Legionella 2009

Total Page:16

File Type:pdf, Size:1020Kb

Legionella 2009 LEGIONELLA 2009 October 13-17, 2009 Institut Pasteur, Paris, France SCIENTIFIC COMMITTEE Paola BORELLA Elizabeth HARTLAND University of Modena and Reggio Emilia, University of Melbourne, Melbourne, Australia Modena, Italy Carol JOSEPH Carmen BUCHRIESER Health Protection Agency, London, United Institut Pasteur, Paris, France Kingdom Nicholas P. CIANCIOTTO Jaana KUSNETSOV Northwestern University Medical School, National Public Health Institute, Kuopio, Finland Chicago, USA Christian LÜCK Didier CHE National Reference Center for Legionella, Institut de Veille Sanitaire, Saint-Maurice, Dresden, Germany France Carmen PELAZ Paul H. EDELSTEIN Instituto de Salud Carlos III, Madrid, Spain University of Pennsylvania Medical Center, Philadelphia, USA Rod RATCLIFF Institute of Medical & Veterinary Science, Jérôme ETIENNE Adelaide, Australia National Reference Center for Legionella, Lyon, France Michele S. SWANSON University of Michigan Medical Center, Ann Barry FIELDS Arbor, USA Center of Disease Control (CDC), Atlanta, USA Keizo YAMAGUCHI Jörg HACKER Toho University, Tokyo, Japan Robert Koch Institut, Berlin, Germany ORGANIZING COMMITTEE Carmen BUCHRIESER Institut Pasteur, Paris, France Jérôme ETIENNE National Reference Center for Legionella, Lyon, France Didier CHE Institut de Veille Sanitaire, Saint-Maurice, France ENTIFIC ACKNOWLEDGEMENTS We are grateful to the following organisations for their generous financial support Nous remercions chaleureusement nos partenaires financiers INSTITUT PASTEUR EUROPEAN MOLECULAR BIOLOGY ORGANIZATION (EMBO) FEDERATION OF EUROPEAN MICROBIOLOGICAL SOCIETIES (FEMS) NETWORK OF EXCELLENCE “EUROPATHOGENOMICS” (NOE EPG) OF THE EUROPEAN COMMISSION REGION ILE DE FRANCE INSTITUT NATIONAL DE VEILLE SANITAIRE ACKNOWLEDGEMENTS We are grateful to our sponsors Nous remercions chaleureusement nos sponsors SPONSORS SPONSORS OTHER PARTNERS TABLE OF CONTENTS Theme of the conference..............................................................................................I Scientific program........................................................................................................II Oral communications...................................................................................................1 Opening session.......................................................................................................................................2 Session 1: Epidemiology and Clinical aspects: a) disease, diagnosis and treatment .............................6 Session 2: Clinical aspects: b) detection and subtyping ........................................................................12 Session 3: Host - Microbe interactions: a) secretion systems and their substrates...............................18 Session 4: Host - Microbe interactions: b) metabolism and virulence ...................................................24 Session 5: Immunology and host susceptibility......................................................................................28 Session 6: Microbe - Environment interactions: a) cell biology, protozoa, biofilm.................................33 Session 7: Microbe - Environment interactions: b) detection in natural and artificial reservoirs - survival, persistence ...... 39 Session 8: Legionella prevention and control ........................................................................................44 Session 9: Epidemiology: a) nosocomial infections and Legionella control in hospitals .......................48 Session 10: Epidemiology: b) outbreaks and population genetics and taxonom...................................54 Session 11: Genomics and Comparative genomics ..............................................................................60 Session 12: Functional genomics ..........................................................................................................65 Session 13: Gene regulation in the environment and the host ..............................................................70 Session 14: Cell biology - protozoa – macrophages..............................................................................74 Posters ......................................................................................................................78 Session 1: Epidemiology and Clinical aspects: a) disease, diagnosis and treatment ...........................79 Session 2: Clinical aspects: b) detection and subtyping ..................................................................... 107 Session 3: Host - Microbe interactions: a) secretion systems and their substrates............................ 126 Session 4: Host - Microbe interactions: b) metabolism and virulence ................................................ 