Palaeontologia Electronica a Possible Fossil Paralarva (Cephalopoda

Total Page:16

File Type:pdf, Size:1020Kb

Palaeontologia Electronica a Possible Fossil Paralarva (Cephalopoda Palaeontologia Electronica palaeo-electronica.org A possible fossil paralarva (Cephalopoda: Coleoidea) from the Solnhofen Lithographic Limestones (Upper Jurassic, southern Germany) Joachim T. Haug, Isabelle Kruta, and Carolin Haug ABSTRACT We describe a possible fragmentary gladius of a paralarval cephalopod from the Solnhofen Lithographic Limestones, southern Germany (Upper Jurassic, Lower Titho- nian). The specimen is 3 mm long and leaf-shaped, representing mainly the median field of the gladius. Faint remains indicate the former positions of the lateral fields. The median line is marked by a sharp keel. On the posterior end there is a pear-shaped structure. Anteriorly a kite-shaped area is ornamented with small pits. The principle morphology resembles, for example, certain trachyteuthidids, based on shape, pres- ence of a keel and an ornamented anterior kite-shaped region. Also resemblances of certain muensterellid characters are pointed out. The special morphology of the here described specimen is interpreted as ontogenetically caused. This together with its small size makes a paralarval status of the specimen possible, although we cannot provide the necessary ecological evidence for this assignment. A clear ascription to any systematic group is hindered by the fact that there is no comparable material of similarly small size available. Joachim T. Haug, University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstr. 23, 17487 Greifswald, Germany [email protected] Isabelle Kruta, Yale University, Department of Geology and Geophysics, PO Box 208109, New Haven Connecticut 06520-8109, USA and American Museum of Natural History, Division of Paleontology (Invertebrates), New York, New York 10024, USA [email protected] Carolin Haug, University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstr. 23, 17487 Greifswald, Germany [email protected] Keywords: palaeo-evo-devo; cephalopods; gladius; fossilized ontogenies; larva; fluorescence microscopy PE Article Number: 15.3.28A Copyright: Palaeontological Association November 2012 Submission: 20 March 2012. Acceptance: 15 October 2012 Haug, Joachim T., Kruta, Isabelle, and Haug, Carolin. 2012. A possible fossil paralarva (Cephalopoda: Coleoidea) from the Solnhofen Lithographic Limestones (Upper Jurassic, southern Germany) . Palaeontologia Electronica Vol. 15, Issue 3;28A,8p; palaeo-electronica.org/content/2012-issue-3-articles/313-possible-fossil-paralarva HAUG, KRUTA, & HAUG: POSSIBLE FOSSIL PARALARVA INTRODUCTION The hatching stage of a metazoan that differs significantly in morphology, behavior or other aspects from the adult is termed larva in many dif- ferent taxa. The term is treated differently in the lit- erature, varying in the exact criteria that need to be fulfilled to apply it (see, for example, discussions in Hickman, 1999; Young, 2002; Minelli, 2003). For cephalopod molluscs this dispute has partly been avoided by introducing the term paralarva for the early developmental phase that follows hatching and resembles the adult in gross morphology, but differs in its ecological niche (Young and Harman, 1988); paralarvae are planktonic. This specialised early life stage is found in some, but not all modern cephalopods. As for many metazoan taxa, the ontogeny of cephalopods is an important field of research (e.g., Tsuchiya and Okutani, 1991; Boletzky, 2003; O'Shea et al., 2007), including studies of paralarvae (Tsuchiya et al., 1991; Vec- chione et al., 1992, 2001; Haimovici et al., 2002). Investigating the ontogeny of fossil represen- tatives of Cephalopoda is, as for any other taxon, more complex and restricted in many aspects as compared to investigating the ontogeny of extant cephalopods. For fossil cephalopods the ontogeny of a certain species is usually reconstructed by investigating the shell, as this is what remains of the animal, the soft body parts being only pre- served in exceptional cases (e.g., Weitschat, 1986; Fuchs et al., 2009; Kruta et al., 2011). Coleoid cephalopods possess an interior shell or remains of it that gained different names in dif- FIGURE 1. Comparison of gladius shapes between ferent subtaxa. For coleoids with a so-called glad- older (1.1, 1.3) and younger stages (1.2, 1.4) of the same species of Coleoidea. 