Download Full Article 578.4KB .Pdf File
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CEPHALOPODS 688 Cephalopods
click for previous page CEPHALOPODS 688 Cephalopods Introduction and GeneralINTRODUCTION Remarks AND GENERAL REMARKS by M.C. Dunning, M.D. Norman, and A.L. Reid iving cephalopods include nautiluses, bobtail and bottle squids, pygmy cuttlefishes, cuttlefishes, Lsquids, and octopuses. While they may not be as diverse a group as other molluscs or as the bony fishes in terms of number of species (about 600 cephalopod species described worldwide), they are very abundant and some reach large sizes. Hence they are of considerable ecological and commercial fisheries importance globally and in the Western Central Pacific. Remarks on MajorREMARKS Groups of CommercialON MAJOR Importance GROUPS OF COMMERCIAL IMPORTANCE Nautiluses (Family Nautilidae) Nautiluses are the only living cephalopods with an external shell throughout their life cycle. This shell is divided into chambers by a large number of septae and provides buoyancy to the animal. The animal is housed in the newest chamber. A muscular hood on the dorsal side helps close the aperture when the animal is withdrawn into the shell. Nautiluses have primitive eyes filled with seawater and without lenses. They have arms that are whip-like tentacles arranged in a double crown surrounding the mouth. Although they have no suckers on these arms, mucus associated with them is adherent. Nautiluses are restricted to deeper continental shelf and slope waters of the Indo-West Pacific and are caught by artisanal fishers using baited traps set on the bottom. The flesh is used for food and the shell for the souvenir trade. Specimens are also caught for live export for use in home aquaria and for research purposes. -
First Records and Descriptions of Early-Life Stages of Cephalopods from Rapa Nui (Easter Island) and the Nearby Apolo Seamount
First records and descriptions of early-life stages of cephalopods from Rapa Nui (Easter Island) and the nearby Apolo Seamount By Sergio A. Carrasco*, Erika Meerhoff, Beatriz Yannicelly, and Christian M. Ibáñez Abstract New records of early-life stages of cephalopods are presented based on planktonic collections carried out around Easter Island (Rapa Nui; 27°7′S; 109°21′W) and at the nearby Apolo Seamount (located at ∼7 nautical miles southwest from Easter Island) during March and September 2015 and March 2016. A total of thirteen individuals were collected, comprising four families (Octopodidae, Ommastrephidae, Chtenopterygidae, and Enoploteuthidae) and five potential genera/types (Octopus sp., Chtenopteryx sp., rhynchoteuthion paralarvae, and two undetermined Enoploteuthid paralarvae). Cephalopod mantle lengths (ML) ranged from 0.8 to 4.5 mm, with 65% of them (mainly Octopodidae) corresponding to newly hatched paralarvae of ~1 mm ML, and 35% to rhynchoteuthion and early stages of oceanic squids of around 1.5 - 4.5 mm ML. These results provide the first records on composition and presence of early stages of cephalopods around a remote Chilean Pacific Island, while also providing a morphological and molecular basis to validate the identity of Octopus rapanui (but not Callistoctopus, as currently recorded), Ommastrephes bartramii and Chtenopteryx sp. around Rapa Nui waters. Despite adult Octopodidae and Ommastrephidae have been previously recorded at these latitudes, the current findings provide evidence to suggest that the northwest side of Easter Island, and one of the nearby seamounts, may provide a suitable spawning ground for benthic and pelagic species of cephalopods inhabiting these areas. For Chtenopterygidae and Enoploteuthidae, this is the first record for the Rapa Nui ecoregion. -
Aspects of the Natural History of Pelagic Cephalopods of the Hawaiian Mesopelagic-Boundary Region 1
Pacific Science (1995), vol. 49, no. 2: 143-155 © 1995 by University of Hawai'i Press. All rights reserved Aspects of the Natural History of Pelagic Cephalopods of the Hawaiian Mesopelagic-Boundary Region 1 RICHARD EDWARD YOUNG 2 ABSTRACT: Pelagic cephalopods of the mesopelagic-boundary region in Hawai'i have proven difficult to sample but seem to occupy a variety ofhabitats within this zone. Abralia trigonura Berry inhabits the zone only as adults; A. astrosticta Berry may inhabit the inner boundary zone, and Pterygioteuthis giardi Fischer appears to be a facultative inhabitant. Three other mesopelagic species, Liocranchia reinhardti (Steenstrup), Chiroteuthis imperator Chun, and Iridoteuthis iris (Berry), are probable inhabitants; the latter two are suspected to be nonvertical migrants. The mesopelagic-boundary region also contains a variety of other pelagic cephalopods. Some are transients, common species of the mesopelagic zone in offshore waters such as Abraliopsis spp., neritic species