BMC Genomics) Ainsi Que La Ressource Web Développée Et La Description Des Étapes Suivies Pour Traiter Les Données

Total Page:16

File Type:pdf, Size:1020Kb

BMC Genomics) Ainsi Que La Ressource Web Développée Et La Description Des Étapes Suivies Pour Traiter Les Données N° d’ordre: 00000 Université d’Evry-Val d’Essonne THÈSE Présentée pour obtenir le grade de Docteur en Informatique Spécialité : Bio-Informatique par Ana Carolina Elisa FIERRO GUTIERREZ École Doctorale : Des Génomes aux Organismes Exploitation de données de séquences et de puces à ADN pour l’étude du transcriptome À soutenir le 20 novembre 2007, devant le jury composé de : Tijl De Bie Rapporteur Philippe Dessen Rapporteur Pascal Barbry Examinateur Kathleen Marchal Examinatrice Maurice Wegnez Examinateur Gilles Bernot Co-directeur de thèse Nicolas Pollet Co-directeur de thèse Remerciements 2 Introduction Le génome d’une espèce est un « invariant fondamental » qui véhicule une information transmise de génération en génération, assurant la production des macromolécules biologiques nécessaires à la physiologie des organismes. D’un point de vue moléculaire, l’expression du génome passe par la transcription de l’ADN en ARNs, intermédiaires obligatoires permettant la synthèse des macromolécules biologiques. Par conséquent, mesurer le nombre et le type de molécules d’ARN révèle des indices sur la fonction des gènes correspondants. Au cours des deux dernières décades, différentes techniques ont été développées pour réaliser de telles mesures à l’échelle du génome, car l’approche transcriptomique est plus simple que l’étude directe de l’expression de gènes à travers la quantification de protéines. Cependant, le transcriptome possède un niveau de complexité qui était sous-évalué à l’initiation de ce type d’études. Des expériences de séquençage massif d’ADNc et d’études du transcriptome à haut débit ont mis en évidence ce niveau de complexité qui comprend l’épissage alternatif, les ARN non-codants, les microARNs, entre autres. Par ailleurs, les puces à ADN ont contribué substantiellement à la génomique fonctionnelle car elles ont permis d’acquérir de nombreuses mesures qui donnent des indices sur l’expression des gènes. Elles constituent de nos jours l’un des moyens préférés pour des études « high-throughput ». L’objectif de ce travail a été d’analyser le transcriptome dans le contexte biologique de la métamorphose de Xenopus tropicalis, afin de remplir les absences d’information existantes en utilisant de façon optimale les ressources disponibles. Ainsi cette thèse est une illustration bio-informatique appliquée et montre plusieurs aspects des méthodologies contemporaines. Xenopus tropicalis est devenu un organisme modèle pour la génomique chez les amphibiens, car il a un génome plus simple que le modèle classique Xenopus laevis. Au début de cette thèse les ressources étaient encore très limitées, mais pendant ces dernières années plus d’un million de séquences d’ESTs ont été mises à disponibilité et le génome de cet organisme est en cours de séquençage. Cependant, le système nerveux ainsi que la métamorphose restent encore à explorer, raison pour laquelle deux techniques servant à analyser ce transcriptome ont été utilisées : le séquençage partiel d’ADNc (ESTs) qui se base sur des séquences et les puces à ADN qui est une méthode basée sur des hybridations. Le premier chapitre introduit les techniques les plus utilisées pour l’étude du transcriptome à grande échelle. Le séquençage d’ADNc et les puces à ADN sont décrites plus en détail avec pour objectif de présenter le mode d’obtention des données expérimentales. Le but de ce chapitre est de décrire les concepts nécessaires pour comprendre les analyses décrites par la suite. Le deuxième chapitre présente l’utilité des séquences d’ADNc pour l’analyse du transcriptome de Xenopus tropicalis. Plus particulièrement, le système nerveux pendant l’embryogenèse et la métamorphose est exploré afin de produire une ressource pour la génomique fonctionnelle de cet organisme. Ce chapitre décrit l’analyse biologique (article publié dans BMC Genomics) ainsi que la ressource web développée et la description des étapes suivies pour traiter les données. Le troisième chapitre montre l’usage des puces à ADN pour étudier l’expression des gènes au cours de la métamorphose du X. tropicalis. Nous décrivons les défis bio-informatiques trouvés au cours de cette étude ainsi que la problématique biologique. 3 Le quatrième chapitre porte sur l’utilisation des différentes stratégies expérimentales de puces à ADN et la reconstruction des profils d’expression. Les avantages potentiels d’utiliser des stratégies alternatives dépendent largement du succès de la reconstruction du profil. Il est donc nécessaire d’évaluer les méthodes d’analyse des puces à ADN, afin de déterminer laquelle des approches est la meilleure. L’étude menée pour comparer les méthodes de reconstruction des profils d’expression à partir de plans d’expériences complexes est présentée (article soumis dans BMC Bioinformatics). Le dernier chapitre offre une revue concernant les ESTs, les puces à ADN et l’état de l’art sur l’intégration des données provenant de ces techniques. Les bases de données publiques ouvrent la voie à l’intégration, afin d’exploiter de façon optimale les ressources transcriptionnelles qu’un laboratoire de recherche peut obtenir. Le chapitre décrit trois voies d’intégration: l’intégration de données produites par plusieurs laboratoires ou groupes de recherche, l’intégration des données entre multiples organismes, et l’intégration avec une multiplicité d’autres sources, comme des