141 Session 5: Immunology and host susceptibility...................................................................................158 Session 6: Microbe - Environment interactions: a) cell biology, protozoa, biofilm.............................. 165 Session 7: Microbe - Environment interactions: b) detection in natural and artificial reservoirs - survival, persistence 179 Session 8: Legionella prevention and control ..................................................................................... 211 Session 9: Epidemiology: a) nosocomial infections and Legionella control in hospitals .................... 267 Session 10: Epidemiology: b) outbreaks and population genetics and taxonom................................ 277 Session 11: Genomics and Comparative genomics ........................................................................... 289 Session 12: Functional genomics ....................................................................................................... 297 Session 13: Gene regulation in the environment and the host ........................................................... 299 Authors index...........................................................................................................306 Detailed summary....................................................................................................315 Company profiles of the sponsors ...........................................................................337 THEME OF THE CONFERENCE The International Conference on Legionella is a premier international meeting held every four years to discuss new findings on Legionella pneumophila, other Legionella, and the disease caused by these organisms and also to identify knowledge gaps that exist in controlling Legionella infections of humans. These four-day meetings have been held in various locations in Europe and the USA. The 6th International Conference, Legionella 2005 in Chicago, was attended by many international leaders in Legionella research and attracted 400 attendees to participate in nearly 40 invited lectures, 200 poster presentations, three panel discussions, and numerous opportunities that fostered scientific collaboration. The 7th International Conference in this series, Legionella 2009, will address a wide range of current research and trends related to Legionella. Sessions will be dedicated to epidemiology and clinical aspects; pathogenesis and immunology; genetics and genomics; ecology and evolution; physiology, regulation, and biochemistry. The Conference will be of interest to researchers; those with clinical, public health and epidemiological interests; regulatory agency representatives; representatives from industry with interests in Legionella and Legionnaires’ disease. Participation by students and scientists in the early stages of their careers is highly encouraged. Legionella 2009 will provide abundant opportunities for networking and exchange of information between senior scientists and professionals, new investigators and students. La conférence internationale sur Legionella (LEGIONELLA 2009) est une rencontre internationale qui se tient tous les quatre ans pour discuter des nouvelles découvertes sur Legionella pneumophila et autres Légionelles, de la maladie causée par ces organismes ainsi que pour identifier des problèmes existant dans le contrôle des infections humaines à Legionella. Ces rencontres de quatre jours ont été organisées dans différentes villes européennes et aux Etats-unis. La 6ème conférence internationale, Legionella 2005 à Chicago, a vu la participation de nombreux leaders internationaux de la recherche sur Legionella et a attiré 400 personnes qui ont participé aux 40 séminaires invités, 200 présentations de posters, trois discussions générales, profitant également des nombreuses opportunités pour initier ou approfondir des collaborations scientifiques. La 7ème Conférence Internationale dans cette série, Legionella 2009, adressera de nombreuses questions de la recherche courante et de tendances concernant Legionella. Les thèmes abordés porteront sur l’épidémiologie et l es aspects cliniques, la pathogénicité et l’immunologie, la génétique et la génomique, l’écologie et l’évolution, la physiologie, la régulation et la biochimie. La conférence sera d’un grand intérêt pour les chercheurs, qu’ils soient intéressés par des questions cliniques, de santé publique ou par l’épidémiologie mais aussi pour les représentants des agences de contrôle, de gestion du risque et de surveillance ; les représentants de l’industrie intéressés par Legionella et la maladie de Légionnaire. La participation des étudiants et des chercheurs en début de carrière est fortement encouragée. Legionella 2009 fournira beaucoup d’opportunités pour la création de réseaux de travail, l’échange d’informations
Recommended publications
  • Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
    ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co.
