Reproduction and Early Life of the Humboldt Squid

Total Page:16

File Type:pdf, Size:1020Kb

Reproduction and Early Life of the Humboldt Squid REPRODUCTION AND EARLY LIFE OF THE HUMBOLDT SQUID A DISSERTATION SUBMITTED TO THE DEPARTMENT OF BIOLOGY AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Danielle Joy Staaf August 2010 © 2010 by Danielle Joy Staaf. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/cq221nc2303 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. William Gilly, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Mark Denny I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. George Somero Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract Dosidicus gigas, the Humboldt squid, is endemic to the eastern Pacific, and its range has been expanding poleward in recent years. It is a voracious predator of small fish and invertebrates and prominent prey for large fish and mammals, including humans. Very little is known about Humboldt squid reproduction, development, and early life stages. To study the behavior, including dispersal capabilities, of paralarval D. gigas, I analyzed video of animals swimming in the laboratory, and determined that paralarvae are active swimmers that engage in hop-and-sink behavior. Control of the mantle aperture allows them to engage in slow swimming, in which water is leaked through the mantle aperture, and fast jetting, in which the mantle aperture is tightly closed and all water is expelled through the siphon—as is typical of adult jetting. A theoretical model of squid swimming was built to study the importance of aperture control during the jet cycle. This model predicts that active reduction of the aperture during jetting increases hydrodynamic efficiency, and that squid of large sizes can constrain the risk of embolism by increasing aperture size and decreasing jet frequency to values comparable to empirical measurements. Connectivity among populations of D. gigas throughout the range of this species was assessed with a population genetic approach, in which D. gigas was compared to the co-occurring squid Sthenoteuthis oualaniensis. In D. gigas, only two weakly differentiated populations were evident, with a biogeographic break at 5-6° N. I uncovered four deeply divergent clades in S. oualaniensis, including one which aligns with previous descriptions in the literature of Sthenoteuthis sp. nov. Breaks between clades of S. oualaniensis also occurred at 5-6° N. Range overlap between these two species occurs in the eastern tropical Pacific (ETP), a region both are believed to use as spawning grounds. I looked for paralarvae of D. gigas and S. oualaniensis in surface and subsurface net tows taken in the ETP from 1998 to 2006, and found that abundance was much greater in surface than subsurface tows. I then used a Generalized Linear Model approach to assess the importance of in situ oceanographic variables as predictors of paralarval incidence. iv Sea surface temperature was found to be a strong predictor of incidence in both surface and subsurface tows, with the probability of paralarval capture rising monotonically from near zero at 15 °C to 0.9 at 30 °C. The apparent lack of paralarvae at surface temperatures below 15 °C raises a question of whether D. gigas can spawn in the temperate and even subpolar waters of its expanded range. I conducted in vitro fertilization studies and found the optimal temperature range for successful laboratory development of D. gigas is 15-25° C. v Acknowledgements Many squid were sacrificed for this research, and I only hope that the science presented here will serve to make the world a better place for their descendants, as well as my own. For support and guidance over the last six years I am grateful to all my mentors, especially my advisor, William Gilly. I’ve learned so much from six hilariously unpredictable years in his lab. Mark Denny was an endless source of advice and encouragement, and conversations with George Somero continually invigorated my work. Collaborating with John Field has always been an education and a pleasure. Rob Dunbar served as a kind and thoughtful committee chair. I truly don’t know what would have become of this thesis if not for my labmates. Ashley Booth and Julie Stewart, with their boundless generosity and good humor, made the lab a place to call home. Lou Zeidberg gave freely of his time, supplies, and sarcastic wit, and Charles Hanifin dispensed tall tales and scientific wisdom. Alex Norton has been rooting for me since day one, and Carl Elliger was always happy to process “just one more sample.” Zora Lebaric was my lab mother, and Judit Pungor my new little lab sister. Hopkins Marine Station is such a character that I want to thank it as one entity, but the individuals who make it run deserve personal mention. Judy Thompson, Doreen Zelles, Chris Patton, John Lee, Freya Sommer, Joe Wible, and Jim Watanabe have all solved problems and opened doors for me. Equally worthy of gratitude is our umbilical cord to main campus, the wonderfully friendly and competent biology student services staff: Valerie Kiszka, Jennifer Mason, and Matt Pinhiero. Eternal thanks go to all my fellow grad students, with whom I have laughed, cried, ranted and celebrated. Monthly progress meetings with Cheryl Logan kept me motivated, and spontaneous field trips with Alison Haupt always improved my mood and perspective. For taking me to the Monterey Bay Aquarium at a malleable age, and for