such as Euprymna scolopes Berry, and oceanic epipelagic species such as Tremoctopus violaceus Chiaie and Argonauta argo Linnaeus. Others are appar ently permanent but either epipelagic (Onychoteuthis sp. C) or demersal (No totodarus hawaiiensis [Berry] and Haliphron atlanticus Steenstrup). Submersible observations show that Nototodarus hawaiiensis commonly "sits" on the bot tom and Haliphron atlanticus broods its young in the manner of some pelagic octopods. THE CONCEPT OF the mesopelagic-boundary over bottom depths of the same range. The region (m-b region) was first introduced by designation of an inner zone is based on Reid et al. (1991), although a general asso Reid'sfinding mesopelagic fishes resident there ciation of various mesopelagic animals with during both the day and night; mesopelagic land masses has been known for some time. -
Phylum MOLLUSCA Chitons, Bivalves, Sea Snails, Sea Slugs, Octopus, Squid, Tusk Shell
Phylum MOLLUSCA Chitons, bivalves, sea snails, sea slugs, octopus, squid, tusk shell Bruce Marshall, Steve O’Shea with additional input for squid from Neil Bagley, Peter McMillan, Reyn Naylor, Darren Stevens, Di Tracey Phylum Aplacophora In New Zealand, these are worm-like molluscs found in sandy mud. There is no shell. The tiny MOLLUSCA solenogasters have bristle-like spicules over Chitons, bivalves, sea snails, sea almost the whole body, a groove on the underside of the body, and no gills. The more worm-like slugs, octopus, squid, tusk shells caudofoveates have a groove and fewer spicules but have gills. There are 10 species, 8 undescribed. The mollusca is the second most speciose animal Bivalvia phylum in the sea after Arthropoda. The phylum Clams, mussels, oysters, scallops, etc. The shell is name is taken from the Latin (molluscus, soft), in two halves (valves) connected by a ligament and referring to the soft bodies of these creatures, but hinge and anterior and posterior adductor muscles. most species have some kind of protective shell Gills are well-developed and there is no radula. and hence are called shellfish. Some, like sea There are 680 species, 231 undescribed. slugs, have no shell at all. Most molluscs also have a strap-like ribbon of minute teeth — the Scaphopoda radula — inside the mouth, but this characteristic Tusk shells. The body and head are reduced but Molluscan feature is lacking in clams (bivalves) and there is a foot that is used for burrowing in soft some deep-sea finned octopuses. A significant part sediments. The shell is open at both ends, with of the body is muscular, like the adductor muscles the narrow tip just above the sediment surface for and foot of clams and scallops, the head-foot of respiration. -
Examples from Dinosaur and Elephant Limb Imaging Studies John R
3 The Anatomical Foundation for Multidisciplinary Studies of Animal Limb Function: Examples from Dinosaur and Elephant Limb Imaging Studies John R. Hutchinson1, Charlotte Miller1, Guido Fritsch2, and Thomas Hildebrandt2 3.1 Introduction all we have to work with, at first. Yet that does not mean that behavior cannot be addressed by indi- What makes so many animals, living and extinct, rect scientifific means. so popular and distinct is anatomy; it is what leaps Here we use two intertwined case studies from out at a viewer fi rst whether they observe a muse- our research on animal limb biomechanics, one on um’s mounted Tyrannosaurus skeleton or an ele- extinct dinosaurs and another on extant elephants, phant placidly browsing on the savannah. Anatomy to illustrate how anatomical methods and evi- alone can make an animal fascinating – so many dence are used to solve basic questions. The dino- animals are so physically unlike human observers, saur study is used to show how biomechanical yet what do these anatomical differences mean for computer modeling can reveal how extinct animal the lives of animals? limbs functioned (with a substantial margin of The behavior of animals can be equally or more error that can be addressed explicitly in the stunning- how fast could a Tyrannosaurus move models). The elephant study is used to show (Coombs 1978; Alexander 1989; Paul 1998; Farlow how classical anatomical observation and three- et al. 2000; Hutchinson and Garcia 2002; Hutchin- dimensional (3D) imaging have powerful synergy son 2004a,b), or how does an elephant manage to for characterising extant animal morphology, momentarily support itself on one leg while without biomechanical modeling, but also as a first ‘running’ quickly (Gambaryan 1974; Alexander step toward such modeling. -
Anatomy of the Dog the Present Volume of Anatomy of the Dog Is Based on the 8Th Edition of the Highly Successful German Text-Atlas of Canine Anatomy