    [Show full text]
  • BD-CS-057, REV 0 | AUGUST 2017 | Page 1
    EXPLIFY RESPIRATORY PATHOGENS BY NEXT GENERATION SEQUENCING Limitations Negative results do not rule out viral, bacterial, or fungal infections. Targeted, PCR-based tests are generally more sensitive and are preferred when specific pathogens are suspected, especially for DNA viruses (Adenovirus, CMV, HHV6, HSV, and VZV), mycobacteria, and fungi. The analytical sensitivity of this test depends on the cellularity of the sample and the concentration of all microbes present. Analytical sensitivity is assessed using Internal Controls that are added to each sample. Sequencing data for Internal Controls is quantified. Samples with Internal Control values below the validated minimum may have reduced analytical sensitivity or contain inhibitors and are reported as ‘Reduced Analytical Sensitivity’. Additional respiratory pathogens to those reported cannot be excluded in samples with ‘Reduced Analytical Sensitivity’. Due to the complexity of next generation sequencing methodologies, there may be a risk of false-positive results. Contamination with organisms from the upper respiratory tract during specimen collection can also occur. The detection of viral, bacterial, and fungal nucleic acid does not imply organisms causing invasive infection. Results from this test need to be interpreted in conjunction with the clinical history, results of other laboratory tests, epidemiologic information, and other available data. Confirmation of positive results by an alternate method may be indicated in select cases. Validated Organisms BACTERIA Achromobacter
    [Show full text]
  • Which Organisms Are Used for Anti-Biofouling Studies
    Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E.
    [Show full text]
  • The Risk to Human Health from Free-Living Amoebae Interaction with Legionella in Drinking and Recycled Water Systems
    THE RISK TO HUMAN HEALTH FROM FREE-LIVING AMOEBAE INTERACTION WITH LEGIONELLA IN DRINKING AND RECYCLED WATER SYSTEMS Dissertation submitted by JACQUELINE MARIE THOMAS BACHELOR OF SCIENCE (HONOURS) AND BACHELOR OF ARTS, UNSW In partial fulfillment of the requirements for the award of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL ENGINEERING SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING FACULTY OF ENGINEERING MAY 2012 SUPERVISORS Professor Nicholas Ashbolt Office of Research and Development United States Environmental Protection Agency Cincinnati, Ohio USA and School of Civil and Environmental Engineering Faculty of Engineering The University of New South Wales Sydney, Australia Professor Richard Stuetz School of Civil and Environmental Engineering Faculty of Engineering The University of New South Wales Sydney, Australia Doctor Torsten Thomas School of Biotechnology and Biomolecular Sciences Faculty of Science The University of New South Wales Sydney, Australia ORIGINALITY STATEMENT '1 hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom 1 have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.' Signed ~ ............................
    [Show full text]
  • List of the Pathogens Intended to Be Controlled Under Section 18 B.E
    (Unofficial Translation) NOTIFICATION OF THE MINISTRY OF PUBLIC HEALTH RE: LIST OF THE PATHOGENS INTENDED TO BE CONTROLLED UNDER SECTION 18 B.E. 2561 (2018) By virtue of the provision pursuant to Section 5 paragraph one, Section 6 (1) and Section 18 of Pathogens and Animal Toxins Act, B.E. 2558 (2015), the Minister of Public Health, with the advice of the Pathogens and Animal Toxins Committee, has therefore issued this notification as follows: Clause 1 This notification is called “Notification of the Ministry of Public Health Re: list of the pathogens intended to be controlled under Section 18, B.E. 2561 (2018).” Clause 2 This Notification shall come into force as from the following date of its publication in the Government Gazette. Clause 3 The Notification of Ministry of Public Health Re: list of the pathogens intended to be controlled under Section 18, B.E. 2560 (2017) shall be cancelled. Clause 4 Define the pathogens codes and such codes shall have the following sequences: (1) English alphabets that used for indicating the type of pathogens are as follows: B stands for Bacteria F stands for fungus V stands for Virus P stands for Parasites T stands for Biological substances that are not Prion R stands for Prion (2) Pathogen risk group (3) Number indicating the sequence of each type of pathogens Clause 5 Pathogens intended to be controlled under Section 18, shall proceed as follows: (1) In the case of being the pathogens that are utilized and subjected to other law, such law shall be complied. (2) Apart from (1), the law on pathogens and animal toxin shall be complied.
