Antimony in Switzerland. a Substance Flow Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Antimony in Switzerland. a Substance Flow Analysis > Environmental studies > Chemicals / Substance flow analysis 24 > Antimony in Switzerland 07 A substance flow analysis > Environmental studies > Chemicals / Substance flow analysis > Antimony in Switzerland A substance flow analysis Mit deutscher Zusammenfassung – Avec résumé en français – Con riassunto in italiano Published by the Federal Office for the Environment FOEN Bern, 2007 Impressum Issued by Federal Office for the Environment (FOEN) FOEN is an office of the Federal Department of Environment, Transport, Energy and Communications (DETEC). Authors Renata Mathys, Jessica Dittmar & C. Annette Johnson FOEN consultant Patrick Krähenbühl, Substances, Soil, Biotechnology Divison Suggested form of citation Mathys R., Dittmar J., Johnson C.A. 2007: Antimony in Switzerland: A substance flow analysis. Environmental studies no. 0724. Federal Office for the Environment, Bern.149 pp. Design Ursula Nöthiger-Koch, 4813 Uerkheim Cover picture Antimonite (Antimony sulphide) © Musée d’histoire naturelle Fribourg, Suisse Downloadable PDF file www.environment-switzerland.ch/uw-0724-e (no printed version available) Code: UW-0724-E © FOEN 2007 > Table of contents 3 > Table of contents Abstracts 5 3.3.1 Classification of major products 50 Foreword 7 3.3.2 Classification of minor products 54 Vorwort 8 3.3.3 Trade 55 Avant-propos 9 3.3.4 Production 56 Premessa 10 3.3.5 Consumption 57 Summary 11 3.3.6 Stock 57 Zusammenfassung 14 3.4 Flame retardants 58 Résumé 17 3.4.1 Classification of products 58 Riassunto 20 3.4.1.1 Brominated flame retardants 60 3.4.1.2 Chlorinated flame retardants 60 3.4.2 Trade 61 1 Introduction 23 3.4.3 Production 63 1.1 Geochemical properties and eco-toxicity of 3.4.4 Consumption 64 antimony 23 3.4.5 Stock 65 1.2 The production of antimony 25 1.3 The global consumption of antimony in 2001 27 1.4 The use of antimony 29 4 Results 66 1.5 Summary 31 4.1 Flux of subsystem ‘trade in products’ 67 4.1.1 Flux of metal products 68 4.1.2 Flux of nonmetal products 71 2 Methodical procedures 32 4.1.3 Flux of flame retardants 78 2.1 Definition of processes and products 32 4.2 Flux of subsystem ‘waste management’ 82 2.2 Data sources 34 4.2.1 Collection 83 2.3 Data basis 34 4.2.2 Incineration 83 2.4 Uncertainties and data reliability 36 4.2.3 Landfill 85 4.2.4 Reuse 85 4.2.5 Wastewater treatment 85 3 Scope of application and occurrence 4.2.6 Important waste streams 86 of antimony 37 4.3 Flux of subsystem ‘environment’ 88 3.1 Antimony compounds 37 4.3.1 Atmosphere 88 3.1.1 Classification of major products 37 4.3.2 Hydrosphere 89 3.1.2 Classification of minor products 39 4.3.3 Pedosphere / Lithosphere 89 3.1.3 Trade 40 4.3.4 Biota 90 3.1.4 Production 41 4.4 Flux of substances in the complete system 91 3.1.5 Consumption 41 4.4.1 Data uncertainty 92 3.2 Metal products 41 3.2.1 Classification of products 41 3.2.2 Trade 48 5 Conclusions 95 3.2.3 Production 48 3.2.4 Consumption 49 3.2.5 Stock 49 Index 99 3.3 Nonmetal products 50 Abbreviations 99 Antimony in Switzerland: A substance flow analysis FOEN 2007 4 Figures 100 Tables 101 Bibliography 104 Appendix I 110 Apendix II 141 > Abstracts 5 > Abstracts Increasing quantities of antimony are being used in Switzerland for an ever broader Keywords: range of applications. Antimony is mainly used today in the following types of pro- Antimony ducts: (1) metal products such as batteries and ammunition; (2) non-metal products Material flow analysis such as catalysers and stabilisers in plastics, glass and brake linings; and (3) bromided Lead batteries and chlorinated flame-proofing agents. The material flow analysis in this report is Ammunition primarily based on published data. It describes the products and routes via which Metals antimony was imported into Switzerland, utilised, disposed of and exported, in the Plastics course of 2001. The findings permit an assessment of the quantities of this element Break linings (which has a toxicological profile similar to that of arsenic) that are released into the Flame-proofing agents environment, and the extent to which pollution of the soil with antimony is increasing. Antimon wird in der Schweiz in steigenden Mengen und für immer mehr Verwen- Stichwörter: dungszwecke eingesetzt. Die heutigen Hauptanwendungsgebiete von Antimon sind (1) Antimon Metallprodukte wie Batterien oder Munition, (2) nichtmetallische Produkte wie Kataly- Stoffflussanalyse satoren oder Stabilisatoren in Kunststoffen, Glas oder