their subsequent tolerance of pet octopuses, I am grateful to my parents, Ben and Sue vi Shulman. A special shout-out to my father for learning to scuba dive just so I would have a buddy. To my older brother Michael, whom I’ve always looked up to, even when we were the same height, and to his lovely wife Megan, thanks for getting your PhDs so I had to get mine. To my in-laws--Carmen, Carl, Diana and Clint--thanks for adopting me so readily, and being so understanding of my tilting at the PhD windmill for the entire time you’ve known me. That also goes for my husband. Anton, this thesis is for you. vii Table of Contents Abstract..........................................................................................................................iv Acknowledgements .......................................................................................................vi Table of Contents.........................................................................................................viii List of Tables ...............................................................................................................xiv List of Figures..............................................................................................................xvi Chapter 1 ........................................................................................................................ 1 INTRODUCTION 1.1. Figures.................................................................................................................. 7 Chapter 2 ........................................................................................................................ 9 THE LITTLEST SQUID: LOW REYNOLDS NUMBERS AND FUNNEL APERTURE MODIFICATION 2.1. Abstract ................................................................................................................ 9 2.2. Introduction.......................................................................................................... 9 2.3. Methods.............................................................................................................. 12 2.3.1. Animal collection ........................................................................................ 12 2.3.2. Video recording........................................................................................... 12 2.3.3. Kinematic measurements ............................................................................ 13 viii 2.3.4. Modeling ..................................................................................................... 14 2.3.5. Parameterization.......................................................................................... 19 2.4. Results................................................................................................................ 21 2.4.1. Behavior...................................................................................................... 21 2.4.2. Kinematics .................................................................................................. 22 2.4.3. Model .......................................................................................................... 24 2.5. Discussion.........................................................................................................
Recommended publications
  • A Review of Southern Ocean Squids Using Nets and Beaks
    Marine Biodiversity (2020) 50:98 https://doi.org/10.1007/s12526-020-01113-4 REVIEW A review of Southern Ocean squids using nets and beaks Yves Cherel1 Received: 31 May 2020 /Revised: 31 August 2020 /Accepted: 3 September 2020 # Senckenberg Gesellschaft für Naturforschung 2020 Abstract This review presents an innovative approach to investigate the teuthofauna from the Southern Ocean by combining two com- plementary data sets, the literature on cephalopod taxonomy and biogeography, together with predator dietary investigations. Sixty squids were recorded south of the Subtropical Front, including one circumpolar Antarctic (Psychroteuthis glacialis Thiele, 1920), 13 circumpolar Southern Ocean, 20 circumpolar subantarctic, eight regional subantarctic, and 12 occasional subantarctic species. A critical evaluation removed five species from the list, and one species has an unknown taxonomic status. The 42 Southern Ocean squids belong to three large taxonomic units, bathyteuthoids (n = 1 species), myopsids (n =1),andoegopsids (n = 40). A high level of endemism (21 species, 50%, all oegopsids) characterizes the Southern Ocean teuthofauna. Seventeen families of oegopsids are represented, with three dominating families, onychoteuthids (seven species, five endemics), ommastrephids (six species, three endemics), and cranchiids (five species, three endemics). Recent improvements in beak identification and taxonomy allowed making new correspondence between beak and species names, such as Galiteuthis suhmi (Hoyle 1886), Liguriella podophtalma Issel, 1908, and the recently described Taonius notalia Evans, in prep. Gonatus phoebetriae beaks were synonymized with those of Gonatopsis octopedatus Sasaki, 1920, thus increasing significantly the number of records and detailing the circumpolar distribution of this rarely caught Southern Ocean squid. The review extends considerably the number of species, including endemics, recorded from the Southern Ocean, but it also highlights that the corresponding species to two well-described beaks (Moroteuthopsis sp.
