Impact of Coastal Infrastructure on Ocean Colour Remote Sensing: a Case Study in Jiaozhou Bay, China

Total Page:16

File Type:pdf, Size:1020Kb

Impact of Coastal Infrastructure on Ocean Colour Remote Sensing: a Case Study in Jiaozhou Bay, China remote sensing Communication Impact of Coastal Infrastructure on Ocean Colour Remote Sensing: A Case Study in Jiaozhou Bay, China Yuan Yuan 1,2,* , Isabel Jalón-Rojas 1,2 and Xiao Hua Wang 1,2 1 School of Science, The University of New South Wales, Canberra ACT 2600, Australia; [email protected] (I.J.-R.); [email protected] (X.H.W.) 2 The Sino-Australian Research Centre for Coastal Management, The University of New South Wales, Canberra ACT 2600, Australia * Correspondence: [email protected]; Tel.: +61-0416341127 Received: 15 March 2019; Accepted: 8 April 2019; Published: 19 April 2019 Abstract: Spatial and temporal ocean colour data are increasingly accessible through remote sensing, which is a key tool for evaluating coastal biogeochemical and physical processes, and for monitoring water quality. Coastal infrastructure such as cross-sea bridges may impact ocean colour remote sensing due to the different spectral characteristics of asphalt and the seawater surface. However, this potential impact is typically ignored during data post-processing. In this study, we use Jiaozhou Bay (East China) and its cross-bay bridge to examine the impact of coastal infrastructure on water-quality remote-sensing products, in particular on chlorophyll-a concentration and total suspended sediment. The values of these products in the bridge area were significantly different to those in the adjacent water. Analysis of the remote-sensing reflectance and application of the Normalised Difference Water Index demonstrate that this phenomenon is caused by contamination of the signal by bridge pixels. The Moderate Resolution Imaging Spectroradiometer (MODIS) products helped estimate the pixel scale that could be influenced by contamination. Furthermore, we found similar pixel contamination at Hangzhou Bay Bridge, suggesting that the impact of large coastal infrastructure on ocean colour data is common, and must therefore be considered in data post-processing. Keywords: coastal infrastructure; remote sensing; data quality; Jiaozhou Bay; GOCI; chlorophyll-a; total suspended sediment 1. Introduction Ocean colour measurements contribute significantly to coastal ecosystem restoration, monitoring of dredging and dumping, fisheries management and a wide variety of research on water quality and coastal biogeochemical and physical processes. Among the ocean colour variables available from remote-sensing data, chlorophyll-a concentration (chl-a), total suspended sediment (TSS) and coloured dissolved organic matter (CDOM) are usually of concern in water quality assessment [1,2]; chl-a, primary productivity and red tide index are more important in studies on biogeochemical processes [3,4]; TSS and the diffuse attenuation coefficient at 490 nm (Kd490) may be included in evaluation of physical processes [5,6]. The Geostationary Ocean Colour Imager (GOCI) was the first geostationary ocean colour sensor, launched by South Korea in June 2010. GOCI covers 2500 km 2500 km of the northeast Asian region, × with a spatial resolution of 500 m and a temporal resolution of 1 h. GOCI retrieves remote-sensing reflectance, chl-a and TSS. The values of these parameters have been validated by in situ data along the Korean coast, showing a relatively good agreement for remote-sensing reflectance (Rrs) except band 1 [7,8], but not satisfactory for chl-a using the ocean chlorophyll 2 algorithm (OC2) [8]. Remote Sens. 2019, 11, 946; doi:10.3390/rs11080946 www.mdpi.com/journal/remotesensing Remote Sens. 2019, 11, 946 2 of 9 Remote Sens. 2019, 11, x FOR PEER REVIEW 2 of 9 CoastalCoastal infrastructureinfrastructure for for urban urban development development has dramaticallyhas dramatically increased increased over the over last fewthe decades.last few Cross-seadecades. Cross-sea bridges connect bridges coasts connect and coasts can extend and can tens exte ofnd kilometres tens of kilometres over coastal over waters. coastal The waters. Jiaozhou The BayJiaozhou (JZB) Bay Bridge, (JZB) the Bridge, Hangzhou the Hangzhou Bay Bridge Bay and Bridge the newlyand the built newly Hong built Kong–Zhuhai–Macau Hong Kong–Zhuhai–Macau Bridge areBridge examples are examples of bridges of crossing bridges regionalcrossing seas. regional The spectralseas. The characteristics spectral characteristics of road-bridge of surfacesroad-bridge are disurfacesfferent fromare different the sea surface,from the which sea surface, may result which in errorsmay result in some in errors ocean in colour some products. ocean colour For terrestrialproducts. remoteFor terrestrial sensing, remote many esensing,fforts have many been efforts made have to improve been made the algorithms to