Bremsbelägen, und (3) bromierte Bleibatterien und chlorierte Flammschutzmittel. Die Stoffflussanalyse beruht hauptsächlich auf Munition Literaturangaben. Sie zeigt für das Jahr 2001, über welche Güter und Wege Antimon in Metalle die Schweiz importiert, gebraucht, entsorgt und exportiert wird. Die Ergebnisse geben Kunststoffe Aufschluss darüber, in welchen Mengen das Element, das ein mit Arsen vergleichbares Bremsbeläge toxikologisches Profil zeigt, in die Umwelt gelangt und wie stark die Belastung der Flammschutzmittel Böden mit Antimon zunimmt. L’antimoine est utilisé en quantité croissante et à des fins de plus en plus diverses en Mots-clés : Suisse. Les domaines d’application les plus fréquents aujourd’hui sont: 1) les produits Antimoine métalliques tels que les piles ou les munitions, 2) les produits non métalliques tels que Analyse des flux de matière les catalyseurs ou les stabilisateurs dans les matières plastiques, le verre ou les revête- Piles au plomb ments de frein et 3) les produits ignifuges bromés et chlorés. La présente analyse des Munitions flux de matière repose principalement sur des données bibliographiques. Elle démontre Métaux par quels canaux et marchandises l’antimoine a été importé en Suisse, utilisé, éliminé et Matières plastiques exporté en 2001. Les résultats révèlent en quelles quantités l’élément – dont le profil Revêtements de frein toxicologique est comparable à celui de l’arsenic – est rejeté dans l’environnement et Agents ignifuges dans quelles proportions la contamination des sols par l’antimoine augmente. Antimony in Switzerland: A substance flow analysis FOEN 2007 6 In Svizzera si sta registrando un aumento dell’impiego di antimonio per un numero Parole chiave: sempre maggiore di applicazioni. Attualmente, i principali settori d’impiego di questo antimonio elemento sono (1) la fabbricazione di prodotti in metallo come batterie o munizioni, (2) analisi dei flussi di sostanza la fabbricazione di prodotti non metallici come catalizzatori o stabilizzatori in materie batterie al piombo plastiche, vetro o pastiglie di freni e (3) la produzione di ritardanti di fiamma bromurati munizioni e clorurati. L’analisi dei flussi di sostanza, basata principalmente sulle pubblicazioni metalli esistenti in tale ambito, indica, in riferimento al 2001, i beni e le vie attraverso cui materie plastiche l’antimonio viene importato, consumato, smaltito ed esportato. I risultati ottenuti pastiglie di freni mostrano le quantità di questo elemento, dal profilo tossicologico comparabile a quello ritardanti di fiamma dell’arsenico, che giungono nell’ambiente, e indicano inoltre l’entità dell’aumento dei carichi di questa sostanza nel suolo. > Foreword 7 > Foreword Antimony is a chemical element that is little known outside of scientific circles. It has been in use for centuries in the area of metals processing, notably for the hardening of lead. Today it is used not only in numerous metal products such as turbines, batteries, ammunition and cables, but also in non-metal products, for example as a catalyser for the polymerisation of plastics and as a flame-proofing agent. The fact that antimony is being used to an ever increasing extent for the manufacture of new products, is present in large quantities in existing products and has a toxicity profile similar to that of arsenic, prompted the Swiss Federal Office for the Environ- ment to commission a material flow analysis for antimony for 2001. The associated tasks proved to be extremely time-consuming and demanding, and it is thanks to the initiative and untiring efforts on the part of Annette Johnson from EAWAG that this project was brought to a successful conclusion. The objectives of the material flow analysis were to identify the most important areas of application for antimony, and to determine how, as well as in which quantities and from which products, this element is released into the environment. The usage pattern identified for Switzerland largely corresponds to that identified in other industrialised countries, and is therefore of importance for other states and international organisations (e.g. the OECD) that want to analyse and reduce their level of chemical risk. This analysis was based on official statistical data, market studies and scientific publi- cations and reports. The Swiss Federal Office for the Environment wishes to express its sincere thanks to everyone who contributed in any way towards the successful conclu- sion of this study. Georg Karlaganis Head of Substances, Soil and Biotechnology Division Federal Office for the Environment (FOEN) Antimony