Influence of Environmental Factors on Population Structure of Arrow Squid Nototodarus Gouldi: Implications for Stock Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Influence of Environmental Factors on Population Structure of Arrow Squid Nototodarus Gouldi: Implications for Stock Assessment INFLUENCE OF ENVIRONMENTAL FACTORS ON POPULATION STRUCTURE OF ARROW SQUID NOTOTODARUS GOULDI: IMPLICATIONS FOR STOCK ASSESSMENT COREY PAUL GREEN, BAPPSC (FISHERIES) SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF TASMANIA OCTOBER 2011 Arrow squid Nototodarus gouldi (McCoy, 1888) (Courtesy of Robert Ingpen, 1974) FRONTISPIECE DECLARATION STATEMENT OF ORIGINALITY This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of the my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. ………………………………………….…. 28th October 2011 Corey Paul Green Date AUTHORITY OF ACCESS This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. ………………………………………….…. 28th October 2011 Corey Paul Green Date I ACKNOWLEDGEMENTS This thesis assisted in fulfilling the objectives of the Fisheries Research and Development Corporation Project No. 2006/012 ―Arrow squid — stock variability, fishing techniques, trophic linkages — facing the challenges‖. Without such assistance this thesis would not have come to fruition. Research on statolith element composition was kindly funded by the Holsworth Wildlife Research Endowment (HWRE), and provided much information on arrow squid lifecycles. The University of Tasmania (UTAS), the Victorian Marine Science Consortium (VMSC) and the Department of Primary Industries — Fisheries Victoria, assisted in providing laboratories, desks and utilities, as well as offering a wonderful and inviting working environment. I was fortunate enough to receive the VMSC Postgraduate of the Year Award in 2008 with prize money used to fund research and attend conferences. The UTAS Graduate Research Office and the HWRE provided financial assistance to attend at the Cephalopod International Advisory Council Symposium in Spain; whereas the Tasmanian Brach of the Australian Marine Science Association (AMSA) provided a student grant to attend the AMSA conference in 2009. I would like to thank my two co-supervisors, Prof. Natalie Moltschaniwskyj and Dr. Patti Virtue. They provided enormous scientific, managerial and administrative support. Their encouragement and willingness to help, kept me focused throughout the candidature. I‘m also grateful to George Jackson for establishing the FRDC project and giving me a wonderful opportunity to learn, experience, and enjoy many facets of a candidature. Thank you to Simon Wotherspoon for the numerous 1:00 am emails which explained statistical analyses in a logical manner. Simon Robertson was fundamental in providing advice and software for statolith shape analyses. Dr. Terry Walker has been highly influential by providing scientific advice and Dr. David Smith has provided direction and encouragement throughout my candidature and research career. Heidi Pethybridge was vital in providing supplementary information on ecosystem modelling and diet of arrow squid. Without the contribution and willingness from the commercial fishing sector, no squid would have been collected for this research. In particular, thanks go to II Tony Bennett (San Tangaroa), Lisle Ellaway (Veteran) and John Edgar (Jumanji); also operators of the fishing vessels Zeehaan, Moira Elizabeth, Silver Phoenix and Racovolis Fisheries for supplying arrow squid. The Australian Fisheries Management Authority, Graeme Cottier, Paul McCoy and Lauren Brown were pivotal in organising commercial fishing data and squid samples. Many other people are to be acknowledged for their involvement in laboratory processing and data collection including Andrew Brown, Ruth Casper, Alistair Hobday, Matt Koopman, Khyalla Morgan, Anne-Elise Nieblas, Tim Smith, Fabian Trinnie, Emma Woodcock and Kimberly Young. Dr. Paul Hamer and Dr. Jodie Kemp provided training and assistance in using the inductively couple plasma mass spectrophotometer used for statolith element analyses, and assisted in the extraction and interpretation of data. Allister Coots provided maps of sampling areas. I could not have completed this candidature without the inspiration and support from my parents and friends who often provided