données ChIP-on-chip, des études d’interactions de protéines, des recherches de motifs, etc. Formée comme ingénieur civil spécialisé en informatique diplômée de l’Universidad de Chile (Chili), je suis venue étudier en France dans le cadre du DEA « Applications des Mathématiques et de l'Informatique à la Biologie » (Génopole). A l’issue de cette formation, j’ai choisi de continuer mes études et d’entreprendre une thèse de Doctorat. Ce travail a été conçu d’une façon pluridisciplinaire, avec un co-encadrement informatique et biologique pour aborder le sujet. Le travail a été effectué dans le laboratoire du Programme d’Epigénomique à Evry (G. Bernot) pour la partie informatique et le laboratoire Développement et Evolution à Orsay (N. Pollet) où j’ai acquis les connaissances biologiques et j’ai appris les besoins informatiques du côté biologiste. Ce laboratoire a aussi apporté les données analysées dans cette thèse. Finalement, un stage dans l’équipe bioinformatique de Kathleen Marchal, au Department of Microbial and Molecular Sciences, à la Katholieke Universiteit Leuven (Belgique), m’a permis d’approfondir mes connaissances sur les méthodes d’analyse de puces à ADN et mener l’étude comparative présentée dans cette thèse. 4 Table des matières CHAPTER 1: LARGE-SCALE TECHNIQUES TO EXPLORE THE TRANSCRIPTOME ..................................................................................7 1.1 Large-scale techniques .................................................................................................... 8 1.2 Partial cDNA sequencing : Expressed Sequence Tags (ESTs).. 9 1.3 Microarray technology..................................................................................................... 12 1.3.1 Two-channel arrays.............................................................................................. 12 1.3.2 Single-channel arrays ........................................................................................... 13 1.3.3 Experimental design............................................................................................. 14 1.3.4 Microarray analysis.............................................................................................. 16 CHAPTER 2: EXPLORING THE TRANSCRIPTOMES USING ESTS ..21 2.1 Exploring the nervous system transcriptomes during embryogenesis and metamorphosis in Xenopus tropicalis using EST analysis ............................................................................................................................................ 22 2.2 XTScope: Xenopus tropicalis EST, a web resource for the nervous system .................................................................................................................................... 36 Database content and data production.................................................................................. 36 Implementation and Architecture......................................................................................... 39 Web interface ....................................................................................................................... 40 Extensions ............................................................................................................................ 43 Conclusion............................................................................................................................ 43 CHAPTER 3: MICROARRAYS TO STUDY THE TRANSCRIPTOME ..45 3.1 Bioinformatic issues ......................................................................................................... 46 Experimental design............................................................................................................. 46 Analysis steps for the microarray experiment...................................................................... 47 3.2 Xenopus tropicalis metamorphosis transcriptomes analysis using microarrays .............................................................................................................................. 51 CHAPTER 4: EVALUATION OF TIME PROFILE RECONSTRUCTION FROM COMPLEX TWO-COLOR MICROARRAY DESIGNS................83 CHAPTER 5 : FROM GENE EXPRESSION PROFILES TOWARDS
Recommended publications
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Long Noncoding Rnas in Lipid Metabolism
    Long noncoding RNAs in lipid metabolism: literature review and conservation analysis across species Kévin Muret, Colette Désert, Laetitia Lagoutte, Morgane Boutin, Florence Gondret, Tatiana Zerjal, Sandrine Lagarrigue To cite this version: Kévin Muret, Colette Désert, Laetitia Lagoutte, Morgane Boutin, Florence Gondret, et al.. Long noncoding RNAs in lipid metabolism: literature review and conservation analysis across species. BMC Genomics, BioMed Central, 2019, 20, pp.882. 10.1186/s12864-019-6093-3. hal-02387579 HAL Id: hal-02387579 https://hal.archives-ouvertes.fr/hal-02387579 Submitted on 29 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Muret et al. BMC Genomics (2019) 20:882 https://doi.org/10.1186/s12864-019-6093-3 REVIEW Open Access Long noncoding RNAs in lipid metabolism: literature review and conservation analysis across species Kevin Muret1, Colette Désert1, Laetitia Lagoutte1, Morgane Boutin1, Florence Gondret1, Tatiana Zerjal2 and Sandrine Lagarrigue1* Abstract Background: Lipids are important for the cell and organism life since they are major components of membranes, energy reserves and are also signal molecules. The main organs for the energy synthesis and storage are the liver and adipose tissue, both in humans and in more distant species such as chicken.