    [Show full text]
  • CEPHALOPODS 688 Cephalopods
    click for previous page CEPHALOPODS 688 Cephalopods Introduction and GeneralINTRODUCTION Remarks AND GENERAL REMARKS by M.C. Dunning, M.D. Norman, and A.L. Reid iving cephalopods include nautiluses, bobtail and bottle squids, pygmy cuttlefishes, cuttlefishes, Lsquids, and octopuses. While they may not be as diverse a group as other molluscs or as the bony fishes in terms of number of species (about 600 cephalopod species described worldwide), they are very abundant and some reach large sizes. Hence they are of considerable ecological and commercial fisheries importance globally and in the Western Central Pacific. Remarks on MajorREMARKS Groups of CommercialON MAJOR Importance GROUPS OF COMMERCIAL IMPORTANCE Nautiluses (Family Nautilidae) Nautiluses are the only living cephalopods with an external shell throughout their life cycle. This shell is divided into chambers by a large number of septae and provides buoyancy to the animal. The animal is housed in the newest chamber. A muscular hood on the dorsal side helps close the aperture when the animal is withdrawn into the shell. Nautiluses have primitive eyes filled with seawater and without lenses. They have arms that are whip-like tentacles arranged in a double crown surrounding the mouth. Although they have no suckers on these arms, mucus associated with them is adherent. Nautiluses are restricted to deeper continental shelf and slope waters of the Indo-West Pacific and are caught by artisanal fishers using baited traps set on the bottom. The flesh is used for food and the shell for the souvenir trade. Specimens are also caught for live export for use in home aquaria and for research purposes.
    [Show full text]
  • <I>Sthenoteuthis Oualaniensis</I>
    BULLETIN OF MARINE SCIENCE, 71(2): 1105–1108, 2002 THE AGE AND GROWTH OF STHENOTEUTHIS OUALANIENSIS (CEPHALOPODA: OMMASTREPHIDAE) IN THE PACIFIC OCEAN Kaori Takagi, Takeru Kitahara, Naoki Suzuki, Junta Mori and Akihiko Yatsu Sthenoteuthis oualaniensis is distributed in the tropical and subtropical areas of the Pacific and the Indian Oceans. According to Nesis (1993), there is a complex population structure in S. oualaniensis, as is the case in many other ommastrephids and some loliginids. In the Pacific Ocean, there is the middle-sized squid which is a widespread and typical one (Nesis, 1993). Arkhipkin and Bizikov (1991) examined the statoliths of middle-sized female in the Indian Ocean and determined its growth. S. oualaniensis is, though, one of the most difficult species in the Ommastrephidae for the observation of statolith incre- ments due to the numerous occulting crystals and weak contrast in the increments (Uozumi, 1993). Using a newly developed heating technique in processing statoliths, we estimated the age and growth of S. oualaniensis, assuming the daily deposition of increments. MATERIALS AND METHODS Samples of S. oualaniensis were collected between September and December 1993 in the Pa- cific Ocean around the Hawaii and the Ogasawara (Bonin) Islands. We used the statoliths of 53 adults (112–284 mm in mantle length (ML), 21 males and 32 females) and 112 paralarvae (0.7– 13.5 mm in ML). The adults were captured by drift nets and jigs. The paralarvae were captured by bongo nets and a larval net. To examine the relationship between ML and age, we also used 6 other juveniles (39–50 mm in ML) captured using a dip net.
    [Show full text]
  • Redalyc.Subcutaneous Photophores in the Jumbo Squid Dosidicus Gigas
    Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Lohrmann, Karin B. Subcutaneous photophores in the jumbo squid Dosidicus gigas (d'Orbigny, 1835) (Cephalopoda: Ommastrephidae) Revista de Biología Marina y Oceanografía, vol. 43, núm. 2, agosto, 2008, pp. 275-284 Universidad de Valparaíso Viña del Mar, Chile Disponible en: http://www.redalyc.org/articulo.oa?id=47943205 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista de Biología Marina y Oceanografía 43(2): 275-284, agosto de 2008 Subcutaneous photophores in the jumbo squid Dosidicus gigas (d’Orbigny, 1835) (Cephalopoda: Ommastrephidae) Fotóforos subcutáneos en el calamar gigante Dosidicus gigas (d’Orbigny, 1835) (Cephalopoda: Ommastrephidae) Karin B. Lohrmann1 1Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile. Larrondo 1281, Coquimbo, Chile [email protected] Resumen.- En Dosidicus gigas se observaron pequeñas Abstract.- In Dosidicus gigas small pale yellow ovoid inclusiones de color amarillo pálido embebidas a distintas inclusion bodies corresponded to subcutaneous photophores, profundidades en el músculo del manto, las que corresponden which were embedded in the mantle muscle, at differing depths. a fotóforos. A nivel histológico los fotóforos están formados At the histological level the photophores were composed of a por un tejido fotogenerador, que se tiñe de color naranja intenso photogenic tissue, which stained bright orange with Mallory con tinción tricrómica de Mallory y un tejido vacuolar, que lo triple stain.
