About the Author

Total Page:16

File Type:pdf, Size:1020Kb

About the Author About the Author Dr. Steven H. Voldman received his B.S. in Eng. Science from the Univ. of Buffalo (1979); M.S. EE (1981) and Electrical Engineer Degree (1982) from M.I.T; MS Eng. Physics (1986) and Ph.D EE (1991) from the Univ. of Vermont under IBM’s Resident Study Fellow program. At M.I.T, he worked as a member of the M.I.T. Plasma Fusion center, and the High Voltage Research Laboratory (HVRL). At IBM, as a reliability/device engineer, his work included pioneering work in bipolar/CMOS SRAM alpha particle and cosmic ray SER simulation, MOSFET gate-induced drain leakage (GIDL) mechanism, hot electron, epitaxy/well design, CMOS latchup, and ESD. Since 1986, he was responsible for defining the IBM ESD/latchup strategy for CMOS, SOI, BiCMOS and RF CMOS and SiGe technologies. He has authored ESD and latchup publications in the area of MOSFET scaling, device simulation, Copper, low-k, MR heads, CMOS, SOI, SiGe and SiGeC technology. Voldman served as SEMATECH ESD Working Group Chairman (1996–2000), ESD Association Technical Program Chair (2000), Vice Chairman (2001), General Chairman 2002, and ESDA Board of Directors (1998–2004), International Reliability Physics (IRPS) ESD/Latchup Sub-Committee Chairman (2002–2004), International Physical and Failure Analysis (IPFA) Symposium ESD Sub-Committee Chair- man (2003–2005), ESD Association Standard Development Chairman on Transmission Line Pulse Testing (2000–2004), ESD International Committee on Education (ICE) Asian Uni- versity Liason and ‘‘ESD on Campus’’ university lecture program founder, and serves on the Electrical Overstress/Electrostatic Discharge (EOS/ESD), Taiwan ESD Conference (T-ESDC), Bipolar Circuit Technology Meeting (BCTM), and the International Conference on Electro- magnetic Compatibility (ICEMAC, Taipei, Taiwan) technical program committees. Voldman has provided ESD lectures for universities and institutions in the United States, Singapore, Malaysia, Taiwan and China. He is a recipient of over 144 US patents, over 125 publications, and recently wrote a first textbook on ESD entitled ESD: Physics and Devices, a third textbook ESD:RF Technology and Circuits, as well as a contributor to the text Silicon Germanium: Modeling, Technology and Simulation. Voldman also provides talks on patenting, and invention to corporations and inventors. He has been highlighted in EE Times, Intellectual Property Law and Business and authored the first article on ESD phenomena for the Oct. 2002 edition of Scientific American entitled ‘‘Lightning Rods for Nanoelectronics,’’ and Pour La Science, Le Scienze, and Swiat Nauk international editions. In 2003, Dr. Voldman was accepted as the first IEEE Fellow for ESD phenomena in semiconductors for ‘‘contributions to electrostatic discharge protection in CMOS, SOI and SiGe technologies.’’ Acknowledgments I would like to thank the individuals who have helped me in my academic and professional career path. The academic foundation gave me the ability to cross from physics to circuits and to address the field of electrostatic discharge (ESD) in ESD protection circuitry. Faculty from the University of Buffalo, Massachusetts Institute of Technology, and University of Vermont had significant impact on my direction and interest in the area of continuum mechanics, continuum electro-mechanics, electrostatics, semiconductors, field theory, sys- tems, and circuits as well as mathematics and physics. I am indebted to the Engineering Science, Physics Department, and Electrical Engineering curriculums at the University of Buffalo for support and interest in the thermal, mechanical, and electrical sciences; faculty includes Professor Irving Shames, Professor Herbert Reismann, Professor Stephen Margolis, Professor J. J. Whalen, Professor R. K. Kaul, Professor Reichert, and others. At Massachusetts Institute of Technology, I am indebted to the Electrical Engineering (EE) Department, Nuclear Engineering Department, the Physics Department, M.I.T. Plasma Fusion Center, and M.I.T. High-Voltage Research Laboratory (HVRL) for the support in the area of plasma physics, electrodynamics, electrostatics, and semiconductors. The faculty of Professor James R. Melcher, Professor Markus Zahn, Professor Cliff Fonstad, Professor Louis D. Smullin, Professor J. A. Kong, Professor David Epstein, and Professor C. Cook as well as other EE faculty contributed to my understanding