encouragement and advice when I needed it most. However, my greatest source of inspiration has come from my family. My amazing wife Sharon and two wonderful children, Montana (11) and Hamish (7), have endured so many of my ups and downs; however, have always given their unquestionable love, support and encouragement for which I‘m eternally grateful. III ABSTRACT As separate stocks within a fishery can function differently, ensuring sustainability of each is fundamental when establish or refining management regulations and relies on a firm comprehension of the biological, recruitment, growth, predator-prey, and mortality characteristics in response to environmental factors and fishing pressure. The aim of this study was to analyse the population structure, recruitment variability, migratory characteristics, and catch composition of the arrow squid Nototodarus gouldi collected in the Great Australian Bight (GAB) and Victoria from 2007 – 2009. Nototodarus gouldi is a common oceanic ommastrephid found in waters of southern Australia and are considered commercially and ecologically important. Although research on N. gouldi has already provided biological and population characteristics for fisheries assessments, better estimates of temporal and spatial variability of population structure and the processes responsible are required. Completing their lifecycle in less than one year, N. gouldi exhibited substantial variability in growth, spatial distribution, and recruitment; processes considered to be highly influenced by environment and oceanic factors such as water temperature and productivity. Comparing statolith shape and biological characteristics from squid collected in Victoria to squid collected in the GAB suggested significant phenotypic heterogeneity in stocks; whereas statolith elemental composition analysis indicated that N. gouldi caught at either location hatch throughout their distribution. Both male and female N. gouldi grew faster and were larger in cooler waters off Victoria compared with warmer waters of the GAB. The correlation of sea surface temperature (SST) with growth showed that juveniles experiencing greater SST resulted in slower growth in the GAB; however, juveniles experiencing greater SST had faster growth in Victoria. Distribution of hatch dates calculated from statolith age estimates suggested that N. gouldi collected in Victoria and the GAB during 2007 – 2009 hatch year round with peaks of greater recruitment. Comparing the catch composition of N. gouldi caught inshore from the jig fishery to squid caught offshore from the trawl fishery using measures of size and growth suggested that squid caught inshore by jiggers were larger, consisted of more males than females, and had a greater percentage of mature females. However, statolith elemental composition from N. gouldi collected at IV inshore and offshore locations was likely to be driven by uniform ocean water chemistry and squid physiological processes. Based on biology, reproductive, recruitment, and growth characteristics of N. gouldi found in southern Australia, current fishing effort is unlikely to jeopardize the sustainability of the resource. V TABLE OF CONTENTS 1. GENERAL INTRODUCTION ..................................................................................... 15 Population dynamics and assessment of fisheries resources .......................... 15 Fundamentals of fisheries stock assessment .................................................. 16 Importance, population dynamics, assessment, and sustainability of cephalopods .................................................................................................... 19 A review of Nototodarus gouldi biology and ecology — addressing the knowledge gaps ........................................................................................ 24 The Nototodarus gouldi fishery — History, techniques, and catch ............... 26 Assessment and management of the Nototodarus gouldi fishery .................. 30 Thesis aims and structure ............................................................................... 31 2. AN ANALYSIS OF SPATIAL AND TEMPORAL POPULATION STRUCTURE OF ARROW SQUID NOTOTODARUS GOULDI FROM SOUTHERN AUSTRALIA USING STATOLITH ELEMENTAL COMPOSITION AND SHAPE ................................................. 