improve to the detect algorithms and classify to detect different and typesclassify of different land cover types (e.g., of trees, land grass,cover blocks)(e.g., trees, in hyperspectral grass, blocks) imaging in hyperspectral data [9]. Theimaging different data spectral[9]. The responsesdifferent spectral of each responses material enable of each extraction material enable of one extraction expected landof one cover, expected with land others cover, discarded. with others For example,discarded. when For vegetationexample, when is expected, vegetation the water,is expe soil,cted, biomass-burning the water, soil, smokebiomass-burning and other landsmoke covers and shouldother land be excluded covers [should10]. For be the excluded oceans, although [10]. Fo cross-sear the oceans, bridges although exist worldwide, cross-sea bridge bridges impacts exist onworldwide, ocean colour bridge remote impacts sensing on areocean typically colour ignoredremote insensing data post-processingare typically ignored and discussion. in data post- For example,processing Gao and et discussion. al. [11] validated For example, their sediment Gao et al. model [11] validated for JZB using their the sediment GOCI TSS model product for JZB without using payingthe GOCI attention TSS product to potential without bridge paying contamination. attention to Hangzhou potential bridge Bay Bridge contamination. was also not Hangzhou considered Bay in aBridge GOCI-based was also assessment not considered of the diurnalin a GOCI-based variation inassessment chl-a and of TSS the [12 diurnal], nor in variation mapping in the chl-a suspended and TSS particulate[12], nor inmatter mapping [13 ].the suspended particulate matter [13]. InIn thisthis short short communication, communication, a case a case study study of the of impact the impact of Jiaozhou of Jiaozhou Bay Bridge Bay on Bridge GOCI on products GOCI isproducts described is described to illustrate, to illustrate, for the first for the time, first the time bridge, the bridge effects effects on ocean on ocean colour colour remote remote sensing. sensing. The oceanThe ocean environment environment of Jiaozhou of Jiaozhou Bay isBay first is describedfirst described in Section in Section2, and 2, theand GOCI the GOCI products products and theand methodologythe methodology used used in this in this short short communication communication in Section in Section3. Finally, 3. Finally, the potentialthe potential contamination contamination by coastalby coastal infrastructure infrastructure of GOCI of GOCI products products is discussed is discussed in Section in Section4. 4. 2.2. StudyStudy AreaArea LocatedLocated onon thethe coastcoast ofof thethe YellowYellow SeaSea (Eastern(Eastern China,China, FigureFigure1 1a),a), Jiaozhou Jiaozhou Bay Bay (JZB) (JZB) is is included included inin thethe GOCIGOCI targettarget area.area. ThisThis shallowshallow semi-enclosedsemi-enclosed baybay isis surroundedsurrounded byby QingdaoQingdao CityCity (Figure(Figure1 1b),b), andand isis 3333 kmkm long long and and 28 28 km km wide. wide. The The average average water wate depthr depth is is 7 m,7 m, with with the the greatest greatest depth depth of 64of m64 inm thein the middle middle channel. channel. Figure 1. (a) Location of Jiaozhou Bay (JZB) on the Yellow Sea coast. (b) Satellite image of JZB from GoogleFigure 1. Earth (a) Location (provided of byJiaozhou DigitalGlobal); Bay (JZB) the on black the Yellow line shows Sea coast. the JZB (b) Bridge.Satellite ( cimage) The normalisedof JZB from diGooglefference Earth water (provided index distribution by DigitalGlobal) for JZB (derived; the black from line the shows Geostationary the JZB Bridge. Ocean ( Colourc) The normalised Imager). difference water index distribution for JZB (derived from the Geostationary Ocean Colour Imager). JZB is a typical eutrophic ecosystem characterized by high nitrogen and phosphorus concentrations. MonthlyJZB meanis a chl-atypical fluctuated eutrophic between ecosystem 0.99 and charac 18.67terizedµg/L from by Marchhigh 2005nitrogen to February and phosphorus 2006, with theconcentrations. maximum values Monthly and largestmean chl-a fluctuations fluctuated in August between [14 ].0.99 Chlorophyll-a and 18.67 μ concentrationg/L from March is higher 2005 into theFebruary northeast 2006, and with northwest the maximum of the bay, values with a and gradual larges decreaset fluctuations towards in the August south [15[14].]. TheChlorophyll-a circulation inconcentration JZB is dominated is higher by tidal in the currents, northeast with and a minimum northwest speed of the of bay, 0.15 with m/s [16a gradual]. The maximum decrease currentstowards occurthe south at the [15]. entrance The circulation of the bay, in with JZB ais magnitude dominated of by 1.7 tidal m/s currents, [16]. Tides with are a semidiurnal; minimum speed among of the0.15 tidal m/s constituents,[16].