of the continuum electro-mechanics, electrostatics, and semiconductors in the area of technical material, course material development, education, and educational texts. As an M.I.T. graduate student teaching assistant, I was fortunate to be able to observe and participate in the teaching of semiconductor devices and circuits under the undergraduate semiconductor course 6.012 with Professor Cliff Fonstad, Professor David Epstein, Professor Wyatt, and Professor Hank Smith. At the University of Vermont, I was able to continue many additional courses in the area of semiconductors, circuits, microprocessors, and system theory under faculty members of R. L. Anderson and S. Titcomb. This allowed me to continue to grow in the area of semiconductor physics, integrated circuit technology, and circuits. At IBM, I was fortunate to have many mentors and friends from IBM Burlington Vermont, IBM East Fishkill, IBM T. J. Watson Research Center, as well as circuit designers from IBM Poughkeepsie, IBM Rochester, IBM Austin, IBM FSD Manassas, Kingston, IBM Endicott, IBM Raleigh, IBM Boeblingen, IBM Singelfingen, and IBM Essonnes. For this text, the ESD learning came from collaborating and working with IBM circuit teams, ESD test laboratory, and failure analysis engineers from Bipolar SRAMs, CMOS DRAMs, CMOS xxvi ACKNOWLEDGMENTS SRAMs, bulk CMOS and SOI microprocessors, ASIC development, and today in the field of mixed signal RF CMOS and RF BiCMOS Silicon Germanium semiconductor chips. The ESD circuit learning was driven by the creative interaction of one semiconductor device engineer and a very large global circuit design community whose products became the opportunity to demonstrate ESD success or ESD failure. I would like to thank the circuit designers, I/O teams, ESD test laboratory, and failure analysis engineers where together we learned the interaction and issues of ESD in semiconductor chips—Roy Flaker (bipolar and CMOS SRAM), Jack Gersbach (bipolar SRAM), Russel Houghton (SRAM), Jeffery Chu (SRAM), Richard Parent (4Mb-DRAM), Howard Kalter (16-Mb DRAM), H. S. Lee (CMOS SRAM), David Pricer, Thomas Maffit (16-Mb DRAM), Jeffery Dreibelbis (16-Mb DRAM), Charles Drake (16-Mb DRAM), David Hui (CMOS Server Division I/O), Daniel Dreps (CMOS ASIC, and CPU), Robert Williams (CMOS AS-400 CPU), Daniel Young (CMOS AS-400 CPU), John Bialas (PowerPC 601þ), Roger Gregor (CMOS ASICs), Harold Pilo (CMOS SRAM), Geordie Braceras (CMOS SRAM), John Connors (CMOS SRAM), Tony Correale (PowerPC Embedded Controllers), Douglas Stout (ASIC I/O), Ron Piro (ASIC I/O), Jeffery Sloan (ASIC), James Pequignot (ASIC), Francis Chan (ASIC), Sam Ray (Disk Drive), Stephen Ames (Optical Interconnect), Lloyd Walls (Austin CPU), Anthony Bonnaccio (Bipolar Specials), and others. Outside of IBM, I am indebted to circuit designers and the microprocessors teams whom I had an opportunity to work with: Motorola/IBM PowerPC 602, 603, 604, 620, 640 teams (lead: Gianfranco Gerosa), AMD K6 team (lead: Don Draper and Stephen Beebe), the Digital Alpha team (lead: Larry Baer), the Compaq Alpha team (lead: Warren Anderson), NEXGEN x386 and x486 teams (lead: Don Draper), the TRANSMETA Scorpion, and Tarantula microprocessor teams (lead: Mark Johnson), IDT microprocessors, Sun microprocessors (lead: Avi Leibenmensch), and the Cyrix x86 teams in development of floor planning, circuits, and ESD devices. In the ESD laboratory, I would like to thank Vaughn Gross, Christine Blakemore, Rebecca Ryan, Josee Coutinho, Matt Hausmann, Ernie Goodrich, and Richard Serafin for HBM, MM, and TLP testing support. For years of ESD test site and design support, I would like to thank Joann Howard of IBM. I would like to thank the IBM failure analysis team for years of diagnosing ESD failures to assist in the ESD learning process on SEM, TEM, EMMI, AFM, and PICA tools: James Never, Peter Czahor, Ted Regula, Jim Pecozzi, David Vallet, Ted Levin, Phil Kaszuba, Dick Ross, and all the others. In the semiconductor development, I would also like to thank peers and co-workers in the Bipolar, CMOS, and Silicon Germanium teams: Michael Hargrove, James Slinkman, Stephen Furkay, Jeffery B. Johnson, Stephen Geissler, Toshi Furukawa, Jim Nakos, Jim Adkisson, Terry Hook, and Chris Long. I would like to thank my managers Richard Ross, John Hiltebeitel, Jim McNichol, Mark Hakey, Jim Dunn, and Stephen St. Onge in the support of my ESD and latchup work. I was fortunate for the last 23 years to have the advice and counsel of many IBM engineers and scientists. I was very fortunate to interact and have as semiconductor mentors and guidance from my first years at IBM: Ron Troutman, Wendell Noble, Badih El-Kareh, Ed Nowak, Eric Adler, George Sai-Halasz, Tak Ning, Denny Tang, Robert Dennard, Matt Wordeman, Jack Y.