Klaus-Dieter Budras · Patrick H. McCarthy · Wolfgang Fricke · Renate Richter Anatomy of the Dog The present volume of Anatomy of the Dog is based on the 8th edition of the highly successful German text-atlas of canine anatomy. Anatomy of the Dog – Fully illustrated with color line diagrams, including unique three-dimensional cross-sectional anatomy, together with radiographs and ultrasound scans – Includes topographic and surface anatomy – Tabular appendices of relational and functional anatomy “A region with which I was very familiar from a surgical standpoint thus became more comprehensible. […] Showing the clinical rele- vance of anatomy in such a way is a powerful tool for stimulating students’ interest. […] In addition to putting anatomical structures into clinical perspective, the text provides a brief but effective guide to dissection.” vet vet The Veterinary Record “The present book-atlas offers the students clear illustrative mate- rial and at the same time an abbreviated textbook for anatomical study and for clinical coordinated study of applied anatomy. Therefore, it provides students with an excellent working know- ledge and understanding of the anatomy of the dog. Beyond this the illustrated text will help in reviewing and in the preparation for examinations. For the practising veterinarians, the book-atlas remains a current quick source of reference for anatomical infor- mation on the dog at the preclinical, diagnostic, clinical and surgical levels.” Acta Veterinaria Hungarica with Aaron Horowitz and Rolf Berg Budras (ed.) Budras ISBN 978-3-89993-018-4 9 783899 9301 84 Fifth, revised edition Klaus-Dieter Budras · Patrick H. McCarthy · Wolfgang Fricke · Renate Richter Anatomy of the Dog The present volume of Anatomy of the Dog is based on the 8th edition of the highly successful German text-atlas of canine anatomy. -
Influence of Environmental Factors on Population Structure of Arrow Squid Nototodarus Gouldi: Implications for Stock Assessment
INFLUENCE OF ENVIRONMENTAL FACTORS ON POPULATION STRUCTURE OF ARROW SQUID NOTOTODARUS GOULDI: IMPLICATIONS FOR STOCK ASSESSMENT COREY PAUL GREEN, BAPPSC (FISHERIES) SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF TASMANIA OCTOBER 2011 Arrow squid Nototodarus gouldi (McCoy, 1888) (Courtesy of Robert Ingpen, 1974) FRONTISPIECE DECLARATION STATEMENT OF ORIGINALITY This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of the my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. ………………………………………….…. 28th October 2011 Corey Paul Green Date AUTHORITY OF ACCESS This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. ………………………………………….…. 28th October 2011 Corey Paul Green Date I ACKNOWLEDGEMENTS This thesis assisted in fulfilling the objectives of the Fisheries Research and Development Corporation Project No. 2006/012 ―Arrow squid — stock variability, fishing techniques, trophic linkages — facing the challenges‖. Without such assistance this thesis would not have come to fruition. Research on statolith element composition was kindly funded by the Holsworth Wildlife Research Endowment (HWRE), and provided much information on arrow squid lifecycles. The University of Tasmania (UTAS), the Victorian Marine Science Consortium (VMSC) and the Department of Primary Industries — Fisheries Victoria, assisted in providing laboratories, desks and utilities, as well as offering a wonderful and inviting working environment. -
An Illustrated Key to the Families of the Order
CLYDE F. E. ROP An Illustrated RICHARD E. YOl and GILBERT L. VC Key to the Families of the Order Teuthoidea Cephalopoda) SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • 1969 NUMBER 13 SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY NUMBER 13 Clyde F. E. Roper, An Illustrated Key 5K?Z" to the Families of the Order Teuthoidea (Cephalopoda) SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1969 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Institution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge not strictly professional." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. -
Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries
Advances in Cephalopod Science:Biology, Ecology, Cultivation and Fisheries,Vol 67 (2014) Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Marine Biology, Vol. 67 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Paul G.K. Rodhouse, Graham J. Pierce, Owen C. Nichols, Warwick H.H. Sauer, Alexander I. Arkhipkin, Vladimir V. Laptikhovsky, Marek R. Lipiński, Jorge E. Ramos, Michaël Gras, Hideaki Kidokoro, Kazuhiro Sadayasu, João Pereira, Evgenia Lefkaditou, Cristina Pita, Maria Gasalla, Manuel Haimovici, Mitsuo Sakai and Nicola Downey. Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries. In Erica A.G. Vidal, editor: Advances in Marine Biology, Vol. 67, Oxford: United Kingdom, 2014, pp. 99-233. ISBN: 978-0-12-800287-2 © Copyright 2014 Elsevier Ltd. Academic Press Advances in CephalopodAuthor's Science:Biology, personal Ecology, copy Cultivation and Fisheries,Vol 67 (2014) CHAPTER TWO Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries Paul G.K. -