1.1-2. Gladii of Onykia ius, growth lines on the latter are used for robusta (Verrill, 1876). Gladius of younger stage much reconstructing the life histories in extant species stouter than that of older stage. Redrawn after (Perez and O'Dor, 2000), but these growth lines Tsuchiya and Okutani (1991, figures 18, 19). 1.3-4. also yield significant information in fossil coleoids Gladii of Pholidoteuthis massyae (Pfeffer, 1912), (Fuchs et al., 2009). Thus, aspects of both extant exhibiting shape differences between the different and fossil ontogenies of Cephalopoda can be stages. Redrawn after O’Shea et al. (2007, figures 36, reconstructed based on few or even a single 37). mature specimen. With such an approach many aspects of the ferences demands for the availability of several ontogeny of a fossil cephalopod can be accessed. specimens representing consecutive developmen- Yet, differences in the total shape of the gladius tal stages (= semaphoronts). The approach to can be difficult to infer exclusively from the growth reconstruct the ontogeny of coleoids based on a marks of a single mature specimen. Although onto- series of individuals has been applied for details of genetic changes of the coleoid gladius are gener- the soft parts of extant species (O’Shea et al., ally considered to be minor (Boletzky, 2003), in the 2007). For such approaches small-sized speci- few examples in which actual gladii of different mens are of importance, especially for accessing growth stages of the same species have been information on the earliest post-hatching phase, depicted in detail, their shapes appear to differ the paralarva. Early post-hatching specimens of quite significantly (Tsuchiya and Okutani, 1991; fossil cephalopods are relatively rare (e.g., Mapes O’Shea et al., 2007; Figure 1). Identifying such dif- et al., 2007; Mapes and Nützel, 2009). No speci- 2 PALAEO-ELECTRONICA.ORG men of a fossil coleoid being small enough to pos- (2007). Drawings from the literature were redrawn sibly represent a paralarva has been described to using Adobe Illustrator CS3 and Inkscape. date. We report here a single specimen from the RESULTS lithographic limestones of Solnhofen (Upper Juras- Description of the Specimen (Figure 2.1-3) sic, southern Germany) that is supposed to repre- sent an early developmental stage of a coleoid, We use the terminology as applied by Fuchs possibly a paralarva. To emphasize the importance et al. (2009) for fossil gladii. The specimen is rela- of this find we discuss the different approaches of tively flat, but slightly more elevated in the median reconstructing developmental sequences, either region (Figure 2.1, 2.3). Based on this elevation the from growth marks of a single mature specimen or specimen is most likely seen in dorsal view. The based on a series of semaphoronts. outline is more or less oval to leaf-shaped. Its max- imal length is 3 mm. On the widest part it measures MATERIAL AND METHODS 1.6 mm. The area preserved in this specimen is interpreted as representing mainly the median field Material of a gladius. Remains of the hyperbolar zone/lat- The single specimen described here was eral fields can still be detected under fluorescence found by Michael Fecke, Langenberg, in the hobby settings (Figure 2.2), but are too weakly preserved quarry Blumenberg near Eichstätt, which belongs to infer the outline. Thus, the original maximal to the area of the Solnhofen Lithographic Lime- width of the specimen is not accessible. Whether stones (Upper Jurassic, Lower Tithonian, lower the weak preservation of the lateral fields reflects Hybonotum zone, Riedense subzone; Schweigert, original structural conditions or is a preservational 2007). The specimen is preserved as part only, a artifact cannot be determined. The midline of the counterpart is not available. It is tiny (ca. 3 mm), median field is marked by a prominent keel. The but is preserved with substance differing from the keel is very narrow (ca. 60 µm) along the anterior surrounding matrix as its autofluorescence capabil- part of ca. 2 mm length. Then the keel widens to a ities suggest, possibly consisting of calcium phos- pear-shaped structure towards the apex with a phate (Haug et al., 2009). The fossil displays a maximum width of 0.45 mm. Closer to the apex the recognizable relief. It is now part of the collection of keel becomes more slender again, measuring the Staatliches Museum für Naturkunde Stuttgart about 0.13 mm in width. A kite-shaped area in the under SMNS 67904b. Also preserved on the same anterior 40% (median) to 30% (lateral) of the entire slab is a small specimen of a mantis shrimp, tenta- gladius length bears a surface ornamentation. tively