-C. Sun, John Aitkens, Paul Bakeman, Andre LeBlanc, Andre Forcier, Bruno Aimi, Charles Stapper, and Peter Cottrell. For publication support, I would like to thank Dorie Gentes of IBM Technical Communications for 20 years of publication editing and support. Additionally, I would like to thank the IBM Burlington patent legal team for years of support and teaching about ESD patents. ACKNOWLEDGMENTS xxvii In the ESD discipline,
Recommended publications
  • ESD) • Styrofoam Cups Safety Guidelines 3
    common materials, often found in business and laboratory environments, are all sources of static electricity: • common plastic bags • common types of mending and packing tape • paperwork • common untreated plastic materials Electrostatic Discharge (ESD) • styrofoam cups Safety Guidelines 3. Types of ESD Damage Copyright © 2007 Dialogic Corporation. All rights reserved. Static damage to components can take the form of upset failures or catastrophic failures. 1. Introduction Upset Failure Electrostatic Discharge, or ESD, is defined as the transfer of charge between bodies at different electrical potentials. Upset failures occur when an electrostatic discharge has caused a current flow that is not significant enough to cause total failure, but in use may intermittently If you scuff your feet as you walk across a carpet, electrons move from the result in gate leakage causing software malfunction or incorrect storage of carpet to you, leaving you with excess electrons. Touch a door knob and ZAP! information. The electrons move from you to the knob. You get a shock, at a minimum of 3,000 volts (the threshold of human feeling)! Catastrophic Failure The kind of ESD shock you feel may also be responsible for damaging electronic components in many computers and telecommunications systems. Catastrophic failures can be direct or latent. While it takes an electrostatic discharge of 3,000 volts for you to feel a shock, Direct catastrophic failures occur when a component is damaged to the point much smaller charges, well below the threshold of human sensation, can and where it no longer functions correctly. This is the easiest type of ESD damage often do damage semiconductor devices.
    [Show full text]
  • Dissipative Etfe Dielectric Polymer Helps Control Electrostatic Discharge in Wires and Cables
    DISSIPATIVE ETFE DIELECTRIC POLYMER HELPS CONTROL ELECTROSTATIC DISCHARGE IN WIRES AND CABLES. by: Chris Yun, Principal Engineer of Aerospace, Defense and Marine, TE Connectivity Recent tests by NASA's Jet Propulsion Laboratory (JPL) and when electrically dissimilar materials rub together. But in wires and Goddard Space Flight Center show that new nano-carbon cross- cables used in spacecraFt, a static charge can be created by the linked ethylene tetrafluoroethylene (ETFE) helps controls impact of charged particles on the material. Space is filled with electrostatic discharge (ESD) in wires and cables used on charged particles that can induce a charge in materials. Satellites spacecraft. in geosynchronous orbits and deep space missions are particularly susceptible because oF higher charge density in GEO and deep Controlling static electricity in electrical interconnection systems is space. essential in spacecraft where ESD events can damage electronics and scuttle the mission. The use of high resistivity dielectric materials and electrically separated surFaces in conjunction with the connected conducting In fact, it has been reported that 54% of spacecraft surFaces oF the spacecraFt Frame promote various forms of anomalies/Failures are caused by electrostatic discharging and spacecraFt charging.3 When the charge builds up in wire and cable charging. 1 For example in April 2010, the Galaxy 15 of electrical interconnection systems, a sudden discharge can telecommunications satellite wandered from its geosynchronous damage connected logic circuits, electronic instruments, and orbit. Reports in space technology literature suggested that computer chips. spacecraFt charging caused the anomaly. Fortunately, a workaround allowed the mission to continue. Worse oFF was the Discharge voltage levels vary widely.