33 Abstract .......................................................................................................... 33 Introduction .................................................................................................... 34 Methods .......................................................................................................... 38 Results ............................................................................................................ 53 Discussion ...................................................................................................... 59 3. GROWTH AND REPRODUCTIVE VARIABILITY OF ARROW SQUID NOTOTODARUS GOULDI FROM SOUTHERN AUSTRALIAN WATERS IN RELATION TO ENVIRONMENTAL AND OCEANOGRAPHIC FACTORS ............................................ 68 Abstract
Recommended publications
  • Nagroda Im. H. Ch. Andersena Nagroda
    Nagroda im. H. Ch. Andersena Nagroda za wybitne zasługi dla literatury dla dzieci i młodzieży Co dwa lata IBBY przyznaje autorom i ilustratorom książek dziecięcych swoje najwyższe wyróżnienie – Nagrodę im. Hansa Christiana Andersena. Otrzymują ją osoby żyjące, których twórczość jest bardzo ważna dla literatury dziecięcej. Nagroda ta, często nazywana „Małym Noblem”, to najważniejsze międzynarodowe odznaczenie, przyznawane za twórczość dla dzieci. Patronem nagrody jest Jej Wysokość, Małgorzata II, Królowa Danii. Nominacje do tej prestiżowej nagrody zgłaszane są przez narodowe sekcje, a wyboru laureatów dokonuje międzynarodowe jury, w którego skład wchodzą badacze i znawcy literatury dziecięcej. Nagrodę im. H. Ch. Andersena zaczęto przyznawać w 1956 roku, w kategorii Autor, a pierwszy ilustrator otrzymał ją dziesięć lat później. Na nagrodę składają się: złoty medal i dyplom, wręczane na uroczystej ceremonii, podczas Kongresu IBBY. Z okazji przyznania nagrody ukazuje się zawsze specjalny numer czasopisma „Bookbird”, w którym zamieszczane są nazwiska nominowanych, a także sprawozdanie z obrad Jury. Do tej pory żaden polski pisarz nie otrzymał tego odznaczenia, jednak polskie nazwisko widnieje na liście nagrodzonych. W 1982 roku bowiem Małego Nobla otrzymał wybitny polski grafik i ilustrator Zbigniew Rychlicki. Nagroda im. H. Ch. Andersena w 2022 r. Kolejnych zwycięzców nagrody im. Hansa Christiana Andersena poznamy wiosną 2022 podczas targów w Bolonii. Na długiej liście nominowanych, na której jest aż 66 nazwisk z 33 krajów – 33 pisarzy i 33 ilustratorów znaleźli się Marcin Szczygielski oraz Iwona Chmielewska. MARCIN SZCZYGIELSKI Marcin Szczygielski jest znanym polskim pisarzem, dziennikarzem i grafikiem. Jego prace były publikowane m.in. w Nowej Fantastyce czy Newsweeku, a jako dziennikarz swoją karierę związał również z tygodnikiem Wprost oraz miesięcznikiem Moje mieszkanie, którego był redaktorem naczelnym.
    [Show full text]
  • Trace Element Analysis Reveals Bioaccumulation in the Squid Gonatus Fabricii from Polar Regions of the Atlantic Ocean A
    Trace element analysis reveals bioaccumulation in the squid Gonatus fabricii from polar regions of the Atlantic Ocean A. Lischka, T. Lacoue-Labarthe, P. Bustamante, U. Piatkowski, H.J.T. Hoving To cite this version: A. Lischka, T. Lacoue-Labarthe, P. Bustamante, U. Piatkowski, H.J.T. Hoving. Trace element analysis reveals bioaccumulation in the squid Gonatus fabricii from polar regions of the Atlantic Ocean. Envi- ronmental Pollution, Elsevier, 2020, 256, pp.113389. 10.1016/j.envpol.2019.113389. hal-02412742 HAL Id: hal-02412742 https://hal.archives-ouvertes.fr/hal-02412742 Submitted on 15 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Trace element analysis reveals bioaccumulation in the squid Gonatus fabricii from polar regions of the Atlantic Ocean A. Lischka1*, T. Lacoue-Labarthe2, P. Bustamante2, U. Piatkowski3, H. J. T. Hoving3 1AUT School of Science New Zealand, Auckland University of Technology, Private Bag 92006, 1142, Auckland, New Zealand 2 Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France 3 GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany *corresponding author: [email protected] 1 Abstract: The boreoatlantic gonate squid (Gonatus fabricii) represents important prey for top predators—such as marine mammals, seabirds and fish—and is also an efficient predator of crustaceans and fish.