Recommended publications
  • Photoproduction of Nitric Oxide in Seawater
    Ocean Sci., 16, 135–148, 2020 https://doi.org/10.5194/os-16-135-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Photoproduction of nitric oxide in seawater Ye Tian1,2,3, Gui-Peng Yang1,2,3, Chun-Ying Liu1,2,3, Pei-Feng Li3, Hong-Tao Chen1,2,3, and Hermann W. Bange4 1Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao 266100, China 2Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China 3College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China 4Chemical Oceanography, Division of Marine Biogeochemistry, GEOMAR – Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel 24105, Germany Correspondence: Chun-Ying Liu ([email protected]) and Hong-Tao Chen ([email protected]) Received: 25 May 2019 – Discussion started: 11 June 2019 Revised: 5 December 2019 – Accepted: 13 December 2019 – Published: 23 January 2020 Abstract. Nitric oxide (NO) is a short-lived intermediate of nation method so far because of its high reactivity with other the oceanic nitrogen cycle. However, our knowledge about substances (Zafiriou et al., 1980; Lutterbeck and Bange, its production and consumption pathways in oceanic environ- 2015; Liu et al., 2017). NO is produced and consumed during ments is rudimentary. In order to decipher the major factors various microbial processes such as nitrification, denitrifica- affecting NO photochemical production, we irradiated sev- tion, and anammox (Schreiber et al., 2012; Kuypers et al., eral artificial seawater samples as well as 31 natural surface 2018).
    [Show full text]
  • German Global Soft Power, 1700-1920
    1 German global soft power, 1700-1920 Nicola McLelland [email protected] Abstract: This article provides the first overview of the reach and ‘soft power’ of German language and culture in Europe and beyond, from 1700 to 1920, shortly after the end of the First World War. Besides the role of the state (weak, until deliberate policies began to be formulated from the late nineteenth century), the article shows the role of language societies, religious, educational and scientific institutions, and other sociocultural and political factors, including migration and colonization, in promoting German ‘soft power’ in other parts of Europe, in the Americas, Africa and China. The changing status of German language and culture in these parts of the world and the extent of local and ‘home’ support, through explicit policy or otherwise, for German as a first, foreign or additional language abroad is also considered. Keywords: German as a foreign language (GFL), German colonialism, German migration, Philanthropists, language societies, Togo, Namibia, Austro-Hungarian Empire, Jiaozhou Bay concession (Kiautschou). In 2013, Monocle magazine ranked Germany top in its global soft-power index, beating the USA (2nd) and the UK (3rd).1 With about 100 million native speakers (sixth behind Chinese, English, Hindustani, Spanish, and Russian), German also has some claim to be a world language. Its advocates point to its global reach; a map titled Weltsprache Deutsch ‘World Language German’ in a recent textbook for English learners of German suggests that German is spoken in Europe, Africa, Australia, North and South America, and Asia2. A series of high-profile publications reflect concern about German’s status on the world stage: Thierfelder’s Die Deutsche Sprache im Ausland (‘The German language abroad’, 1957), Ammon’s comprehensive Die Stellung der deutschen Sprache in der Welt (‘The status of the German language in the World’, 2014, updating his earlier Die internationale Stellung de 1 Germany lost the top spot to the USA in 2014, however.