    [Show full text]
  • Lead-Acid Starter Batteries in Systems Usage Information
    Batteries Association ZVEI information leaflet No. 28e Edition October 2017 Lead-acid starter batteries in systems Usage information Preliminary note: This information leaflet aims to help to choose batteries and develop design solutions and operating manuals by providing general information on the usage of lead-acid batteries in vehicles, which extend beyond the relevant standard specifications. This information serves as a recommendation only, and not as a substitute for the battery user’s responsibility to make appropriate decisions. By pooling all gained experience to date, however, it should make the decision easier. Contents 1. General .............................................................................................................................................. 2 2. Mechanical loads.............................................................................................................................. 2 2.1. Battery installation................................................................................................................. 2 2.2. Vibration stress...................................................................................................................... 3 3. Thermal stress..................................................................................................................................3 3.1. Battery temperatures............................................................................................................. 4 3.2. Possible measures regarding thermal loading
    [Show full text]
  • Characterization of Methods for Surface Charge Removal for the Reduction of Electrostatic Discharge Events in Explosive Environments
    Proc. 2017 Annual Meeting of the Electrostatics of America 1 Characterization of methods for surface charge removal for the reduction of electrostatic discharge events in explosive environments K. Nusrat Islam, Mark Gilmore Dept. of Electrical and Computer Engineering University of New Mexico, Albuquerque, NM 87110 phone: (1) 505-277-2579 e-mail: [email protected], [email protected] Abstract—Electrostatic discharge (ESD) from charged dielectric materials used within ex- plosive environments presents a significant hazard. To investigate dielectric surface charging, and methods of removing the charge, in detail and in a controlled way, a test stand has been built and utilized to study the behavior of several common dielectric materials used in such environments. A corona discharge source of the type used in electrostatic printing technology has been employed at normal laboratory temperatures and at low and high relative humidity in a controlled manner. Materials tested included black Kapton, yellow Kapton, Lexan, Del- rin, and Adiprene with surface potentials (Vdiel) ranging from -1 kV to -15 kV. Uniform charg- ing and discharging of individual dielectric samples of varying thickness has been observed, as characterized by spatial scans of the surface potential at low voltages such as -1 kV to -4 kV. At higher charging voltages, the surface potential is found to decay or increase with time in complex ways, showing a dependence on the magnitude of the surface potential (Vdiel), as well as two characteristic time constants d (τ1, τ2) in some cases. The initial decay of Vdiel (d) is rapid, while the subsequent decay of surface potential is much slower.
    [Show full text]
  • Pre-Breakdown Arcing and Electrostatic Discharge in Dielectrics Under High DC Electric Field Stress
    Utah State University DigitalCommons@USU Conference Proceedings Materials Physics 10-19-2014 Pre-breakdown Arcing and Electrostatic Discharge in Dielectrics under High DC Electric Field Stress Allen Andersen Utah State University JR Dennison Utah State Univesity Follow this and additional works at: https://digitalcommons.usu.edu/mp_conf Part of the Condensed Matter Physics Commons Recommended Citation Allen Andersen and JR Dennison, “Pre-breakdown Arcing and Electrostatic Discharge in Dielectrics under High DC Electric Field Stress,” Proceedings of the 2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena—(CEIDP 2014), (Des Moines, IO, October 19-22, 2014), 4 pp.. This Article is brought to you for free and open access by the Materials Physics at DigitalCommons@USU. It has been accepted for inclusion in Conference Proceedings by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Proceedings of the 2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena—(CEIDP Pre-breakdown Arcing and Electrostatic Discharge in Dielectrics under High DC Electric Field Stress Allen Andersen and JR Dennison Materials Physics Group Utah State University 4415 Old Main Hill, Logan, UT 84322 USA Abstract— Highly disordered insulating materials exposed to model characterizes electrical aging in terms of recoverable high electric fields will, over time, degrade and fail, potentially defects that can be thermally annealed and irrecoverable causing catastrophic damage to devices. Step-up to electrostatic defects with higher energies such as bond breaking. We use discharge (ESD) tests were performed for two common polymer this model to make a statistical comparison of our arcing and dielectrics, low density polyethylene and polyimide.