Estimation of Biomass, Production and Fishery Potential of Ommastrephid Squids in the World Ocean and Problems of Their Fishery Forecasting
ICES CM 2004 / CC: 06 ESTIMATION OF BIOMASS, PRODUCTION AND FISHERY POTENTIAL OF OMMASTREPHID SQUIDS IN THE WORLD OCEAN AND PROBLEMS OF THEIR FISHERY FORECASTING Ch. M. Nigmatullin Atlantic Research Institute of Marine Fisheries and Oceanography (AtlantNIRO), Dm. Donskoj Str. 5, Kaliningrad, 236000 Russia [tel. +0112-225885, fax + 0112-219997, e-mail: [email protected]] ABSTRACT 21 species of the nektonic squids family Ommastrephidae inhabits almost the entire waters of the World Ocean. It is the most commercial important group among cephalopods. Straight and expert evaluations of biomass were carried out for each species. In all ommastrephids the total instantaneous biomass is ~55 million t on average and total yearly production is ~ 400 million t (production/biomass coefficient - P/B = 5 in inshore species and 8 - in oceanic ones). Now there are 12-fished species, mainly 8 inshore ones. In 1984-2001 the yearly world catch of ommastrephids was about 1.5-2.2 million t (=50-65% of total cephalopod catch). The feasible ommastrephids fishery potential is ~ 6-9 million t including 4-7 million t of oceanic species. Thus ommastrephids are one of the most important resources for increasing high-quality food protein catch in the World Ocean. At the same time there are serious economical and technical difficulties to develop oceanic resources fishery, especially for Ommastrephes and Sthenoteuthis. A general obstacle in the real fishery operations and fishery forecasting for ommastrephids is their r-strategist ecological traits, related to monocyclia, short one-year life cycle, pelagic egg masses, paralarvae and fry, and accordingly high mortality rate during two last ontogenetic stages. -
Identification and Estimation of Size from the Beaks of 18 Species of Cephalopods from the Pacific Ocean
17 NOAA Technical Report NMFS 17 Identification and Estimation of Size From the Beaks of 18 Species of Cephalopods From the Pacific Ocean Gary A. Wolff November 1984 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA TECHNICAL REPORTS NMFS The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implemen tation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The NOAA Technical Report NMFS series was established in 1983 to replace two subcategories of the Technical Reports series: "Special Scientific Report-Fisheries" and "Circular." The series contains the following types of reports: Scientific investigations that document long-term continuing programs of NMFS, intensive scientific reports on studies of restricted scope, papers on applied fishery problems, technical reports of general interest intended to aid conservation and management, reports that review in considerable detail and at a high technical level certain broad areas of research, and technical papers originating in economics studies and from management investigations. -
Occurrence of Antarctic Flying Squid Todarodes Filippovaeadam, 1975 in Southern Indian Ocean R
Indian Journal of Geo-Marine Sciences Vol. 44 (9), October 2015, pp. 1608-1612 Occurrence of Antarctic flying squid Todarodes filippovaeAdam, 1975 in Southern Indian Ocean R. Jeyabaskaran*, D. Prema, V. Kripa & K.K. Valsala Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi – 682 018, Kerala, India *[E-mail: [email protected]] Received 26 August 2013; revised 19 September 2013 Antarctic flying squid Todarodes filippovae is poorly known in Southern Indian Ocean. About 27 kg of T. filippovae consisting of 37 individuals were opportunistically collected on 1st February 2011 at 38º 59’S, 57º 29’E of northern Subtropical Convergence during the 5th Indian Expedition to Southern Ocean. Among the 37 individuals, 36 were females with dorsal mantle length (ML) of 331±21 mm. The ML of single male was 210 mm. Heavy metals detected in mantle samples were, Pb<DL, Cd 0.80 ± 0.64, Fe 22.62 ± 14.6, Mn 2.01 ± 0.3, Ni 6.0 ± 0.5, Cu 20.18 ± 2.4, Zn 111.61 ± 7.1 and Hg 1.64 ± 0.35 µg/g dry weight. These trace element concentrations were within the permissible limits recommended for human consumption. The present study gives the preliminary information about the abundance of T. filippovae in Southern Indian Ocean. [Keywords: Antarctic flying squid, Todarodes filippovae, hand jig, heavy metals, Southern Indian Ocean.] Introduction offshore over continental shelves and off-shelf Cephalopods are gaining economic over the deep ocean. They ascend close to the importance as evidenced by the rapid rise in their surface at night, but may migrate down to depths global landings over recent decades.