assigned to ?Sculda pusilla (SMNS 67904a; Under fluorescence this ornament appears like a cf. Haug et al., 2010). reticulate pattern (Figure 2.2). In combination with the stereo image it becomes clear that this pattern Methods is in fact a cluster of small pits (Figure 2.3). The Due to the small size of the specimen it was diameter of the pits ranges from 20-70 µm. necessary to apply higher magnification imaging. A simple macrograph was recorded under standard DISCUSSION North-West lighting. Under the same setting a ste- Cephalopod Affinities reo image was recorded. Additionally, the speci- men was documented under a Zeiss Axioskop 2 The here described specimen is interpreted fluorescence microscope under green light (546 as a small fragmentarily preserved gladius of a nm). Images were processed following the protocol coleoid cephalopod (Figure 3.1). Its shape is rela- of composite fluorescence imaging (Haug et al., tively stout, yet early developmental stages of 2008; Haug et al., 2009; Kerp and Bomfleur, 2011) cephalopods are usually less elongate than they using CombineZM/ZP, Microsoft Image Composite are as adults.
Recommended publications
  • CEPHALOPODS 688 Cephalopods
    click for previous page CEPHALOPODS 688 Cephalopods Introduction and GeneralINTRODUCTION Remarks AND GENERAL REMARKS by M.C. Dunning, M.D. Norman, and A.L. Reid iving cephalopods include nautiluses, bobtail and bottle squids, pygmy cuttlefishes, cuttlefishes, Lsquids, and octopuses. While they may not be as diverse a group as other molluscs or as the bony fishes in terms of number of species (about 600 cephalopod species described worldwide), they are very abundant and some reach large sizes. Hence they are of considerable ecological and commercial fisheries importance globally and in the Western Central Pacific. Remarks on MajorREMARKS Groups of CommercialON MAJOR Importance GROUPS OF COMMERCIAL IMPORTANCE Nautiluses (Family Nautilidae) Nautiluses are the only living cephalopods with an external shell throughout their life cycle. This shell is divided into chambers by a large number of septae and provides buoyancy to the animal. The animal is housed in the newest chamber. A muscular hood on the dorsal side helps close the aperture when the animal is withdrawn into the shell. Nautiluses have primitive eyes filled with seawater and without lenses. They have arms that are whip-like tentacles arranged in a double crown surrounding the mouth. Although they have no suckers on these arms, mucus associated with them is adherent. Nautiluses are restricted to deeper continental shelf and slope waters of the Indo-West Pacific and are caught by artisanal fishers using baited traps set on the bottom. The flesh is used for food and the shell for the souvenir trade. Specimens are also caught for live export for use in home aquaria and for research purposes.
    [Show full text]
  • Husbandry Manual for BLUE-RINGED OCTOPUS Hapalochlaena Lunulata (Mollusca: Octopodidae)
    Husbandry Manual for BLUE-RINGED OCTOPUS Hapalochlaena lunulata (Mollusca: Octopodidae) Date By From Version 2005 Leanne Hayter Ultimo TAFE v 1 T A B L E O F C O N T E N T S 1 PREFACE ................................................................................................................................ 5 2 INTRODUCTION ...................................................................................................................... 6 2.1 CLASSIFICATION .............................................................................................................................. 8 2.2 GENERAL FEATURES ....................................................................................................................... 8 2.3 HISTORY IN CAPTIVITY ..................................................................................................................... 9 2.4 EDUCATION ..................................................................................................................................... 9 2.5 CONSERVATION & RESEARCH ........................................................................................................ 10 3 TAXONOMY ............................................................................................................................12 3.1 NOMENCLATURE ........................................................................................................................... 12 3.2 OTHER SPECIES ...........................................................................................................................