    [Show full text]
  • SAFETY STANDARD for HYDROGEN and HYDROGEN SYSTEMS Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage, and Transportation
    NSS 1740.16 National Aeronautics and Space Administration SAFETY STANDARD FOR HYDROGEN AND HYDROGEN SYSTEMS Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage, and Transportation Office of Safety and Mission Assurance Washington, DC 20546 PREFACE This safety standard establishes a uniform Agency process for hydrogen system design, materials selection, operation, storage, and transportation. This standard contains minimum guidelines applicable to NASA Headquarters and all NASA Field Centers. Centers are encouraged to assess their individual programs and develop additional requirements as needed. “Shalls” and “musts” denote requirements mandated in other documents and in widespread use in the aerospace industry. This standard is issued in loose-leaf form and will be revised by change pages. Comments and questions concerning the contents of this publication should be referred to the National Aeronautics and Space Administration Headquarters, Director, Safety and Risk Management Division, Office of the Associate for Safety and Mission Assurance, Washington, DC 20546. Frederick D. Gregory Effective Date: Feb.12, 1997 Associate Administrator for Safety and Mission Assurance i ACKNOWLEDGMENTS The NASA Hydrogen Safety Handbook originally was prepared by Paul M. Ordin, Consulting Engineer, with the support of the Planning Research Corporation. The support of the NASA Hydrogen-Oxygen Safety Standards Review Committee in providing technical monitoring of the standard is acknowledged. The committee included the following members: William J. Brown (Chairman) NASA Lewis Research Center Cleveland, OH Harold Beeson NASA Johnson Space Center White Sands Test Facility Las Cruces, NM Mike Pedley NASA Johnson Space Center Houston, TX Dennis Griffin NASA Marshall Space Flight Center Alabama Coleman J. Bryan NASA Kennedy Space Center Florida Wayne A.
    [Show full text]
  • Explosive Safety with Regards to Electrostatic Discharge Francis Martinez
    University of New Mexico UNM Digital Repository Electrical and Computer Engineering ETDs Engineering ETDs 7-12-2014 Explosive Safety with Regards to Electrostatic Discharge Francis Martinez Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds Recommended Citation Martinez, Francis. "Explosive Safety with Regards to Electrostatic Discharge." (2014). https://digitalrepository.unm.edu/ece_etds/ 172 This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Francis J. Martinez Candidate Electrical and Computer Engineering Department This thesis is approved, and it is acceptable in quality and form for publication: Approved by the Thesis Committee: Dr. Christos Christodoulou , Chairperson Dr. Mark Gilmore Dr. Youssef Tawk i EXPLOSIVE SAFETY WITH REGARDS TO ELECTROSTATIC DISCHARGE by FRANCIS J. MARTINEZ B.S. ELECTRICAL ENGINEERING NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY 2001 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science In Electrical Engineering The University of New Mexico Albuquerque, New Mexico May 2014 ii Dedication To my beautiful and amazing wife, Alicia, and our perfect daughter, Isabella Alessandra and to our unborn child who we are excited to meet and the one that we never got to meet. This was done out of love for all of you. iii Acknowledgements Approximately 6 years ago, I met Dr. Christos Christodoulou on a collaborative project we were working on. He invited me to explore getting my Master’s in EE and he told me to call him whenever I decided to do it.