    [Show full text]
  • Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham a Thesis Submitted in Conformity
    Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Molecular Genetics University of Toronto © Copyright by Edward James Higginbotham 2020 i Abstract Characterizing Genomic Duplication in Autism Spectrum Disorder Edward James Higginbotham Master of Science Graduate Department of Molecular Genetics University of Toronto 2020 Duplication, the gain of additional copies of genomic material relative to its ancestral diploid state is yet to achieve full appreciation for its role in human traits and disease. Challenges include accurately genotyping, annotating, and characterizing the properties of duplications, and resolving duplication mechanisms. Whole genome sequencing, in principle, should enable accurate detection of duplications in a single experiment. This thesis makes use of the technology to catalogue disease relevant duplications in the genomes of 2,739 individuals with Autism Spectrum Disorder (ASD) who enrolled in the Autism Speaks MSSNG Project. Fine-mapping the breakpoint junctions of 259 ASD-relevant duplications identified 34 (13.1%) variants with complex genomic structures as well as tandem (193/259, 74.5%) and NAHR- mediated (6/259, 2.3%) duplications. As whole genome sequencing-based studies expand in scale and reach, a continued focus on generating high-quality, standardized duplication data will be prerequisite to addressing their associated biological mechanisms. ii Acknowledgements I thank Dr. Stephen Scherer for his leadership par excellence, his generosity, and for giving me a chance. I am grateful for his investment and the opportunities afforded me, from which I have learned and benefited. I would next thank Drs.
    [Show full text]
  • A Novel 2.3 Mb Microduplication of 9Q34. 3 Inserted Into 19Q13. 4 in A
    Hindawi Publishing Corporation Case Reports in Pediatrics Volume 2012, Article ID 459602, 7 pages doi:10.1155/2012/459602 Case Report A Novel 2.3 Mb Microduplication of 9q34.3 Inserted into 19q13.4 in a Patient with Learning Disabilities Shalinder Singh,1 Fern Ashton,1 Renate Marquis-Nicholson,1 Jennifer M. Love,1 Chuan-Ching Lan,1 Salim Aftimos,2 Alice M. George,1 and Donald R. Love1, 3 1 Diagnostic Genetics, LabPlus, Auckland City Hospital, P.O. Box 110031, Auckland 1148, New Zealand 2 Genetic Health Service New Zealand-Northern Hub, Auckland City Hospital, Private Bag 92024, Auckland 1142, New Zealand 3 School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand Correspondence should be addressed to Donald R. Love, [email protected] Received 1 July 2012; Accepted 27 September 2012 Academic Editors: L. Cvitanovic-Sojat, G. Singer, and V. C. Wong Copyright © 2012 Shalinder Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Insertional translocations in which a duplicated region of one chromosome is inserted into another chromosome are very rare. We report a 16.5-year-old girl with a terminal duplication at 9q34.3 of paternal origin inserted into 19q13.4. Chromosomal analysis revealed the karyotype 46,XX,der(19)ins(19;9)(q13.4;q34.3q34.3)pat. Cytogenetic microarray analysis (CMA) identified a ∼2.3Mb duplication of 9q34.3 → qter, which was confirmed by Fluorescence in situ hybridisation (FISH).