in Switzerland: A substance flow analysis FOEN 2007 8 > Vorwort Antimon ist ein in der breiten Öffentlichkeit wenig bekanntes chemisches Element. Dabei wird es schon seit Jahrhunderten in der Metallverarbeitung verwendet, nament- lich zur Härtung von Blei. Heute wird Antimon nicht nur in zahlreichen Metallproduk- ten wie Turbinen, Batterien, Munition und Kabeln eingesetzt, sondern auch in nicht- metallischen Produkten, beispielsweise als Katalysator für die Polymeration von Kunststoffen oder als Flammschutzmittel. Die zunehmende Verwendung von Antimon zur Herstellung neuer Produkte, die hohen Antimonlager in bestehenden Produkten und ein Toxizitätsprofil, das Ähnlichkeiten zu Arsen aufweist, haben das Bundesamt für Umwelt veranlasst, über Antimon eine Stoffflussanalyse für das Jahr 2001 erstellen zu lassen. Die Arbeiten haben sich als sehr aufwändig und anspruchsvoll erwiesen und es ist der Initiative und Ausdauer von Frau Dr.
Recommended publications
  • Bismuth Antimony Telluride
    ci al S ence Mahajan et al., J Material Sci Eng 2018, 7:4 ri s te & a E M n DOI: 10.4172/2169-0022.1000479 f g o i n l e a e n r r i n u g o Journal of Material Sciences & Engineering J ISSN: 2169-0022 Research Article Article OpenOpen Access Access Study and Characterization of Thermoelectric Material (TE) Bismuth Antimony Telluride Aniruddha Mahajan1*, Manik Deosarkar1 and Rajendra Panmand2 1Chemical Engineering Department, Vishwakarma Institute of Technology, Pune, India 2Centre for Materials Electronics and Technology (C-MET), Dr. Homi Bhabha Road, Pune, India Abstract Thermoelectric materials are used to convert the heat to electricity with no moving parts, in the present work an attempt has been made to prepare it for power generation function. Bismuth antimony telluride nanopowders were prepared by using mechanochemical method. Three different materials; Bismuth Telluride, (Bi0.75Sb0.25)2Te 3 and (Bi0.5Sb0.5)2Te 3 were synthesized. XRD and TEM analysis was carried out to confirm the results. The particle size of the material was determined by using FESEM analysis. The two alloys of Bismuth Telluride such prepared were converted in the pellet form using vacuum hydraulic pressure and their Seebeck coefficients were determined to test the material suitability for its use as a thermoelectric device. Their power factor measurement and Hall effect measurements were carried out at room temperature. Keywords: Bismuth telluride; Mechanochemical method; energy in one form into another. Use of TE solid materials Applications Nanoparticals; Seebeck coefficients in heat pump and refrigeration is well known [14] and it is now expanded such as cooled seats in luxury automobiles [15].
    [Show full text]
  • Itetall IC BROMIDES AS CATALYSTS in THE
    QUANTITATIVE COMPARISON OF ;itETALL IC BROMIDES AS CATALYSTS IN THE FRIED.liL-CRAFTS KETONE SYNTHESIS i QUANTITATIVE COMPARISON OF MET ALLIC BROMIDES AS CATAL YSTS IN THE FRIEDEL-CRAFTS KETONE SYNTHESIS By Peter Taketoshi M,, ori Bachelor of .Arts Park College Parkville, Missouri 1945 Submitted to the Department of Chemistry Oklahoma Agricultural and Mechanical College In partial fulfillment of the r equirement for t he Degree of Master of Science 194'~ ii \ APPROVED BY: Chairman, Thesis Committee Head of the Department ~he~ ( ~uate~~ School 2174~10 iii ACKNOWLEDGEMENT The author wis hes to express his s i neere gr atitude to Dr . O. C. Dermer under whose guidance t his work has been accomplished . He also wi s hes to express hi s a ppreciation to the Chemi stry Department for t he s uppl y of chemicals used. iv TABLE OF CONTENTS "P age Introduction • • l Historical • • • • 2 Experimental • • • • 5 Procadure • • • • • • • • 9 Table of results . • • • • • • • 12 Discussion of results • .. • • • • • • 15 Summary • • • • • • • • 22 Bibliography • • • • • • • • • • 23 Biography • • • • • • • • • • • 25 1 I NTRODCCT ION T~lis is a continuation of the s t udy of catalystf for the Friedel­ Crafts ketone synt hesis star ted by Wilson ( .38 ), a nd continued by Suguj.­ tan (34), Johnson (17), and Billme ier (4). Ma ny metallic chlorides have been used in t his reacti on, but metallic bromides, as cat alyst s, have been rather neelected . It is the purpose of this work to study the ef fectiveness of some of the metallic bromides by following essentially the experimental pro­ cedure of Billmeier (4). 2 HISTORICAL In 1877, the French chemist Friedel and his American colleague Crafts (12) discovered the f amous Friedel-Crafts reaction, which now has s uch great industrial a pplication (7 , 13, 18, 35).