    [Show full text]
  • Development and Modeling of High Temperature
    DEVELOPMENT AND MODELING OF HIGH TEMPERATURE POLYMERIC HEATER MAZIYAR BOLOURCHI Bachelor of Science in Chemistry City University of New York (York College) May 2001 Submitted in partial fulfillment of requirements for the degree MASTER OF SCIENCE IN CHEMICAL ENGINEERING at the CLEVELAND STATE UNIVERSITY December 2007 ACKNOWLEDGEMENTS First and foremost, I would like to thank Roger Avakian and Dr. Dave Jarus of PolyOne Corporation for their guidance, support and mentorship. Their technical advice was essential in the progression and completion of this project and has taught me many valuable lessons. I am grateful to have had the opportunity to work under their guidance and direction. I would also like to thank my graduate advisor Dr. Nolan B. Holland for accepting this work as my graduate thesis research in addition to the continual support (editorial and visiting). My thanks also go to Dr. Surendra N. Tewari and Dr. George P. Chatzimavroudis for their roles as graduate committee members. Many other thanks to my colleagues Dr. Grant Barber, Charles McDaniel, John Papadopoulos and Dan Nash for their continual support in helping with process, aid and figures used in thesis and thanks to John Hornickel, PolyOne attorney, Jim Isner and Coleen McFarland of Polymer Diagnostics (PDI) for their guidance, safety concerns and continual support. Last but certainly not least, I must thank my wife and parents whom have made this all possible. DEVELOPMENT AND MODELING OF A HIGH TEMPERATURE POLYMERIC HEATER MAZIYAR BOLOURCHI ABSTRACT Polymers are generally known for their excellent insulative properties. The addition of carbonaceous fillers such as carbon black and graphite within a polymer matrix can impart electrical and thermal properties making them good conductors.
    [Show full text]
  • Electrostatic Discharge Analysis of Multi Layer Ceramic Capacitors
    Electrostatic Discharge Analysis of Multi Layer Ceramic Capacitors Cyrous Rostamzadeh, Robert Bosch LLC – USA February 17, 2011 Cyrous Rostamzadeh, Senior IEEE Member, February 17, 2011 Mr. Kimball Williams Thank you for your Colossal Contributions and Dedication to IEEE EMC Society. You have educated, trained, inspired, managed and encouraged many of the EMC Engineers and Technicians in the SE Michigan area. You are well respected by everyone throughout the EMC Society and Automotive Community. I had the privilege to prepare this presentation, per your invitation, and I hope you will continue to guide the EMC Society long after your retirement from the Professional Responsibilities as of February 2012, thank you. Cyrous Rostamzadeh, Senior IEEE Member, February 17, 2011 Mr. Kimball Williams Cyrous Rostamzadeh, Senior IEEE Member, February 17, 2011 A privilege for me to be educated, mentored, collaborated with some of the finest minds of EMC… Cyrous Rostamzadeh, Senior IEEE Member, February 17, 2011 Dr. Al Reuhli (IBM) Dr.Clayton Paul Cyrous Rostamzadeh, Senior IEEE Member, February 17, 2011 Dr. Howard Johnson Signal Integrity 1994 2001 Cyrous Rostamzadeh, Senior IEEE Member, February 17, 2011 Professor Flavio Canavero Politecnico di Torino Professor Christos Christopouplos University of Nottingham Cyrous Rostamzadeh, Senior IEEE Member, February 17, 2011 Professor Sergio Pignari Politecnico di Milano Professor Farhad Rachidi Swiss Federal Institute of Technology (EPFL) Cyrous Rostamzadeh, Senior IEEE Member, February 17, 2011 ProfessorProfessor
    [Show full text]
  • Analysis and Design of Distributed ESD Protection Circuits for High
    1444 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 49, NO. 8, AUGUST 2002 Analysis and Design of Distributed ESD Protection Circuits for High-Speed Mixed-Signal and RF ICs Choshu Ito, Student Member, IEEE, Kaustav Banerjee, Member, IEEE, and Robert W. Dutton, Fellow, IEEE Abstract—Electrostatic discharge (ESD) protection devices can have an adverse effect on the performance of high-speed mixed- signal and RF circuits. This paper presents quantitative method- ologies to analyze the performance degradation of these circuits due to ESD protection. A detailed s-parameter-based analysis of these high-frequency systems illustrates the utility of the distributed ESD protection scheme and the impact of the parasitics associated with the protection devices. It is shown that a four-stage distributed ESD protection can be beneficial for frequencies up to 10 GHz. In addition, two generalized design optimization methodologies in- corporating coplanar waveguides are developed for the distributed structure to achieve a better impedance match over a broad fre- quency range (0–10 GHz). By using this optimized design, an ESD device with a parasitic capacitance of 200 fF attenuates the RF signal power by only 0.27 dB at 10 GHz. Furthermore, termina- Fig. 1. A simple ESD protection system example. The diodes shunt excess tion schemes are proposed to allow this analysis to be applicable to current applied to the signal pin toward VDD or GND to protect the core circuit. high-speed digital and mixed-signal systems. Index Terms—Broadband matching, coplanar waveguides, dis- tributed circuits, electrostatic discharge, high-speed mixed-signal or silicon controlled rectifiers (SCRs), but in all cases, these circuits, RF ICs, s-parameters, transmission lines.