    [Show full text]
  • Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
    Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo
    [Show full text]
  • First Record of Duvaliaex. Gr. Lata(Cephalopoda, Coleoidea) From
    First record of Duvalia ex. gr. lata (Cephalopoda, Coleiodea) from Mexico 527 BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA VOLUMEN 65, NÚM. 3, 2013, P. 527-531 D GEOL DA Ó E G I I C C O A S 1904 M 2004 . C EX . ICANA A C i e n A ñ o s First record of Duvalia ex. gr. lata (Cephalopoda, Coleoidea) from Mexico Patrick Zell1,*, Seija Beckmann1, Wolfgang Stinnesbeck1, José Flores-Ventura2 1 Institute for Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany. 2 Santa Engracia 257, Fracc. Santa Elena, Saltillo C.P. 25015, Coahuila, México. * [email protected] Abstract Here we present the first record of the belemniteDuvalia ex. gr. lata (Cephalopoda, Coleoidea) from Mexico. The unique individual, a well-preserved rostrum, was discovered in Early Cretaceous strata of the Sierra de Parras close to Viesca in southwestern Coahuila. Duvalia ex. gr. lata was previously known from the Mediterranean Tethys. Our report extends the paleogeographic distribution of Duvalia to the western hemisphere and supports the hypothesis that the Hispanic Corridor was open during the Early Cretaceous, allowing for marine faunal exchange and migration between the Gulf of Mexico and the European Tethys. Keywords: Duvalia, belemnite, Early Cretaceous, Mexico, Hispanic Corridor. Resumen Se reporta por primera vez el belemnite Duvalia ex. gr. lata (Cephalopoda, Coleoidea) en México. El único ejemplar, un rostro bien preservado, ha sido descubierto en capas del Cretácico Temprano de la Sierra de Parras,en las cercanías de Viesca, en el suroeste de Coahuila. Previamente, se conocía a Duvalia ex.
    [Show full text]
  • Xiphias Gladius Stomach Content Analysis Is an in Zones a and B, Fish Were Stored Linnaeus, 1758, Is a Mesopelagic Important Tool in Ecological and in Ice
    The diet of the swordfish tained from a longline vessel between 1 and 15th March 1991 by using Xiphias gbdius Linnaeus, mackerel, Scomber spp., as bait. 1 758, in the central east Atlantic, Zone C Gulf of Guinea (3O09'- 0°36'N and 26O27'-4O17'W). Fifteen with emphasis on the role of swordfish (standard length [SL] between 140-209 cm) were selected cephalopods on the basis of the presence of cephalopods in their stomachs. Vicente Hernández-García These were taken from catches Dpto de Biología, Facultad de Ciencias del Mar made by a longliner between May Univ. de Las Palmas de G. Canaria and July of 1991 by using mackerel C P 350 1 7, Canary Islands, Spain and squid, Illex sp., as bait. Stomach preservation and analysis The swordfish Xiphias gladius Stomach content analysis is an In zones A and B, fish were stored Linnaeus, 1758, is a mesopelagic important tool in ecological and in ice. After landing, fish were mea- teleost with a cosmopolitan distri- fisheries biology studies. Oceanic sured from the tip of the lower jaw bution between 45"N anci 45"s iati- vertebrates are often more efficient to the fork of the taii (S¿). During tude. It is an opportunistic preda- collectors of cephalopods than any commercial operations the internal tor feeding mainly on pelagic ver- available sampling gear (Bouxin organs were removed before the tebrates and invertebrates (Palko and Legendre, 1936; Clarke, 1966). fish were weighed. The stomach et al., 1981). The diet. of the sword- The p'irpose nf thir st11dy was to rnntents nf earh fish, incli~dingal1 fish has been studied mainly in the expand knowledge of the diet of the hard parts found in the stomach western Atlantic Ocean (Tibbo et swordfish from the central east At- wall folds (otoliths, very small al., 1961; Scott and Tibbo, 1968, lantic Ocean, with special emphasis beaks, and lenses), were weighed 1974; Toll and Hess, 1981; Stillwell on the role of cephalopod species.