    [Show full text]
  • Genetic and Functional Studies of the Mip Protein of Legionella
    t1.ì. Genetic and Functional Studies of the Mip Protein of Legionella Rodney Mark Ratcliff, BSc (Hons)' MASM Infectious Diseases Laboratories Institute of Medical and Veterinary Science and Department of Microbiology and Immunology UniversitY of Adelaide. Adelaide, South Australia A thesis submitted to the University of Adelaide for the degree of I)octor of Philosophy 15'h March 2000 amended 14th June 2000 Colonies of several Legionella strains on charcoal yeast extract agar (CYE) after 4 days incubation at 37"C in air. Various magnifications show typical ground-glass opalescent appearance. Some pure strains exhibit pleomorphic growth or colour. The top two photographs demonstrate typical red (LH) and blue-white (RH) fluorescence exhibited by some species when illuminated by a Woods (IJV) Lamp. * t Table of Contents .1 Chapter One: Introduction .1 Background .............'. .2 Morphology and TaxonomY J Legionellosis ............. 5 Mode of transmission "..'....'. 7 Environmental habitat 8 Interactions between Legionella and phagocytic hosts 9 Attachment 11 Engulfment and internalisation.'.. 13 Intracellular processing 13 Intracellular replication of legionellae .. " "' " "' 15 Host cell death and bacterial release 18 Virulence (the Genetic factors involved with intracellular multiplication and host cell killing .20 icm/dot system) Legiolysin .25 Msp (Znn* metaloprotease) ...'..... .25 .28 Lipopolysaccharide .29 The association of flagella with disease.. .30 Type IV fimbriae.... .31 Major outer membrane proteins....'.......'. JJ Heat shock proteins'.'. .34 Macrophage infectivity potentiator (Mip) protein Virulenceiraits of Legionella species other than L. pneumophila..........' .39 phylogeny .41 Chapter One (continued): Introduction to bacterial classification and .41 Identificati on of Legionella...'.,..'.. .46 Phylogeny .52 Methods of phylogenetic analysis' .53 Parsimony methods.'.. .55 Distance methods UPGMA cluster analYsis.'.'...
    [Show full text]
  • Aquascreen® Legionella Species Qpcr Detection Kit
    AquaScreen® Legionella species qPCR Detection Kit INSTRUCTIONS FOR USE FOR USE IN RESEARCH AND QUALITY CONTROL Symbols Lot No. Cat. No. Expiry date Storage temperature Number of reactions Manufacturer INDICATION The AquaScreen® Legionella species qPCR Detection kit is specifically designed for the quantitative detection of several Legionella species in water samples prepared with the AquaScreen® FastExt- ract kit. Its design complies with the requirements of AFNOR T90-471 and ISO/TS 12869:2012. Legionella are ubiquitous bacteria in surface water and moist soil, where they parasitize protozoa. The optimal growth temperature lies between +15 and +45 °C, whereas these gram-negative bacteria are dormant below 20 °C and do not survive above 60 °C. Importantly, Legionella are well-known as opportunistic intracellular human pathogens causing Legionnaires’ disease and Pontiac fever. The transmission occurs through inhalation of contami- nated aerosols generated by an infected source (e.g. human-made water systems like shower- heads, sink faucets, heaters, cooling towers, and many more). In order to efficiently prevent Legionella outbreaks, water safety control measures need syste- matic application but also reliable validation by fast Legionella testing. TEST PRINCIPLE The AquaScreen® Legionella species Kit uses qPCR for quantitative detection of legionella in wa- ter samples. In contrast to more time-consuming culture-based methods, AquaScreen® assays need less than six hours including sample preparation and qPCR to reliably detect Legionella. Moreover, the AquaScreen® qPCR assay has proven excellent performance in terms of specificity and sensitivity: other bacterial genera remain undetected whereas linear quantification is obtai- ned up to 1 x 106 particles per sample, therefore requiring no material dilution.