    [Show full text]
  • Marine Fish Conservation Global Evidence for the Effects of Selected Interventions
    Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca0 K. Smith & William J. Sutherland CONSERVATION EVIDENCE SERIES SYNOPSES Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca K. Smith and William J. Sutherland Conservation Evidence Series Synopses 1 Copyright © 2021 William J. Sutherland This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the authors (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Taylor, N., Clarke, L.J., Alliji, K., Barrett, C., McIntyre, R., Smith, R.K., and Sutherland, W.J. (2021) Marine Fish Conservation: Global Evidence for the Effects of Selected Interventions. Synopses of Conservation Evidence Series. University of Cambridge, Cambridge, UK. Further details about CC BY licenses are available at https://creativecommons.org/licenses/by/4.0/ Cover image: Circling fish in the waters of the Halmahera Sea (Pacific Ocean) off the Raja Ampat Islands, Indonesia, by Leslie Burkhalter. Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/
    [Show full text]
  • Advance and Unedited Reporting Material for the Resumed Review
    Advance and unedited reporting material for the resumed Review Conference on the Agreement for the Implementation of the Provisions of the United Nations Convention on the Law of the Sea of 10 December 1982 relating to the Conservation and Management of Straddling Fish Stocks and Highly Migratory Fish Stocks (New York, 23-27 May 2016) (English only) Summary The present report has been prepared in response to the request made to the Secretary-General, in paragraph 41 of General Assembly resolution 69/109, to submit to the resumed Review Conference on the Agreement for the Implementation of the Provisions of the United Nations Convention on the Law of the Sea of 10 December 1982 relating to the Conservation and Management of Straddling Fish Stocks and Highly Migratory Fish Stocks (the Agreement) an updated comprehensive report, prepared in cooperation with the Food and Agriculture Organization of the United Nations (FAO), to assist the Conference in discharging its mandate under article 36, paragraph 2, of the Agreement. It is also based on information provided by States and regional fisheries management organizations and arrangements and other related bodies, in response to a questionnaire circulated in March 2015. The report provides an update of information contained in the reports of the Secretary-General to the Review Conference in 20061 and 2010. 2 1 A/CONF.210/2006/1. 2 A/CONF.210/2010/1. Contents Page Abbreviations .............................................................. I. Introduction................................................................ II. Overview of the status and trends of straddling fish stocks and highly migratory fish stocks, discrete high seas stocks and non-target, associated and dependent species ........................
    [Show full text]
  • Variations in the Diet Composition and Feeding Intensity of Mackerel Icefish Champsocephalus Gunnariat South Georgia (Antarctic)
    MARINE ECOLOGY PROGRESS SERIES Published May 12 Mar. Ecol. Prog. Ser. Variations in the diet composition and feeding intensity of mackerel icefish Champsocephalus gunnari at South Georgia (Antarctic) K.-H. Kock l, S. Wilhelms 2, I. Everson3, J. Groger 'Institut fiir Seefischerei, Bundesforschungsanstalt fur Fischerei, Palmaille 9, D-22767 Hamburg, Germany 'Deutsches Ozeanographisches Datenzentrum, Bundesamt fiir Seeschiffahrt und Hydrographie, Bernhard-Nocht StraOe, D-20359 Hamburg, Germany 3British Antarctic Survey, High Cross Madingley Road, Cambridge CB3 OET. United Kingdom 41nstitut fur Ostseefischerei, Bundesforschungsanstalt fiir Fischerei, An der Jlgerbak 2, D-18069 Rostock, Germany ABSTRACT. The diet composition and feeding intensity of mackerel icefish Champsocephalus gunnari around Shag Rocks and the mainland of South Georgia was analyzed from ca 8700 stomachs collected in January/February 1985, January/February 1991 and January 1992. Main prey items were krill Euphausia superba, the amphipod hyperiid Themisto gaudrchaudii, mysids (primarily Antarctomysis maxima), and in 1985 also Thysanoessa species The proportion of krill and 7: gaudichaudii in the diet varied considerably among the 3 years, whereas the proportion of mysids in the diet rema~nedfairly constant. Krill appears to be the preferred food. In years of krill shortage, such as in 1991, krill was replaced by 7: gaudichaudii. The occurrence of krill in the diet in 1991 was among the lowest within a 28 yr period of investigation. Variation in food composition among sampling sites was high. This high variat~onappears to be primarily associated with differences in prey availability, but much less with prey size selectivity. Feeding intensity varied considerably among seasons. It was highest in 1992.