    [Show full text]
  • Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors
    University of Cincinnati Date: 12/20/2010 I, Arturo R Maldonado , hereby submit this original work as part of the requirements for the degree of Doctor of Philosophy in Developmental Biology. It is entitled: Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors Student's name: Arturo R Maldonado This work and its defense approved by: Committee chair: Jeffrey Whitsett Committee member: Timothy Crombleholme, MD Committee member: Dan Wiginton, PhD Committee member: Rhonda Cardin, PhD Committee member: Tim Cripe 1297 Last Printed:1/11/2011 Document Of Defense Form Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors A dissertation submitted to the Graduate School of the University of Cincinnati College of Medicine in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (PH.D.) in the Division of Molecular & Developmental Biology 2010 By Arturo Rafael Maldonado B.A., University of Miami, Coral Gables, Florida June 1993 M.D., New Jersey Medical School, Newark, New Jersey June 1999 Committee Chair: Jeffrey A. Whitsett, M.D. Advisor: Timothy M. Crombleholme, M.D. Timothy P. Cripe, M.D. Ph.D. Dan Wiginton, Ph.D. Rhonda D. Cardin, Ph.D. ABSTRACT Since 1999, cancer has surpassed heart disease as the number one cause of death in the US for people under the age of 85. Malignant Peripheral Nerve Sheath Tumor (MPNST), a common malignancy in patients with Neurofibromatosis, and colorectal cancer are midkine- producing tumors with high mortality rates. In vitro and preclinical xenograft models of MPNST were utilized in this dissertation to study the role of midkine (MDK), a tumor-specific gene over- expressed in these tumors and to test the efficacy of a MDK-transcriptionally targeted oncolytic HSV-1 (oHSV).
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • The Role and Robustness of the Gini Coefficient As an Unbiased Tool For
    www.nature.com/scientificreports OPEN The role and robustness of the Gini coefcient as an unbiased tool for the selection of Gini genes for normalising expression profling data Marina Wright Muelas 1*, Farah Mughal1, Steve O’Hagan2,3, Philip J. Day3,4* & Douglas B. Kell 1,5* We recently introduced the Gini coefcient (GC) for assessing the expression variation of a particular gene in a dataset, as a means of selecting improved reference genes over the cohort (‘housekeeping genes’) typically used for normalisation in expression profling studies. Those genes (transcripts) that we determined to be useable as reference genes difered greatly from previous suggestions based on hypothesis-driven approaches. A limitation of this initial study is that a single (albeit large) dataset was employed for both tissues and cell lines. We here extend this analysis to encompass seven other large datasets. Although their absolute values difer a little, the Gini values and median expression levels of the various genes are well correlated with each other between the various cell line datasets, implying that our original choice of the more ubiquitously expressed low-Gini-coefcient genes was indeed sound. In tissues, the Gini values and median expression levels of genes showed a greater variation, with the GC of genes changing with the number and types of tissues in the data sets. In all data sets, regardless of whether this was derived from tissues or cell lines, we also show that the GC is a robust measure of gene expression stability. Using the GC as a measure of expression stability we illustrate its utility to fnd tissue- and cell line-optimised housekeeping genes without any prior bias, that again include only a small number of previously reported housekeeping genes.
    [Show full text]
  • Supporting Information
    Supporting information RNA-Seq reveals conservation of function among the yolk sacs of human, mouse and chicken Tereza Cindrova-Davies, Eric Jauniaux, Michael Elliot, Sungsam Gong, Graham J Burton, D. Stephen Charnock-Jones Methods Proteomics. 1D gel lanes were cut into 8 bands and each band was transFerred into a 96- well PCR plate. The bands were cut into 1mm2 pieces, destained, reduced (DTT) and alkylated (iodoacetamide) and subjected to enzymatic digestion with trypsin overnight at 37°C. After digestion, the supernatant was pipetted into a sample vial and loaded onto an autosampler For automated LC-MS/MS analysis. All LC-MS/MS experiments were perFormed using a Dionex Ultimate 3000 RSLC nanoUPLC (Thermo Fisher ScientiFic Inc, Waltham, MA, USA) system and a QExactive Orbitrap mass spectrometer (Thermo Fisher ScientiFic Inc, Waltham, MA, USA). Separation oF peptides was perFormed by reverse-phase chromatography at a Flow rate of 300 nL/min and a Thermo ScientiFic reverse-phase nano Easy-spray column (Thermo ScientiFic PepMap C18, 2µm particle size, 100Å pore size, 75µm i.d. x 50cm length). Peptides were loaded onto a pre- column (Thermo ScientiFic PepMap 100 C18, 5µm particle size, 100Å pore size, 300µm i.d. x 5mm length) From the Ultimate 3000 autosampler with 0.1% Formic acid For 3 minutes at a Flow rate oF 10 µL/min. After this period, the column valve was switched to allow elution oF peptides from the pre-column onto the analytical column. Solvent A was water + 0.1% Formic acid and solvent B was 80% acetonitrile, 20% water + 0.1% Formic acid.