    [Show full text]
  • Length-Weight Relationship of Neon Flying Squid Ommastrephes Bartramii (Cephalopoda: Ommastrephidae) Caught from Indian Sector of Southern Ocean
    Indian Journal of Geo-Marine Science Vol. 43(8), August 2014, pp 1581-1584 Length-weight relationship of neon flying squid Ommastrephes bartramii (Cephalopoda: Ommastrephidae) caught from Indian sector of Southern Ocean. *Aneesh Kumar K. V1#., Pravin P1., Ragesh N2 & Meenakumari B3. 1Central Institute of Fisheries Technology, Matsyapuri, Willingdon Island. Cochin-682029, India, 2Central Marine Fisheries Research Institute, Cochin- 682018, India, 3Indian Council of Agricultural Research, Krishi Anusandhan Bhavan 2, New Delhi-110012, India #Present address: Centre for Marine Living Resources and Ecology Kendriya Bhavan, CSEZ P.O., Cochin-682037, India *[E. Mail: [email protected]] Received 1 July 2013; revised 7 August 2013 Length-weight relationship of the Neon flying squid Ommastrephes bartramii, caught from the Indian Sector of Southern Ocean was estimated as male W= 0.0235 L 3.05 (R2 = 0.990719) and females W= 0.0283 L 2.99 (R2 = 0.919944). The species follows an isometric growth pattern and no significant difference was observed between both sexes. [Key words: Length- Weight Relation, Squid, Ommastrephes bartramii, Southern Ocean] Introduction Ommastrephes bartramii (Lesueur, 1821) is a morphometric characters gives a better idea for widely distributed oceanic ommastrephid species understanding the relationship between the species throughout the subtropical and temperate waters of and to compare same species in different both northern and southern hemisphere and geographical areas8. The study of the individual excluded from the equatorial waters of all three growth pattern gives an insight about the population oceans1 and forms a major fishery in the Japanese dynamics of the species such as growth and squid fisheries in the Pacific Ocean2.
    [Show full text]
  • Unit 3: Developmental Biology By; Dr
    5TH SEM GENERAL UNIT 3: DEVELOPMENTAL BIOLOGY BY; DR. LUNA PHUKAN GAMETOGENESIS: SPERMATOGENESIS AND OOGENESIS Gametogenesis occurs when a haploid cell (n) is formed from a diploid cell (2n) through meiosis. We call gametogenesis in the male spermatogenesis and it produces spermatozoa. In the female, we call it oogenesis. It results in the formation of ova. An organism undergoes a series of changes throughout its life cycle. Gametogenesis (spermatogenesis and oogenesis), plays a crucial role in humans to support the continuance of generations. Gametogenesis is the process of division of diploid cells to produce new haploid cells. In humans, two different types of gametes are present. Male gametes are called sperm and female gametes are called the ovum. Spermatogenesis: Sperm formation Oogenesis: Ovum formation The process of gametogenesis occurs in the gonads and involves the following steps: Multiple mitotic divisions and cell growth of precursor germ cells • Two meiotic divisions (meiosis I and II) to produce haploid daughter cells • Differentiation of the haploid daughter cells to produce functional gametes Spermatogenesis • Spermatogenesis describes the producton of spermatozoa (sperm) in the seminiferous tubules of the testes • The process begins at puberty when the germline epithelium of the seminiferous tubules divides by mitosis • These cells (spermatogonia) then undergo a period of cell growth, becoming spermatocytes • The spermatocytes undergo two meiotic divisions to form four haploid daughter cells (spermatids) • The spermatids
    [Show full text]
  • The Role of Jelly Coats in Sperm-Egg Encounters, Fertilization Success, and Selection on Egg Size in Broadcast Spawners
    vol. 157, no. 6 the american naturalist june 2001 The Role of Jelly Coats in Sperm-Egg Encounters, Fertilization Success, and Selection on Egg Size in Broadcast Spawners Gregory S. Farley* and Don R. Levitan† Department of Biological Science, Florida State University, 1996a, 1998b; Coma and Lasker 1997). The proposed mech- Tallahassee, Florida 32306-1100 anism generating this result is simply that larger egg targets are more likely to be struck by swimming sperm (Rothschild Submitted February 2, 2000; Accepted January 19, 2001 and Swann 1949, 1951; Vogel et al. 1982). This finding has generated the hypothesis that sperm availability can influ- ence the evolutionary trade-off between egg size and num- ber (Levitan 1993, 1996a, 1996b, 1998a, 1998b). However, abstract: Sperm limitation may be an important selective force the idea that fertilization kinetics might influence this trade- influencing gamete traits such as egg size. The relatively inexpensive off has been challenged because of the notion that extra- extracellular structures surrounding many marine invertebrate eggs might serve to enhance collision rates without the added cost of cellular structures or chemoattractants may increase sperm- increasing the egg cell. However, despite decades of research, the egg collisions yet may not represent as great a cost to effects of extracellular structures on fertilization have not been con- fecundity as the trade-off associated with increased egg size clusively documented. Here, using the sea urchin Lytechinus varie- (Podolsky and Strathmann 1996; Styan 1998). These con- gatus, we remove jelly coats from eggs, and we quantify sperm col- tradictory ideas have not been resolved because data de- lisions to eggs with jelly coats, eggs without jelly coats, and inert tailing the influence of extracellular materials on fertilization plastic beads.