    [Show full text]
  • The Space Weather Threat to Situational Awareness, Communications, and Positioning Systems
    The Space Weather Threat to Situational Awareness, Communications, and Positioning Systems The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Ferguson, Dale C., Simon Peter Worden, and Daniel E. Hastings. “The Space Weather Threat to Situational Awareness, Communications, and Positioning Systems.” IEEE Transactions on Plasma Science 43.9 (2015): 3086–3098. As Published http://dx.doi.org/10.1109/TPS.2015.2412775 Publisher Institute of Electrical and Electronics Engineers (IEEE) Version Original manuscript Citable link http://hdl.handle.net/1721.1/105805 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ (Abstract No# 169) The Space Weather Threat to Situational Awareness, Communications, and Positioning Systems D.C. Ferguson, S.P. Worden, and D.E. Hastings Abstract— A recent space weather headline has cast doubt in It is rotating, but instead of rotating like a solid body, it the minds of some as to whether space weather is the source of differentially rotates – the rotation period is ~ 25 days at the spacecraft anomalies, and thus, whether it is important in the equator and ~30 days at the poles (average ~ 27 days). It has a design and operation of critical situational awareness, magnetic field caused by the dynamo effect. The differential communications, and positioning systems. In this paper, we rotation of the plasma (to which the magnetic field lines are reiterate the evidence for the importance of space weather, its role in producing spacecraft and ground anomalies, and the attached) twists and untwists the magnetic field lines making threat it poses to critical systems.
    [Show full text]
  • ESD ‐ Electrostatic Discharge
    ESD ‐ Electrostatic Discharge EPOW6860 –Project RPI 12/14‐2007 Martin Rodgaard What is ESD? • A charged body, which gets discharged • Arcs at high voltages • Triboelectrification – Friction between two different materials, at least one insulator • Properties of ESD – 100 to 35000 voltages – Up to 1000µ Jules of energy – 3000 ‐ 4000V to se, feel or hear it Why is ESD of concern? • Potential damage of semiconductive devices – The high voltages makes the layers or isolation between the layers breakdown – The energy is allocated faster than the material can dissipate it, and can make it melt ESD ‐ Human Body Model(HBM) • Charged human body • Modeled as a capacitor and a series resistor • Values specified in ESD standards – 100pF body capacitance – 1500Ω body resistance – 4000V – 0.4µC or 800µJ of energy ESD ‐ Machine Model(MM) • Charged machine body – Production machine, typically made of metal – Therefore no series resistance • Modeled as a capacitor and series inductor • Values specified in ESD standards – 200pF body capacitance – 750nH series inductance – 400V ESD ‐ Transmission Line Pulsing(TLP) • Charged transmission line • Typical values for testing – Grate Immunity to purposes parasitic components – 50Ω coaxial cable – And therefore a good tool – 90 ‐ 100 nF/m for ESD testing – 10m generating a pulse of • Basic circuit 100ns – Diode clamps any negative reflections, so the pulse doesn’t bounce back again – High quality switch – 50Ω coaxial cable – Charged trough 10MΩ resistor TLP ‐ Basic principle • Coaxial cable • Reflections TLP ‐
    [Show full text]