    [Show full text]
  • Morphological Study on Radula of Nine Cephalopods in the Coastal Waters of China
    第 26 卷第 5 期 水 产 学 报 Vol .26, No.5 2002 年 10 月 JOURNAL OF FISHERIES OF CHINA Oct ., 2002 文章编号 :1000 -0615(2002)05 -0417 -06 Morphological study on radula of nine cephalopods in the coastal waters of China ZHENG Xiao-dong , WANG Ru-cai (The Key Lab of Mariculture Certificated by the Ministry of Education , Ocean University of Qingdao , Qingdao 266003 , China) Abstract :The radula of nine cephalopods are compared on the basis of scanning electron microscopic observation and morphological measurements .Results indicate that all of them consist of 7 longitudinal rows of teeth :a median tooth and the 1st , 2nd , and 3rd lateral or lateral , inner marginal , and outer marginal teeth .The formula of radula is 3·1·3 .Sepioidea (Sepia robsoni , S .esculenta , S .pharaonis , S .latimanus , S .aculeata , Sepiella maindroni , Euprymna berryi)has only one cusp in the median tooth , and a marginal plate is absent .The median tooth has 3 and/or 5 cusps and marginal plates are found in the two species of Octopus ocellatus and O .variabilis .Other differences in the radula structure among the nine species are illustrated in detail .The relationships of radula of the cuttlefishes , octopuses and squids are discussed .It is suggested that radula should be thought in the cuttlefish taxonomy . Key words:cephalopods ;cuttlefish ;radula ;morphology ;scanning electron microscope(SEM) CLC number :S917 ;Q954 Document code :A 1 Introduction Anatomical characters have traditionally been used in fisheries biology to describe geographic variation in some exploited species of cephalopods[ 1-4] .Unlike molecular genetic markers , it is obvious that phenotypic variation is influenced by environmental factors , and the genetic component of such variance is uncertain[ 5] .
    [Show full text]
  • A New Genus and Three New Species of Decapodiform Cephalopods (Mollusca: Cephalopoda)
    Rev Fish Biol Fisheries (2007) 17:353-365 DOI 10.1007/S11160-007-9044-Z .ORIGINAL PAPER A new genus and three new species of decapodiform cephalopods (Mollusca: Cephalopoda) R. E. Young • M. Vecchione • C. F, E, Roper Received: 10 February 2006 / Accepted: 19 December 2006 / Pubhshed online: 30 March 2007 © Springer Science+Business Media B.V. 2007 Abstract We describe here two new species of Introduction oegopsid squids. The first is an Asperoteuthis (Chiroteuthidae), and it is based on 18 specimens. We describe three new species of cephalopods This new species has sucker dentition and a from three different families in two different funnel-mantle locking apparatus that are unique orders that have little in common except they are within the genus. The second new species is a from unusual and poorly known groups. The Promachoteuthis (Promachoteuthidae), and is unique nature of these cephalopods has been based on a unique specimen. This new species known for over 30 years but they were not has tentacle ornamentation which is unique within described because (1) with two species we waited the genus. We also describe a new genus and a new for the collection of more or better material species of sepioid squid in the subfamily Hetero- which never materialized and (2) with one species teuthinae (Sepiolidae) and it is based on four the type material was misplaced, virtually forgot- specimens. This new genus and species exhibits ten and only recently rediscovered. The 2006 unique modifications of the arms in males. CIAC symposium was the stimulus to finally publish these species which should have been Keywords Amphorateuthis alveatus • published in the first CIAC symposium in 1985.