    [Show full text]
  • Occurrence of New Polyenoic Very Long Chain Acyl Residues in Lipids from Acanthamoeba Castellanii
    Acta Protozool. (2009) 48: 63–72 ACTA PROTOZOOLOGICA Occurrence of New Polyenoic Very Long Chain Acyl Residues in Lipids from Acanthamoeba castellanii Marta PALUSIŃSKA-SZYSZ, Anna TURSKA-SZEWCZUK, Magdalena KARAŚ, Ryszard RUSSA and Wincenty J. DROŻAŃSKI Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Lublin Poland Summary. The cellular fatty acid composition of Acanthamoeba castellanii, a unicellular bacteriovorous organism, was reinvestigated. Lipids from amoebae grown axenically in proteose peptone-yeast extract-glucose medium were extracted with chloroform–methanol and separated by silicic acid column chromatography into non-polar and polar fractions. The fatty acid composition of the lipids and the double-bond position of the unsaturated acids have been determined by capillary gas chromatography-mass spectrometry (GC-MS) of their corresponding methyl esters, 2-alkenyl-4,4-dimethyloxazoline (DMOX) derivatives and dimethyldisulfide (DMDS) adducts. Evidence is given that lipids from A. castellanii in addition to the three already identified saturated straight chain fatty acids: tetradecanoic (C14:0), hexadecanoic (C16:0), octadecanoic (C18:0), and six preponderant unsaturated fatty acids: hexadecenoic (C16:1 Δ7), octadecenoic (C18:1 Δ9), octadecadienoic (C18:2 Δ9,12), eicosadienoic (C20:2 Δ11,14), eicosatrienoic (C20:3 Δ8,11,14), and eicosatetraenoic (C20:4 Δ5,8,11,14), contain additionally four very long chain unsaturated fatty acids: octacosenoic (C28:1 Δ21), octacosadienoic (C28:2 Δ5,21), triacontadienoic (30:2 Δ21,24), and triacontatrienoic (C30:3 Δ5,21,24) previously unreported in lipids of A. castellanii. These new long chain fatty acids account for approximately 25% of total fatty acids. To our knowledge, this is the first report of very long chain polyenoic fatty acids present in lipids extracted from A.
    [Show full text]
  • Immunoproteomic Identification of Biomarkers for Diagnosis of Legionellosis
    Immunoproteomic identification of biomarkers for diagnosis of legionellosis Submitted in total fulfilment of the requirements for the degree of Doctor of philosophy by Kaylass Poorun Department of Chemistry and Biotechnology Faculty of Science, Engineering and Technology Swinburne University of Technology Australia 2014 Abstract Abstract Legionellosis, a disease with significant mortality and morbidity rates, is considered to be the second most frequent cause of severe community-acquired pneumonia. It is difficult to distinguish from other types of pneumonia due to similar clinical manifestations. Several studies have demonstrated the inadequacies of current diagnostic tests for confirming Legionella infections. This study was aimed at identifying biomarkers that can be used in an improved test. A comparative proteomic analysis, using DIGE, was carried out between L. pneumophila ATCC33152 and L. longbeachae NSW150 and D4968 isolates. While many homologous proteins were found to be commonly expressed, numerous others were identified to be differentially expressed under similar in vitro conditions suggesting that the two species have different lifestyles and infection strategies. The bacterial immunoglobulin domain containing protein, found to share sequence homology to Type V secretion proteins intimin and invasin, is not known to be present in Legionella. Human sera containing antibodies against Legionella from a set of blind samples were identified by ELISA. Downstream analyses revealed that diverse immunogens may be responsible for eliciting immune response in different Legionella species which in turn show little to no congeneric cross-reactivity. To the best of our knowledge, this is a unique finding not previously reported. Several serological diagnostic tests currently in use do not include many Legionella species in their testing panel, which may be a reason for many Legionella species being under-reported.