    [Show full text]
  • Eastward Spread of Wheat Into China – New Data and New Issues
    Zhao Zhijun Eastward Spread of Wheat into China – New Data and New Issues Zhao Zhijun* Key words: Wheat–Diffusion Agriculture–History Eurasia Steppe Flotation Northern Frontier Zone From the beginning of the 21st century, flotation tech- Introduction nique has been widely applied by Chinese archaeology It is well known that wheat was originated in the West as means of obtaining ancient plant remains during rou- Asia. It was introduced into China, and eventually be- tine archaeological excavations. Up to the present, flo- came the dominant crop in the dry-land agriculture of tation work has been practiced at more than one hun- Northern China after replacing the major native crops dred archaeological sites of diverse time periods, and of foxtail millet and broomcorn millet. Yet, neither the large amounts of plant remains of high research poten- time when it arrived in China nor the routes through tial have been found, including wheat remains. These which it was introduced are made clear. Therefore, these new discoveries provide significant archaeological evi- are the major problems we are now dealing with. dence for a better understanding of the spread of wheat It has been widely agreed that the introduction of into China, the route and the temporal-spatial background wheat into China should have occurred before the his- in which the introduction events took place. The present torical time, because the script “来”for “wheat”has paper is aimed at synthesizing these new data, referring been identified from records on oracle bones of the Shang to those data of early wheat remains reported in last Dynasty.
    [Show full text]
  • Recent Declines in Warming and Vegetation Greening Trends Over Pan-Arctic Tundra
    Remote Sens. 2013, 5, 4229-4254; doi:10.3390/rs5094229 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra Uma S. Bhatt 1,*, Donald A. Walker 2, Martha K. Raynolds 2, Peter A. Bieniek 1,3, Howard E. Epstein 4, Josefino C. Comiso 5, Jorge E. Pinzon 6, Compton J. Tucker 6 and Igor V. Polyakov 3 1 Geophysical Institute, Department of Atmospheric Sciences, College of Natural Science and Mathematics, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 2 Institute of Arctic Biology, Department of Biology and Wildlife, College of Natural Science and Mathematics, University of Alaska, Fairbanks, P.O. Box 757000, Fairbanks, AK 99775, USA; E-Mails: [email protected] (D.A.W.); [email protected] (M.K.R.) 3 International Arctic Research Center, Department of Atmospheric Sciences, College of Natural Science and Mathematics, 930 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 4 Department of Environmental Sciences, University of Virginia, 291 McCormick Rd., Charlottesville, VA 22904, USA; E-Mail: [email protected] 5 Cryospheric Sciences Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mail: [email protected] 6 Biospheric Science Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mails: [email protected] (J.E.P.); [email protected] (C.J.T.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-907-474-2662; Fax: +1-907-474-2473.
    [Show full text]
  • Qingdao As a Colony: from Apartheid to Civilizational Exchange
    Qingdao as a colony: From Apartheid to Civilizational Exchange George Steinmetz Paper prepared for the Johns Hopkins Workshops in Comparative History of Science and Technology, ”Science, Technology and Modernity: Colonial Cities in Asia, 1890-1940,” Baltimore, January 16-17, 2009 Steinmetz, Qingdao/Jiaozhou as a colony Now, dear Justinian. Tell us once, where you will begin. In a place where there are already Christians? or where there are none? Where there are Christians you come too late. The English, Dutch, Portuguese, and Spanish control a good part of the farthest seacoast. Where then? . In China only recently the Tartars mercilessly murdered the Christians and their preachers. Will you go there? Where then, you honest Germans? . Dear Justinian, stop dreaming, lest Satan deceive you in a dream! Admonition to Justinian von Weltz, Protestant missionary in Latin America, from Johann H. Ursinius, Lutheran Superintendent at Regensburg (1664)1 When China was ruled by the Han and Jin dynasties, the Germans were still living as savages in the jungles. In the Chinese Six Dynasties period they only managed to create barbarian tribal states. During the medieval Dark Ages, as war raged for a thousand years, the [German] people could not even read and write. Our China, however, that can look back on a unique five-thousand-year-old culture, is now supposed to take advice [from Germany], contrite and with its head bowed. What a shame! 2 KANG YOUWEI, “Research on Germany’s Political Development” (1906) Germans in Colonial Kiaochow,3 1897–1904 During the 1860s the Germans began discussing the possibility of obtaining a coastal entry point from which they could expand inland into China.