    [Show full text]
  • Design Principles for Oxide Thermoelectric Materials
    University of California Santa Barbara Design principles for oxide thermoelectric materials A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry by Michael W Gaultois Committee in charge: Professor Ram Seshadri, Chair Professor Galen D. Stucky Professor Peter C. Ford Professor Carlos G. Levi March 2015 The Dissertation of Michael W Gaultois is approved. Professor Galen D. Stucky Professor Peter C. Ford Professor Carlos G. Levi Professor Ram Seshadri, Committee Chair March 2015 Design principles for oxide thermoelectric materials Copyright c 2015 by Michael W Gaultois iii Talent is cheap; dedication is expensive. It will cost you your life. { Bertoldo di Giovanni iv Acknowledgements To my teachers and mentors, who have been patiently guiding me to this point. Ram, Andrew, Arthur, I've learned so much from each of you about such different things. Ram, I couldn't hope to find a more supportive mentor to help me develop into a mature scientist. Being a scientist is more than a career, it's a way of life. You have helped me develop scientific aesthetic, and have shown me how to conduct myself in research, and collaborative endeavours. Everything is interesting, but I will continually strive to focus on what is important. To the MeRL, which has been a warm and welcoming home, as well as a dynamic and exuberant research community to belong to. I have discovered what it means to be a part of a research community, and it has been my great pleasure and honor to work with such amazing people, at such an incredible institution.
    [Show full text]
  • Toxic Or Hazardous Substance List
    301 CMR: EXECUTIVE OFFICE OF ENERGY AND ENVIRONMENTAL AFFAIRS 301 CMR 41.00: TOXIC OR HAZARDOUS SUBSTANCE LIST Section 41.01: Authority and Purpose 41.02: Definitions 41.03: Toxic or Hazardous Substance List 41.04: Amendment of the Toxic or Hazardous Substance List 41.05: Designation of Higher and Lower Hazard Substances 41.06: Higher Hazard Substances 41.07: Lower Hazard Substances 41.01: Authority and Purpose (1) Authority. The Administrative Council On Toxics Use Reduction adopts 301 CMR 41.00 pursuant to M.G.L. c. 21I, §§ 4(C) and 9. (2) Purpose. The Administrative Council on Toxics Use Reduction promulgates 301 CMR 41.00 to carry out its authority and responsibility: (a) to promote the coordination and enforcement of federal and state laws and regulations pertaining to toxics production and use, hazardous waste, industrial hygiene, worker safety, public exposure to toxics and the release of toxics into the environment; (b) to coordinate state programs in order to promote, most effectively, toxics use reduction in the Commonwealth; (c) to minimize unnecessary duplication of reporting requirements concerning toxic or hazardous substance production, use, release, disposal, and worker exposure; (d) to provide up-to-date and consistent information about manufacturing, worker exposure, distribution, process, sale, storage, release or other use of toxics on a facility, regional and statewide basis; (e) to adjust the toxic or hazardous substance list under M.G.L. c. 21I, § 9 by adding or deleting substances consistent with the changes on the Toxic Chemical List established pursuant to Section 313 of the Emergency Planning and Community Right-to-Know Act (EPCRA); (f) to adjust the toxic or hazardous substance list under M.G.L.