    [Show full text]
  • Defensive Behaviors of Deep-Sea Squids: Ink Release, Body Patterning, and Arm Autotomy
    Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Roy L. Caldwell, Chair Professor David R. Lindberg Professor George K. Roderick Dr. Bruce H. Robison Fall, 2009 Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy © 2009 by Stephanie Lynn Bush ABSTRACT Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair The deep sea is the largest habitat on Earth and holds the majority of its’ animal biomass. Due to the limitations of observing, capturing and studying these diverse and numerous organisms, little is known about them. The majority of deep-sea species are known only from net-caught specimens, therefore behavioral ecology and functional morphology were assumed. The advent of human operated vehicles (HOVs) and remotely operated vehicles (ROVs) have allowed scientists to make one-of-a-kind observations and test hypotheses about deep-sea organismal biology. Cephalopods are large, soft-bodied molluscs whose defenses center on crypsis. Individuals can rapidly change coloration (for background matching, mimicry, and disruptive coloration), skin texture, body postures, locomotion, and release ink to avoid recognition as prey or escape when camouflage fails. Squids, octopuses, and cuttlefishes rely on these visual defenses in shallow-water environments, but deep-sea cephalopods were thought to perform only a limited number of these behaviors because of their extremely low light surroundings.
    [Show full text]
  • An Inventory of Belemnites Documented in Six Us National Parks in Alaska
    Lucas, S. G., Hunt, A. P. & Lichtig, A. J., 2021, Fossil Record 7. New Mexico Museum of Natural History and Science Bulletin 82. 357 AN INVENTORY OF BELEMNITES DOCUMENTED IN SIX US NATIONAL PARKS IN ALASKA CYNTHIA D. SCHRAER1, DAVID J. SCHRAER2, JUSTIN S. TWEET3, ROBERT B. BLODGETT4, and VINCENT L. SANTUCCI5 15001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 25001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 3National Park Service, Geologic Resources Division, 1201 Eye Street, Washington, D.C. 20005; -email: justin_tweet@ nps.gov; 42821 Kingfisher Drive, Anchorage, AK 99502; -email: [email protected];5 National Park Service, Geologic Resources Division, 1849 “C” Street, Washington, D.C. 20240; -email: [email protected] Abstract—Belemnites (order Belemnitida) are an extinct group of coleoid cephalopods, known from the Jurassic and Cretaceous periods. We compiled detailed information on 252 occurrences of belemnites in six National Park Service (NPS) areas in Alaska. This information was based on published literature and maps, unpublished U.S. Geological Survey internal fossil reports (“Examination and Report on Referred Fossils” or E&Rs), the U.S. Geological Survey Mesozoic locality register, the Alaska Paleontological Database, the NPS Paleontology Archives and our own records of belemnites found in museum collections. Few specimens have been identified and many consist of fragments. However, even these suboptimal specimens provide evidence that belemnites are present in given formations and provide direction for future research. Two especially interesting avenues for research concern the time range of belemnites in Alaska. Belemnites are known to have originated in what is now Europe in the Early Jurassic Hettangian and to have a well-documented world-wide distribution in the Early Jurassic Toarcian.
    [Show full text]
  • Ommastrephidae 199
    click for previous page Decapodiformes: Ommastrephidae 199 OMMASTREPHIDAE Flying squids iagnostic characters: Medium- to Dlarge-sized squids. Funnel locking appara- tus with a T-shaped groove. Paralarvae with fused tentacles. Arms with biserial suckers. Four rows of suckers on tentacular clubs (club dactylus with 8 sucker series in Illex). Hooks never present hooks never on arms or clubs. One of the ventral pair of arms present usually hectocotylized in males. Buccal connec- tives attach to dorsal borders of ventral arms. Gladius distinctive, slender. funnel locking apparatus with Habitat, biology, and fisheries: Oceanic and T-shaped groove neritic. This is one of the most widely distributed and conspicuous families of squids in the world. Most species are exploited commercially. Todarodes pacificus makes up the bulk of the squid landings in Japan (up to 600 000 t annually) and may comprise at least 1/2 the annual world catch of cephalopods.In various parts of the West- ern Central Atlantic, 6 species of ommastrephids currently are fished commercially or for bait, or have a potential for exploitation. Ommastrephids are powerful swimmers and some species form large schools. Some neritic species exhibit strong seasonal migrations, wherein they occur in huge numbers in inshore waters where they are accessable to fisheries activities. The large size of most species (commonly 30 to 50 cm total length and up to 120 cm total length) and the heavily mus- cled structure, make them ideal for human con- ventral view sumption. Similar families occurring in the area Onychoteuthidae: tentacular clubs with claw-like hooks; funnel locking apparatus a simple, straight groove.