    [Show full text]
  • Host Protein Interactions
    scientificscientificreport report Structure homology and interaction redundancy for discovering virus–host protein interactions Benoıˆt de Chassey 1,Laure`ne Meyniel-Schicklin 2,3, Anne Aublin-Gex 2,3, Vincent Navratil 2,3,w, Thibaut Chantier 2,3, Patrice Andre´1,2,3 &VincentLotteau2,3+ 1Hospices Civils de Lyon, Hoˆpital de la Croix-Rousse, Laboratoire de virologie, Lyon , 2Inserm, U1111, Lyon , and 3Universite´ de Lyon, Lyon, France Virus–host interactomes are instrumental to understand global purification coupled to mass spectrometry, led to the publication perturbations of cellular functions induced by infection and of the first virus–host interactomes [3–4]. Although incorporation discover new therapies. The construction of such interactomes is, of data from different methods or variation of the same method [5] however, technically challenging and time consuming. Here we has improved the quality of the data sets, diversification of describe an original method for the prediction of high-confidence methods is still clearly needed to generate high-quality interactions between viral and human proteins through comprehensive virus–host interactomes. In addition, regarding a combination of structure and high-quality interactome data. the size of host genome and the huge diversity of viruses, millions Validation was performed for the NS1 protein of the influenza of binary interactions remain to be tested. Therefore, accurate and virus, which led to the identification of new host factors that rapid methods for the identification of cellular interactors control viral replication. controlling viral replication is a major issue and a crucial step Keywords: interactome; prediction; protein interaction; towards the selection of original therapeutic targets and drug structure; virus development.
    [Show full text]
  • Distinct Transcriptomes Define Rostral and Caudal 5Ht Neurons
    DISTINCT TRANSCRIPTOMES DEFINE ROSTRAL AND CAUDAL 5HT NEURONS by CHRISTI JANE WYLIE Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation Advisor: Dr. Evan S. Deneris Department of Neurosciences CASE WESTERN RESERVE UNIVERSITY May, 2010 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of ______________________________________________________ candidate for the ________________________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. TABLE OF CONTENTS TABLE OF CONTENTS ....................................................................................... iii LIST OF TABLES AND FIGURES ........................................................................ v ABSTRACT ..........................................................................................................vii CHAPTER 1 INTRODUCTION ............................................................................................... 1 I. Serotonin (5-hydroxytryptamine, 5HT) ....................................................... 1 A. Discovery..............................................................................................
    [Show full text]
  • The in Vivo Endothelial Cell Translatome Is Highly Heterogeneous Across Vascular Beds
    bioRxiv preprint doi: https://doi.org/10.1101/708701; this version posted July 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. In vivo endothelial cell heterogeneity The in vivo endothelial cell translatome is highly heterogeneous across vascular beds Audrey C.A. Cleuren1, Martijn A. van der Ent2, Hui Jiang3, Kristina L. Hunker2, Andrew Yee1*, David R. Siemieniak1,4, Grietje Molema5, William C. Aird6, Santhi K. Ganesh2,7 and David Ginsburg1,2,4,7,8,§ 1Life Sciences Institute, 2Department of Internal Medicine, 3Department of Biostatistics, 4Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA, 5Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands, 6Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA, 7Department of Human Genetics and 8Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA * Current address: Department of Pediatrics, Baylor College of Medicine, Houston, TX § Corresponding author; email [email protected] Running title: in vivo endothelial cell heterogeneity Key words: endothelial cells, RiboTag, gene expression profiling, RNA sequencing Cleuren et al. 1 bioRxiv preprint doi: https://doi.org/10.1101/708701; this version posted July 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.
    [Show full text]
  • A Novel Approach to Identification of Diagnostic Markers In
    A NOVEL APPROACH TO IDENTIFICATION OF DIAGNOSTIC MARKERS IN PROSTATE CANCER by INNA SHYSHYNOVA Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Adviser: Professor Andrei Gudkov Department of Biochemistry CASE WESTERN RESERVE UNIVERSITY August, 2006 iii TABLE OF CONTENTS CHAPTER .................................................................................................................. PAGE A NOVEL APPROACH TO IDENTIFICATION OF DIAGNOSTIC MARKERS IN PROSTATE CANCER ...........................................................................................1 TABLE OF CONTENTS.................................................................................................. IV LIST OF FIGURES .......................................................................................................... IX LIST OF TABLES............................................................................................................ XI ACKNOWLEDMENTS .................................................................................................XIII LIST OF ABBREVIATIONS........................................................................................ XIV I. INTRODUCTION ...................................................................................................1 1. Tumor markers.............................................................................................1 2. The prostate..................................................................................................5
    [Show full text]