    [Show full text]
  • Making Ends Meet in the Ross
    Water & Atmosphere 16(2) 2008 Marine Ecosystems Making ends meet in the Ross Sea Matt Pinkerton, Janet Bradford-Grieve, and Stuart Hanchet are developing a mass-balance model to learn how animals fit together in the Ross Sea ecosystem. fter braving some of the worst sea ice in decades, NIWA scientists returned in late March from a seven- Aweek voyage to the Ross Sea region of Antarctica. Among our goals for the voyage was to learn more about the region’s predator–prey links and the abundance of some important and poorly understood species. Antarctica's unique ecosystems Compared to temperate regions, the waters of the Southern n o rt e Ocean have low primary productivity – the production k in P t of organic matter by plants that is the basis of marine food at M e: webs. In temperate waters, like those around New Zealand, ag Im phytoplankton grows during most of the year. But in the Ross Sea there’s a long period between late May and mid July when the region is in 24-hour darkness and no plants can grow. The Based on data from NASA satellites, this image shows the phyto- plankton concentration in the Ross Sea. High concentrations are year’s entire primary production happens in brief events in the shown in green and red, lower concentrations are blue and purple. spring and summer, and these bursts of high productivity are (Data used courtesy of NASA.) often very localised. Another challenge for Antarctic animals is the dramatic change through the year to the available of the larger, mobile animals leave the region completely during environment, as sea ice forms in the autumn and then melts winter, including minke whales, most seals, petrels, and Adélie in the spring.
    [Show full text]
  • Forage Fish Management Plan
    Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis ....................................................................................................................................
    [Show full text]
  • SEASONAL OCCURRENCES of HUMBOLDT SQUID (DOSIDICUS GIGAS) in the NORTHERN CALIFORNIA CURRENT SYSTEM Marisa N
    LITZ ET AL.: SEASONAL OCCURENCES OF HUMBOLDT SQUID CalCOFI Rep., Vol. 52, 2011 SEASONAL OCCURRENCES OF HUMBOLDT SQUID (DOSIDICUS GIGAS) IN THE NORTHERN CALIFORNIA CURRENT SYSTEM MARISA N. C. LITZ AND A. JASON PHILLIPS RICHARD D. BRODEUR AND ROBERT L. EMMETT Cooperative Institute for Marine Resources Studies Estuarine and Ocean Ecology Program Oregon State University NOAA Fisheries Northwest Fisheries Science Center 2030 Marine Science Drive Newport Research Station Newport, OR 97365 2032 SE OSU Drive Tel. 541-867-0148 Newport, OR 97365 Fax: 541-867-0389 Email: [email protected] ABSTRACT est absolute growth rates of any squid species. In recent Recent visits by Humboldt squid (Dosidicus gigas) to years off the U.S. West Coast, Humboldt squid appear to the northern California Current system (CCS) were overlap in time and space with commercially important suggested to be related to larger climatic events such as species such as Pacific hake (Merluccius productus), Pacific El Niño, global warming, and expansion and shoaling sardine (Sardinops sagax), and rockfish (Sebastes spp.), and of the oxygen minimum zone. Due to their plasticity in are of major interest because of their potential ecosystem foraging behavior, coupled with an increased availabil- impacts (Field et al. 2007; Holmes et al. 2008). ity of prey resources, these excursions may also represent Humboldt squid invaded waters off southern and cen- opportunistic foraging explorations. Fisheries-indepen- tral California in large numbers during the mid-1930s dent surveys initiated by the Northwest Fisheries Sci- (Clark and Phillips 1936) then were virtually or totally ence Center in 1998 first encountered Humboldt squid absent until a short period in the mid-1970s, then virtu- in coastal waters off central Oregon and Washington in ally absent again until the 1990s (Field et al.