    [Show full text]
  • Wu Guanzhong's Artistic Career Yong Zhang1,*
    Advances in Social Science, Education and Humanities Research, volume 572 Proceedings of the 7th International Conference on Arts, Design and Contemporary Education (ICADCE 2021) Wu Guanzhong's Artistic Career Yong Zhang1,* 1 State Specialist Institute of Arts, Rezervnyy Proyezd, D.12, Moscow, 121165 Russia *Corresponding author. Email: [email protected] ABSTRACT Combining with Wu Guanzhong's learning experience, this paper analyzes Chinese oil painting art characteristics in different periods, and the method of integrating traditional Chinese ink and wash painting language with the western modern design language in the aspects such as modelling, colour and composition. Wu Guanzhong successfully used western painting method to show the Oriental artistic conception, and formed unique composition views and forms. With the use of concise and simple colors and free-writing lines, the painter's personal emotions, thoughts and standpoint and deep understanding of life can be expressed. On the basis of in-depth research on the essence, connotation and thought of Chinese and Western art, Wu Guanzhong found the "junction" of the integration of Chinese and Western art. Keywords: Wu Guanzhong, Hangzhou Academy of Art, Ink and wash painting, Oil painting, Integration of Chinese and Western art. 1. INTRODUCTION Wu Guanzhong entered Hangzhou Academy of Art to study Chinese and Western paintings. In the Wu Guanzhong (1919-2010), the People's school, he received direct guidance from teachers Artist, Art Educator, and Professor of the Academy such as Li Chaoshi, Fang Ganmin, and Pan of Arts and Design of Tsinghua University, used to Tianshou. Li Chaoshi and Fang Ganmin are both be an executive director of the Chinese Artists teachers who have returned from studying in Association, a member of the Standing Committee France, but their styles of painting are different.
    [Show full text]
  • Tidal Resonance in the Gulf of Thailand
    Ocean Sci., 15, 321–331, 2019 https://doi.org/10.5194/os-15-321-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Tidal resonance in the Gulf of Thailand Xinmei Cui1,2, Guohong Fang1,2, and Di Wu1,2 1First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China 2Laboratory for Regional Oceanography and Numerical Modelling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China Correspondence: Guohong Fang (fanggh@fio.org.cn) Received: 12 August 2018 – Discussion started: 24 August 2018 Revised: 1 February 2019 – Accepted: 18 February 2019 – Published: 29 March 2019 Abstract. The Gulf of Thailand is dominated by diurnal 1323 m. If the GOT is excluded, the mean depth of the rest tides, which might be taken to indicate that the resonant fre- of the SCS (herein called the SCS body and abbreviated as quency of the gulf is close to one cycle per day. However, SCSB) is 1457 m. Tidal waves propagate into the SCS from when applied to the gulf, the classic quarter-wavelength res- the Pacific Ocean through the Luzon Strait (LS) and mainly onance theory fails to yield a diurnal resonant frequency. In propagate in the southwest direction towards the Karimata this study, we first perform a series of numerical experiments Strait, with two branches that propagate northwestward and showing that the gulf has a strong response near one cycle per enter the Gulf of Tonkin and the GOT. The energy fluxes day and that the resonance of the South China Sea main area through the Mindoro and Balabac straits are negligible (Fang has a critical impact on the resonance of the gulf.