    [Show full text]
  • Age-Length Composition of Mackerel Icefish (Champsocephalus Gunnari, Perciformes, Notothenioidei, Channichthyidae) from Different Parts of the South Georgia Shelf
    CCAMLR Scieilce, Vol. 8 (2001): 133-146 AGE-LENGTH COMPOSITION OF MACKEREL ICEFISH (CHAMPSOCEPHALUS GUNNARI, PERCIFORMES, NOTOTHENIOIDEI, CHANNICHTHYIDAE) FROM DIFFERENT PARTS OF THE SOUTH GEORGIA SHELF G.A. Frolkina AtlantNIRO 5 Dmitry Donskoy Street Kaliningrad 236000, Russia Email - atlantQbaltnet.ru Abstract Biostatistical data obtained by Soviet research and commercial vessels from 1970 to 1991 have been used to determine tlne age-length composition of mackerel icefish (Chnnzpsoceplzalus g~~izllnrl)from different parts of the South Georgia area. An analysis of the spatial distribution of C. giirzrznri size and age groups over the eastern, northern, western and soutlnern parts of tlne shelf, and near Shag Rocks, revealed a similar age-leingtl~composition for young fish inhabiting areas to the west of the island and near Shag Rocks. Differences were observed between those t~7ogroups and the easterin group. The larger number of mature fish in the west is related to the migration of maturing individuals from the eastern and western parts of the area. It is implied that part of tlne western group migrates towards Shag Rocks at the age of 2-3 years. It has been found that, by number, recruits represent the largest part of tlne population, whether a fishery is operating or not. As a result of this, as well as the species' ability to live not only in off- bottom, but also in pelagic waters, an earlier age of sexual maturity compared to other nototheniids, and favourable oceanographic conditions, the C. g~lrliznrl stock could potentially recover quickly from declines in stock size and inay become abundant in the area, as has bee11 demonstrated on several occasions in the 1970s and 1980s.
    [Show full text]
  • Phylum MOLLUSCA Chitons, Bivalves, Sea Snails, Sea Slugs, Octopus, Squid, Tusk Shell
    Phylum MOLLUSCA Chitons, bivalves, sea snails, sea slugs, octopus, squid, tusk shell Bruce Marshall, Steve O’Shea with additional input for squid from Neil Bagley, Peter McMillan, Reyn Naylor, Darren Stevens, Di Tracey Phylum Aplacophora In New Zealand, these are worm-like molluscs found in sandy mud. There is no shell. The tiny MOLLUSCA solenogasters have bristle-like spicules over Chitons, bivalves, sea snails, sea almost the whole body, a groove on the underside of the body, and no gills. The more worm-like slugs, octopus, squid, tusk shells caudofoveates have a groove and fewer spicules but have gills. There are 10 species, 8 undescribed. The mollusca is the second most speciose animal Bivalvia phylum in the sea after Arthropoda. The phylum Clams, mussels, oysters, scallops, etc. The shell is name is taken from the Latin (molluscus, soft), in two halves (valves) connected by a ligament and referring to the soft bodies of these creatures, but hinge and anterior and posterior adductor muscles. most species have some kind of protective shell Gills are well-developed and there is no radula. and hence are called shellfish. Some, like sea There are 680 species, 231 undescribed. slugs, have no shell at all. Most molluscs also have a strap-like ribbon of minute teeth — the Scaphopoda radula — inside the mouth, but this characteristic Tusk shells. The body and head are reduced but Molluscan feature is lacking in clams (bivalves) and there is a foot that is used for burrowing in soft some deep-sea finned octopuses. A significant part sediments. The shell is open at both ends, with of the body is muscular, like the adductor muscles the narrow tip just above the sediment surface for and foot of clams and scallops, the head-foot of respiration.