    [Show full text]
  • Role of Cephalopods in the Diet of the Swordfish, X/Ph/As Glad/Us, from the Eastern Mediterranean Sea
    BULLETIN OF MARINE SCIENCE, 49(1-2): 312-324, 1991 ROLE OF CEPHALOPODS IN THE DIET OF THE SWORDFISH, X/PH/AS GLAD/US, FROM THE EASTERN MEDITERRANEAN SEA Giambattista Bello ABSTRACT The gastric contents of 38 swordfish, Xiphias gladius, from the eastern Mediterranean Sea were examined to study the cephalopod component. Cephalopods were the most abundant prey items (their coefficient of prey frequency = 85.7%). Remains of 20 I cephalopod spec- imens were found, including loose hard parts, e.g., beaks, gladii, and lenses. Cephalopods belonged to eleven species, all pelagic. Todarodes sagittatus was the predominant food item. Next most abundant cephalopods were Ancistroteuthis /ichtensteinii and Heteroteuthis dispar. All other cephalopod species were ingested occasionally by swordfish. Based on the analyses of the loose beaks mantle length estimations were made and histograms oflower rostral length distribution were generated for T. sagittatus and A. /ichtensteinii. Swordfish are efficient collectors of otherwise rare pelagic animals. Based on the analysis of gastric contents, four cephalopods were recorded for the first time from the area: H. dispar, Onychoteuthis banksii, Histioteuthis bonnellii, Ancistrocheirus lesueurii. Some reflections were made about the local swordfish fishery and the exploitability of pelagic cephalopod stocks. Swordfish, Xiphic.rs gladius Linnaeus, 1758 (Osteichthyes: Xiphiidae), a cos- mopolitan teleost, is an opportunistic predator which mainly feeds on pelagic species of both vertebrates and invertebrates; the taxon mostly preyed upon is Cephalopoda (see historical resume and results in Toll and Hess, 1981). As noted by Toll and Hess (1981), however, most authors fail to give a complete list of teuthological prey items found in the gastric content of swordfish.
    [Show full text]
  • Description of Ommastrephes Bartramii (Cephalopoda: Ommastrephidae) Paralarvae with Evidence for Spawning in Hawaiian Waters!
    Pacific Science (1990), vol. 44, no. 1: 71-80 © 1990 by University of Hawaii Press. All rights reserved Description of Ommastrephes bartramii (Cephalopoda: Ommastrephidae) Paralarvae with Evidence for Spawning in Hawaiian Waters! RICHARD EDWARD YOUNG AND JED HIROTA2 ABSTRACT: Paralarvae of the commercially important squid Ommastrephes bartramii are described, and particular attention is paid to the chromatophore patterns. These chromatophore patterns are compared with those ofStenoteuthis oualaniensis and Hyaloteuthis pelagica , two other local ommastrephids with similar patterns. Limited data on spatial and temporal distributions of the paralarvae are also presented. Paralarvae of O. bartramii have been found at several localities along the Hawaiian Archipelago between Oahu and Midway Islands. In 1986 O. bartramii probably spawned in southern Hawaiian waters around the island of Oahu from, at least, the latter part of February through March. During April 1979 and April 1984 the absence ofparalarvae from these same waters suggests that either the spawning period terminated earlier or the squid did not spawn as far south as in 1986. High abundances of O. bartramii paralarvae in some April 1979 samples suggest that spawning was more intense in the northwestern half of the Hawaiian Archipelago. Ommastrephes bartramii is broadly distributed the possibility ofthree spawning regions in the throughout the subtropical and temperate North Pacific: one at ca. 140- 150° E long., waters of the world's oceans. In the Pacific the one at ca. 170° E long., and one between 160­ northern and southern populations are dis­ 180° W long. Additional evidence for the first continuous (Wormuth 1976). The North Pa­ site has been provided by Nakamura (1988) cific population is spread acro ss the open based on the distribution of mature females ocean, where it is fished with jigs and drift nets and by Okutani (1968) based on the presence over much of its range .
    [Show full text]