    [Show full text]
  • China-Southeast Asia Relations: Trends, Issues, and Implications for the United States
    Order Code RL32688 CRS Report for Congress Received through the CRS Web China-Southeast Asia Relations: Trends, Issues, and Implications for the United States Updated April 4, 2006 Bruce Vaughn (Coordinator) Analyst in Southeast and South Asian Affairs Foreign Affairs, Defense, and Trade Division Wayne M. Morrison Specialist in International Trade and Finance Foreign Affairs, Defense, and Trade Division Congressional Research Service ˜ The Library of Congress China-Southeast Asia Relations: Trends, Issues, and Implications for the United States Summary Southeast Asia has been considered by some to be a region of relatively low priority in U.S. foreign and security policy. The war against terror has changed that and brought renewed U.S. attention to Southeast Asia, especially to countries afflicted by Islamic radicalism. To some, this renewed focus, driven by the war against terror, has come at the expense of attention to other key regional issues such as China’s rapidly expanding engagement with the region. Some fear that rising Chinese influence in Southeast Asia has come at the expense of U.S. ties with the region, while others view Beijing’s increasing regional influence as largely a natural consequence of China’s economic dynamism. China’s developing relationship with Southeast Asia is undergoing a significant shift. This will likely have implications for United States’ interests in the region. While the United States has been focused on Iraq and Afghanistan, China has been evolving its external engagement with its neighbors, particularly in Southeast Asia. In the 1990s, China was perceived as a threat to its Southeast Asian neighbors in part due to its conflicting territorial claims over the South China Sea and past support of communist insurgency.
    [Show full text]
  • Inception of the Modern Public Health System in China
    Virologica Sinica www.virosin.org https://doi.org/10.1007/s12250-020-00269-4 www.springer.com/12250 (0123456789().,-volV)(0123456789().,-volV) PERSPECTIVE Inception of the Modern Public Health System in China and Perspectives for Effective Control of Emerging Infectious Diseases: In Commemoration of the 140th Anniversary of the Birth of the Plague Fighter Dr. Wu Lien-Teh 1,2 2 1,3,4 1,2 Qingmeng Zhang • Niaz Ahmed • George F. Gao • Fengmin Zhang Received: 30 January 2020 / Accepted: 28 June 2020 Ó Wuhan Institute of Virology, CAS 2020 Infectious diseases pose a serious threat to human health insights into the effective prevention and control of and affect social, economic, and cultural development. emerging infectious diseases as well as the current world- Many infectious diseases, such as severe acute respiratory wide pandemic of COVID-19, facilitating the improvement syndrome (SARS, 2013), Middle East respiratory syn- and development of public health systems in China and drome (MERS, 2012 and 2013), Zika virus infection around the globe. (2007, 2013 and 2015), and coronavirus disease 2019 (COVID-19, 2019), have occurred as regional or global epidemics (Reperant and Osterhaus 2017; Gao 2018;Li Etiological Investigation and Bacteriological et al. 2020). In the past 100 years, the world has gradually Identification of the Plague Epidemic established a relatively complete modern public health in the Early 20th Century system. The earliest modern public health system in China was founded by the plague fighter Dr. Wu Lien-Teh In September 1910, the plague hit the Transbaikal region of during the campaign against the plague epidemic in Russia and spread to Manzhouli, a Chinese town on the Northeast China from 1910 to 1911.
    [Show full text]
  • Understanding the Relative Impacts of Natural Processes and Human Activities on the Hydrology of the Central Rift Valley Lakes, East Africa
    HYDROLOGICAL PROCESSES Hydrol. Process. (2015) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/hyp.10490 Understanding the relative impacts of natural processes and human activities on the hydrology of the Central Rift Valley lakes, East Africa Wondwosen M. Seyoum, Adam M. Milewski* and Michael C. Durham Department of Geology, University of Georgia, Athens, GA, USA Abstract: Significant changes have been observed in the hydrology of Central Rift Valley (CRV) lakes in Ethiopia, East Africa as a result of both natural processes and human activities during the past three decades. This study applied an integrated approach (remote sensing, hydrologic modelling, and statistical analysis) to understand the relative effects of natural processes and human activities over a sparsely gauged CRV basin. Lake storage estimates were calculated from a hydrologic model constructed without inputs from human impacts such as water abstraction and compared with satellite-based (observed) lake storage measurements to characterize the magnitude of human-induced impacts. A non-parametric Mann–Kendall test was used to detect the presence of climatic trends (e.g. a decreasing or increasing trends in precipitation), while the Standard Precipitation Index (SPI) analysis was used to assess the long-term, inter-annual climate variability within the basin. Results indicate human activities (e.g. abstraction) significantly contributed to the changes in the hydrology of the lakes, while no statistically significant climatic trend was seen in the basin, however inter-annual natural climate variability, extreme dryness, and prolonged drought has negatively affected the lakes. The relative contributions of natural and human-induced impacts on the lakes were quantified and evaluated by comparing hydrographs of the CRV lakes.
