 40 CFR special nuclear material from a nuclear 261.4(b), is a hazardous substance under incident, as those terms are defined in section 101(14) of the Act if it exhibits the Atomic Energy Act of 1954, if such any of the characteristics identified in release is subject to requirements with 40 CFR 261.20 through 261.24.
    [Show full text]
  • Kinetic Study on Bromine-Exchange Reaction of Antimony Tribromide with A-Phenylethyl Bromide in Nitrobenzene
    124 Bulletin of Korean Chemical Society, V어 . 6, No. 3, 1985 Sang Up Choi, Yo니 ng II Pae and Aok Hwan Rhyu 끄 +4?广 -t广 )& -2(2-7?) (2+〃)(4+t?)〕 (<L») = ©2(S)(1 + p2) 2t (10) (2p)”}oA if P))l. (6) where ^2(w) has been given in eq.(1,4,15). As discussed in I, The circular dichroism in the extreme critical region behaves 小 ;dominates over ©J in the case of p<l. As the system ap­ whereas the circular dichroism of a fluid satisfy­ proaches to the critical point,弑 becomes more important. If ing the Ornstein-Zernike theory shows logarithmic divergence, we have , 、气尸 in(Mo4co). (s) =〔土 (利 +2) (&l 1)〕’(虹 7長 /16厅 eM ') The optical rotation, 0(<o)may be separated into three parts S (co) =*s Re [nL (<z)) ~ nfi (cu)] 必 L Id. (11) The magnitude of S ; may be comparable to or larger than S:. =^0 (w) + 0 / (co) + 02Z (co). (7) In the extreme case of p|z|> 1, becomes The first term,。° is due to the molecular contribution and has 。J M — 〔§ (&)+2)(€0 - 1) Y (kBTx /32eM ') w2Pn. (12) been given in I. The second term, is The above result independent of 伉 may be comparable to or - (8&')T(4 — &))(由 +2)&佝 (kBTx /f 3) larger than 0°. We refer to I for the detailed discussion of the 〔(令广 PS m)-을 -气끄 * results. Acknowledgement. One of the authors (D. J. Lee) would 少 (1+p品 〕『if YE, ⑻ like to thank the Korean Science and Engineering Foundation for finantial support.
    [Show full text]