    [Show full text]
  • An Introduction to Coastal and Marine Biodiversity and Ecosystem Services
    Ministry of Environment, Forest and Climate Change, Government of India Curriculum on Coastal and Marine Biodiversity and Protected Area Management Module 1 An Introduction to Coastal and Marine Biodiversity and Ecosystem Services For Field-Level MPA Managers Imprint Training Resource Material: Coastal and Marine Biodiversity and Protected Area Management for Field-Level MPA Managers Module 1: An Introduction to Coastal and Marine Biodiversity and Ecosystem Services Module 2: Coastal and Marine Biodiversity and Ecosystems Services in the Overall Environment and Development Context Module 3: Mainstreaming Coastal and Marine Biodiversity into Overall Development and Environmental Planning Module 4: Coastal and Marine Protected Areas and Sustainable Fisheries Management Module 5: Governance, Law and Policies for Managing Coastal and Marine Ecosystems, Biodiversity and Protected Areas Module 6: Assessment and Monitoring of Coastal and Marine Biodiversity and Relevant Issues Module 7: Effective Management Planning of Coastal and Marine Protected Areas Module 8: Communicating Coastal and Marine Biodiversity Conservation and Management Issues ISBN 978-81-933282-1-7 October 2015 Published by: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Wildlife Institute of India (WII) Indo-German Biodiversity Programme P.O. Box 18, Chandrabani A-2/18, Safdarjung Enclave Dehradun 248001 New Delhi 110029, India Uttarakhand, India T +91-11-4949 5353 T +91-135-2640 910 E [email protected] E [email protected] W http://www.indo-germanbiodiversity.com W www.wii.gov.in GIZ is a German government-owned not-for-profit enterprise supporting sustainable development. This training resource material has been developed under the Human Capacity Development component of the project ‘Conservation and Sustainable Management of Existing and Potential Coastal and Marine Protected Areas (CMPA)’, under the Indo-German Biodiversity Programme, in partnership with the Ministry of Environment, Forest and Climate Change (MoEFCC), Government of India.
    [Show full text]
  • Forecasting Quantity of Displaced Fishing Part 2: Catchmapper - Mapping EEZ Catch and Effort
    Forecasting quantity of displaced fishing Part 2: CatchMapper - Mapping EEZ catch and effort New Zealand Aquatic Environment and Biodiversity Report No. 200 T A Osborne ISSN 1179-6480 (online) ISBN 978-1-77665-916-6 (online) June 2018 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-and-resources/publications http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright – Fisheries New Zealand Table of Contents Table of Contents Executive Summary 1 1.1 Objectives of report 2 2. Summary of CatchMapper Objects 2 2.1 Raster Image Library 3 3. Data preparation. 7 3.1 Data Tables 7 3.2 Fix broken links to landings table 8 3.3 Fishing year derived where date is missing. 8 3.4 Some Fishing Types not included 8 3.5 Species Codes standardised 8 3.6 Missing statistical areas 9 3.7 Missing Fishing Method Codes 10 3.8 Combine units of catch 10 3.9 Classification of fishing events 11 3.10 Grooming Landings Points 14 3.11 Add New Variables 14 4. Building Fishing Event Polygons 18 4.1 Clipping closed areas out of fishing polygons 18 4.2 Trawl and SSL lines 19 4.3 Set Lining: 21 4.4 Set Netting: 23 4.5 Purse and Danish seining 24 4.6 Squid jigging 26 4.7 Low Spatial Resolution Fishing Polygons 27 5.