    [Show full text]
  • Microwave Assisted Synthesis of Thermoelectric Nanostructures
    ROYAL INSTITUTE OF TECHNOLOGY Microwave assisted synthesis of thermoelectric nanostructures: p- and n-type Bi2-xSbxTe3 VIKING ROOSMARK Master of Science Thesis Department of Applied Physics KTH – Royal Institute of Technology Stockholm, Sweden 2018 1 (37) Supervisor Mr. Bejan Hamawandi [email protected] Examiner Prof. Muhammet S. Toprak [email protected] Biomedical and X-Ray Physics KTH/Albanova SE-106 91 Stockholm TRITA-SCI-GRU 2018:416 2 (37) Abstract Improving the way energy can be obtained, is becoming increasingly important from both environmental and economical aspects. Thermoelectric (TE) materials can be a stepping stone in the right direction for better energy management, seeing how they can recycle waste heat and generate electricity from energy that otherwise would be wasted. In recent years TE materials have been the focus of several projects to find materials which can easily and inexpensively be used in devices to harvest heat and produce clean energy, which is aimed by this project. TE nanomaterials based on the Bi2-xSbxTe3 system with different stoichiometry (x) have been synthesized using a bottom-up microwave (MW) assisted synthesis method. Nanopowders have been consolidated with SPS into pellets to examine their TE transport properties. The purpose of the project was to fabricate p- and n-type TE materials with comparable thermal expansion, for the purpose of obtaining a high efficiency TE device with high durability. The MW assisted synthesis shows highly reproducible results with nanopowders having good uniformity with low to none batch to batch variation in the powder composition. One of the most important aspects of this technique is the process speed, the MW heating itself only takes 2-3 min to synthesize the desired TE material using the developed thermolysis route.
    [Show full text]
  • High Refractive Index Immersion Liquid for Super-Resolution 3D Imaging Using Sapphire-Based Anail Optics
    High refractive index immersion liquid for super-resolution 3D imaging using sapphire-based aNAIL optics Junaid M. Laskar1, P. Shravan Kumar2, Stephan Herminghaus1, Karen E. Daniels3, Matthias Schr¨oter1;4 1Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 G¨ottingen,Germany 2Dept. of Physics, IIT Guwahati, Guwahati, Assam, India 3Dept. of Physics, NC State University, Raleigh, NC, USA 4Institute for Multiscale Simulation, Friedrich-Alexander-Universit¨atErlangen-N¨urnberg, Erlangen, Germany (Dated: April 21, 2016) Optically-transparent immersion liquids with refractive index (n ∼ 1:77) to match sapphire-based aplanatic numerical aperture increasing lens (aNAIL) are necessary for achieving deep 3D imaging with high spatial resolution. We report that antimony tribromide (SbBr3) salt dissolved in liquid diiodomethane (CH2I2) provides a new high refractive index immersion liquid for optics applications. The refractive index is tunable from n = 1:74 (pure) to n = 1:873 (saturated), by adjusting either salt concentration or temperature; this allows it to match (or even exceed) the refractive index of sapphire. Importantly, the solution gives excellent light transmittance in the ultraviolet to near- infrared range, an improvement over commercially-available immersion liquids. This refractive index matched immersion liquid formulation has enabled us to develop a sapphire-based aNAIL objective that has both high numerical aperture (NA = 1:17) and long working distance (WD = 12 mm). This opens up new possibilities for deep 3D imaging with high spatial resolution. Copyright 2016 Optical Society of America. One print (phenyldi-iodoarsine (C6H5AsI2) with n = 1:85 and se- or electronic copy may be made for personal use only. lenium monobromide (Se2Br2) with n = 2:1 [10]), di- Systematic reproduction and distribution, duplication iodomethane has the key advantage of being commer- of any material in this paper for a fee or for commercial cially available.