    [Show full text]
  • Book of Abstracts
    PICES Seventeenth Annual Meeting Beyond observations to achieving understanding and forecasting in a changing North Pacific: Forward to the FUTURE North Pacific Marine Science Organization October 24 – November 2, 2008 Dalian, People’s Republic of China Contents Notes for Guidance ...................................................................................................................................... v Floor Plan for the Kempinski Hotel......................................................................................................... vi Keynote Lecture.........................................................................................................................................vii Schedules and Abstracts S1 Science Board Symposium Beyond observations to achieving understanding and forecasting in a changing North Pacific: Forward to the FUTURE......................................................................................................................... 1 S2 MONITOR/TCODE/BIO Topic Session Linking biology, chemistry, and physics in our observational systems – Present status and FUTURE needs .............................................................................................................................. 15 S3 MEQ Topic Session Species succession and long-term data set analysis pertaining to harmful algal blooms...................... 33 S4 FIS Topic Session Institutions and ecosystem-based approaches for sustainable fisheries under fluctuating marine resources ..............................................................................................................................................
    [Show full text]
  • Salvia Plus Formula (Adapted) Dan Shen Yin
    Far East Summit ®® Salvia Plus Formula (Adapted) Dan Shen Yin Biomedical Presentation Angina pectoris , chronic gastritis , peptic ulcer , pancreatitis, hepatitis, and cholecystitis. Clinical Presentation Palpitations , stabbing abdominal pain or epigastric pain which radiates upward , hypochondriac pain, and irritability. Tongue Purplish, possibly pale-purple. Pulse Deep, choppy. Energetic Functions Quickens the blood and transforms stasis, courses the qi, nourishes blood, relieves pain. Chinese Medical Indications Qi stagnation and blood stasis in the middle burner. Blood vacuity. Herbal Ingredients and Analysis Pharmaceutical Latin Binomial Pinyin English Radix Salviae Miltiorrhizae Salvia miltiorrhiza dan shen Salvia root Radix Polygoni Multiflori Polygonum he shou wu Polygonum (he shou multiflorum wu) root Fructus Mori Albae Morus alba sang shen White Mulberry fruit Fructus Crataegi Crataegus pinnatifida shan zha Chinese Hawthorn berry Semen Cassiae Torae Cassia obtusifolia jue ming zi Cassia seed Rhizoma Alismatis Alisma orientale ze xie Alisma rhizome Fructus Schisandrae Chinensis Schisandra chinensis du zhong Eucommia bark Radix Angelicae Sinensis Angelica sinensis dang gui Dong Quai root Fructus Schisandrae Chinensis Schisandra chinensis wu wei zi Schisandra fruit Radix Rubrus Paeoniae Lactiflorae Paeonia lactifora chi shao Red Peony root Salvia Plus (cont.) Herbal Ingredients and Analysis (cont.) Pharmaceutical Latin Binomial Pinyin English Radix Scutellariae Baicalensis Scutellaria huang qin Scutellaria (huang qin) baicalensis root Lignum Santali Albi Santalum album tan xiang Sandalwood wood Fructus Amomi Amomum villosum sha ren Cardamon Amomum (sha ren) fruit Radix Aucklandiae Lappae Aucklandia lappa mu xiang Saussurea root Salvia nourishes blood, quickens the blood, dispels stasis, and relieves pain. Sandalwood, Cardamon and Saussurea rectify qi. Together these medicinals provide the main action of the formula by quickening blood, transforming stasis and rectifying qi.
    [Show full text]