    [Show full text]
  • University of Groningen Frozen Desert Alive Flores, Hauke
    University of Groningen Frozen desert alive Flores, Hauke IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2009 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Flores, H. (2009). Frozen desert alive: The role of sea ice for pelagic macrofauna and its predators. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 26-09-2021 Sorting samples. In the foreground: Antarctic krill Euphausia superba. CHAPTER 2 Diet of two icefish species from the South Shetland Islands and Elephant Island, Champsocephalus gunnari and Chaenocephalus aceratus in 2001 ‐ 2003 Hauke Flores, Karl‐Herman Kock, Sunhild Wilhelms & Christopher D. Jones Abstract The summer diet of two species of icefishes (Channichthyidae) from the South Shetland Islands and Elephant Island, Champsocephalus gunnari and Chaenocephalus aceratus, was investigated from 2001 to 2003.
    [Show full text]
  • In the Loliginid Squid Alloteuthis Subulata and Loligo Vulgaris
    The Journal of Experimental Biology 204, 2103–2118 (2001) 2103 Printed in Great Britain © The Company of Biologists Limited 2001 JEB3380 REFLECTIVE PROPERTIES OF IRIDOPHORES AND FLUORESCENT ‘EYESPOTS’ IN THE LOLIGINID SQUID ALLOTEUTHIS SUBULATA AND LOLIGO VULGARIS L. M. MÄTHGER1,2,* AND E. J. DENTON1 1The Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK and 2Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK *e-mail: [email protected] Accepted 27 March 2001 Summary Observations were made of the reflective properties of parts of the spectrum and all reflections in other the iridophore stripes of the squid Alloteuthis subulata and wavebands, such as those in the red and near ultraviolet, Loligo vulgaris, and the likely functions of these stripes are will be weak. The functions of the iridophores reflecting red considered in terms of concealment and signalling. at normal incidence must be sought in their reflections of In both species, the mantle muscle is almost transparent. blue-green at oblique angles of incidence. These squid rely Stripes of iridophores run along the length of each side of for their camouflage mainly on their transparency, and the the mantle, some of which, when viewed at normal ventral iridophores and the red, green and blue reflective incidence in white light, reflect red, others green or blue. stripes must be used mainly for signalling. The reflectivities When viewed obliquely, the wavebands best reflected move of some of these stripes are relatively low, allowing a large towards the blue/ultraviolet end of the spectrum and fraction of the incident light to be transmitted into the their reflections are almost 100 % polarised.
    [Show full text]
  • Reproductive Biology and Egg Production of Three Species Of
    Abstract.-The spawning seasonality, fecundity, and daily Reproductive biology and egg production of three species of short-lived c1upeids, the sardine egg production of three species of Amblygaster sirm, the herring Herklotsichthys quadrimaculatus, Clupeidae from Kiribati, and the sprat Spratelloides delicatulus were examined in Kiribati to assess whether vari­ tropical central Pacific able recruitment was related to egg production. All species were David A. Milton multiple spawners, reproducing throughout the year. Periods of Stephen J. M. Blaber increased spawning activity were Nicholas J. F. Rawlinson not related to seasonal changes in (SIRO Division of Fisheries, Marine Laboratories, the physical environment. Spawn­ ing activity and fish fecundity P.O. Box J20. Cleveland, Queensland 4 J63. Australia were related to available energy reserves and, hence, food supply. The batch fecundity ofA. sirm and S. delicatulus also varied inversely with hydrated oocyte weight. The maximum reproductive life The sprat Spratelloides delicatulus, Changes in abundance may be span of each species was less than the herring Herklotsichthys quadri­ related to variable or irregular re­ nine months and averaged two to maculatus, and the sardine Ambly­ cruitment, because many clupeoids three months. Each species had a gaster sirm are the dominant tuna (especially clupeids and engraulids) similar spawning frequency of three to five days, but this varied baitfish species in the Republic of have little capacity to compensate more in A. sirm and S. delica­ Kiribati (Rawlinson et aI., 1992). for environmental variation during tulus. Amblygaster sirm had the All three species inhabit coral reef the period ofpeak spawning and egg highest fecundity and potential lagoons and adjacent waters.
    [Show full text]