    [Show full text]
  • Material Safety Data Sheet
    LTS Research Laboratories, Inc. Safety Data Sheet Germanium Antimony Telluride ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 1. Product and Company Identification ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Trade Name: Germanium Antimony Telluride Chemical Formula: Ge2Sb2Te5 Recommended Use: Scientific research and development Manufacturer/Supplier: LTS Research Laboratories, Inc. Street: 37 Ramland Road City: Orangeburg State: New York Zip Code: 10962 Country: USA Tel #: 855-587-2436 / 855-lts-chem 24-Hour Emergency Contact: 800-424-9300 (US & Canada) +1-703-527-3887 (International) ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 2. Hazards Identification ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Signal Word: Danger Hazard Statements: H301: Toxic if swallowed H315: Causes skin irritation H319: Causes serious eye irritation H331: Toxic if inhaled H335: May cause respiratory irritation H373: May cause damage to organs through prolonged or repeated exposure Precautionary Statements: P210: Keep away from heat/sparks/open flames/hot surfaces – No Smoking P240: Ground/bond container and receiving equipment P241: Use explosion-proof electrical/ventilating/light/ equipment P261: Avoid breathing dust/fume/vapor P264: Wash thoroughly after handling P280: Wear protective gloves/protective clothing/eye protection/face protection P301+P310: IF SWALLOWED:
    [Show full text]
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]
  • Standard X-Ray Diffraction Powder Patterns
    NBS MONOGRAPH 25—SECTION 4 Standard X-ray Diffraction Powder Patterns U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and mainte- nance of the national standards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be necessary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifi- cations advisory service to government agencies on scientific and technical problems ; invention ; and development of devices to serve special needs of the Government; assistance to industry, business, and consumers m the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, technical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its three Institutes and their organizatonal units. Institute for Basic Standards. Applied Mathematics. Electricity. Metrology. Mechanics. Heat. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radiation Phys- ics. Radio Standards Laboratory:* Radio Standards Physics; Radio Standards Engineering. Office of Standard Reference Data. Institute for Materials Research.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • High-Yield Synthesis of Single-Crystalline Antimony Telluride Hexagonal Nanoplates Using a Solvothermal Approach Wenzhong Wang,* Bed Poudel, Jian Yang, D
    Published on Web 09/17/2005 High-Yield Synthesis of Single-Crystalline Antimony Telluride Hexagonal Nanoplates Using a Solvothermal Approach Wenzhong Wang,* Bed Poudel, Jian Yang, D. Z. Wang, and Z. F. Ren* Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467 Received July 20, 2005; E-mail: [email protected]; [email protected] There is a growing interest in nanostructured thermoelectric (TE) materials since both theoretical predictions1,2 and experimental results3,4 suggest that large improvements in figure-of-merit (ZT) could be achieved in nanostructured systems. If the ZT is improved to be ∼3, then TE coolers and power generators will become competitive with conventional compressor-based refrigerators and 5 power sources. Antimony telluride (Sb2Te3) belongs to layered semiconductors with tetradymite structure. This compound and its doped derivatives are considered to be the best candidates for near room-temperature TE applications.6 For instance, specially con- structed Bi2Te3/Sb2Te3 superlattices were reported to exhibit a ZT of ∼2.4 at room temperature.6 However, so far, there are only a few reports on the synthesis of polycrystalline Sb2Te3 nanowires using electrochemical deposition into the channels of the porous anodic alumina membrane.7It is therefore essential to develop an alternative approach to prepare a large quantity of nanosized single- crystalline Sb2Te3 materials to meet the demand of high- performance TE applications. Although various chemical methods have so far been developed to prepare nanostructured materials with different platelike shapes, these methods mainly focus on the fabrication of metal nanostruc- tured materials, such as Ag nanoplates,8,9 Ag nanodisks,10,11 Au 12 13-15 nanodisks, Au nanoplates.
    [Show full text]
  • The Par Infrared Spectra Op Several Pyramidal
    THE PAR INFRARED SPECTRA OP SEVERAL PYRAMIDAL TRIHALIDES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Gradxiate School of The Ohio State University By / PHILIP DAVIS, B. Sc. The Ohio State University 1954 Approved by: Adviser ACKNOWLEDGEMENT I 3hould. like to express my appreciation to Dr. Robert A. Oetjen and to Dr. Ely E. Bell for their guidance and patience during the course of this work. The ever­ present aid of the indefatigable Raymond L. Brown and Edward D. Palik of this laboratory was of great assistance to me throughout the time the work was in progress. I am indebted to The Ohio State University Research Foundation for allowing me a Fellowship for the year 1952- 53 and to the Wright Air Development Center for permitting me to use the far infrared spectrometer to carry out this investigation. Finally the excellent work of Mr. Carl McWhirt and the staff of the Physics Department shop is gratefully acknowledged. iii TABLE OB1 CONTENTS Introduction................. 1 H i s t o r y ............ 3 Experimental Procedure .............................. 6 Instrumentation ................... 6 Samples ................. 1 5 Cells ........... 1 6 Theory ............... .......... ......... 26 Group Theory ........... ........... 26 Normal Vibrations ..... ................. 43 Experimental Results ................................ 55 Phosphorus Trichloride ....................... 55 Arsenic Trichloride .......................... 62 Phosphorus Tribromide .......................
    [Show full text]