    [Show full text]
  • Phylum MOLLUSCA Chitons, Bivalves, Sea Snails, Sea Slugs, Octopus, Squid, Tusk Shell
    Phylum MOLLUSCA Chitons, bivalves, sea snails, sea slugs, octopus, squid, tusk shell Bruce Marshall, Steve O’Shea with additional input for squid from Neil Bagley, Peter McMillan, Reyn Naylor, Darren Stevens, Di Tracey Phylum Aplacophora In New Zealand, these are worm-like molluscs found in sandy mud. There is no shell. The tiny MOLLUSCA solenogasters have bristle-like spicules over Chitons, bivalves, sea snails, sea almost the whole body, a groove on the underside of the body, and no gills. The more worm-like slugs, octopus, squid, tusk shells caudofoveates have a groove and fewer spicules but have gills. There are 10 species, 8 undescribed. The mollusca is the second most speciose animal Bivalvia phylum in the sea after Arthropoda. The phylum Clams, mussels, oysters, scallops, etc. The shell is name is taken from the Latin (molluscus, soft), in two halves (valves) connected by a ligament and referring to the soft bodies of these creatures, but hinge and anterior and posterior adductor muscles. most species have some kind of protective shell Gills are well-developed and there is no radula. and hence are called shellfish. Some, like sea There are 680 species, 231 undescribed. slugs, have no shell at all. Most molluscs also have a strap-like ribbon of minute teeth — the Scaphopoda radula — inside the mouth, but this characteristic Tusk shells. The body and head are reduced but Molluscan feature is lacking in clams (bivalves) and there is a foot that is used for burrowing in soft some deep-sea finned octopuses. A significant part sediments. The shell is open at both ends, with of the body is muscular, like the adductor muscles the narrow tip just above the sediment surface for and foot of clams and scallops, the head-foot of respiration.
    [Show full text]
  • Peruvian Humboldt Current System J
    3rd Meeting of the Scientific Committee Port Vila, Vanuatu 28 September - 3 October 2015 SC-03-27 Main Biological and fishery aspects of the Jumbo squid in the Peruvian Humboldt Current System J. Csirke, A. Alegre, J. Argüelles, R. Guevara-Carrasco, L. Mariátegui, M. Segura, R. Tafúr & C. Yamashiro South Pacific Regional Fisheries Management Organisation 28 Aug 15 3rd Meeting of the Scientific Committee SC-03-17 Port Vila, Vanuatu, 28 September - 3 October 2015 Main biological and fishery aspects of the jumbo squid (Dosidicus gigas) in the Peruvian Humboldt Current System by Jorge Csirke, Ana Alegre, Juan Argüelles, Renato Guevara-Carrasco, Luís Mariátegui, Marceliano Segura, Ricardo Tafúr and Cármen Yamashiro Instituto del Mar del Perú (IMARPE), Chucuito, Callao, Perú Summary Jumbo squid (Dosidicus gigas) is found in high abundance along the whole Peruvian coast from 10 to more than 500 nm from the coast. Performs diel vertical migrations from 0 to more than 650 m depth, and regular inshore-offshore ontogenetic migrations and less regular latitudinal migrations of several hundred miles. Younger and/or smaller jumbo squids predominate in oceanic waters, while larger jumbo squids are more neritic. Maintains some reproductive activity all year round, with increased reproductive activity from July to February and peaks between October and January. Life span is usually one year, although some specimens can live up to two years. Slight differences in the age or size of sexual maturity and main distribution areas suggests that there are least three strains, groups or population subunits of jumbo squid inhabiting the Peruvian Humboldt Current System. Is a very aggressive predator and prey availability seems to be more important than temperature or other environmental parameters in shaping its geographic distribution.
    [Show full text]