    [Show full text]
  • Mitigating Biofouling on Reverse Osmosis Membranes Via Greener Preservatives
    Mitigating biofouling on reverse osmosis membranes via greener preservatives by Anna Curtin Biology (BSc), Le Moyne College, 2017 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF APPLIED SCIENCE in the Department of Civil Engineering, University of Victoria © Anna Curtin, 2020 University of Victoria All rights reserved. This Thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. Supervisory Committee Mitigating biofouling on reverse osmosis membranes via greener preservatives by Anna Curtin Biology (BSc), Le Moyne College, 2017 Supervisory Committee Heather Buckley, Department of Civil Engineering Supervisor Caetano Dorea, Department of Civil Engineering, Civil Engineering Departmental Member ii Abstract Water scarcity is an issue faced across the globe that is only expected to worsen in the coming years. We are therefore in need of methods for treating non-traditional sources of water. One promising method is desalination of brackish and seawater via reverse osmosis (RO). RO, however, is limited by biofouling, which is the buildup of organisms at the water-membrane interface. Biofouling causes the RO membrane to clog over time, which increases the energy requirement of the system. Eventually, the RO membrane must be treated, which tends to damage the membrane, reducing its lifespan. Additionally, antifoulant chemicals have the potential to create antimicrobial resistance, especially if they remain undegraded in the concentrate water. Finally, the hazard of chemicals used to treat biofouling must be acknowledged because although unlikely, smaller molecules run the risk of passing through the membrane and negatively impacting humans and the environment.
    [Show full text]
  • The Role of Lipids in Legionella-Host Interaction
    International Journal of Molecular Sciences Review The Role of Lipids in Legionella-Host Interaction Bozena Kowalczyk, Elzbieta Chmiel and Marta Palusinska-Szysz * Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; [email protected] (B.K.); [email protected] (E.C.) * Correspondence: [email protected] Abstract: Legionella are Gram-stain-negative rods associated with water environments: either nat- ural or man-made systems. The inhalation of aerosols containing Legionella bacteria leads to the development of a severe pneumonia termed Legionnaires’ disease. To establish an infection, these bacteria adapt to growth in the hostile environment of the host through the unusual structures of macromolecules that build the cell surface. The outer membrane of the cell envelope is a lipid bilayer with an asymmetric composition mostly of phospholipids in the inner leaflet and lipopolysaccha- rides (LPS) in the outer leaflet. The major membrane-forming phospholipid of Legionella spp. is phosphatidylcholine (PC)—a typical eukaryotic glycerophospholipid. PC synthesis in Legionella cells occurs via two independent pathways: the N-methylation (Pmt) pathway and the Pcs pathway. The utilisation of exogenous choline by Legionella spp. leads to changes in the composition of lipids and proteins, which influences the physicochemical properties of the cell surface. This phenotypic plastic- ity of the Legionella cell envelope determines the mode of interaction with the macrophages, which results in a decrease in the production of proinflammatory cytokines and modulates the interaction with antimicrobial peptides and proteins. The surface-exposed O-chain of Legionella pneumophila sg1 LPS consisting of a homopolymer of 5-acetamidino-7-acetamido-8-O-acetyl-3,5,7,9-tetradeoxy-L- glycero-D-galacto-non-2-ulosonic acid is probably the first component in contact with the host cell that anchors the bacteria in the host membrane.
    [Show full text]
  • Lablink Winter 2014.Indd
    Perit inci et, vel utpatum san- dio commy nit lore digna con eugueri ureros essi ea facil delismodiat, vel et augait ut wismod mod eliscilismod tion velis eugait augiat. Ut lut erae- strud mod molorercing ea con- sendre estrud. Vol. 19 No. 1 Winter 2014 Michigan Department of Community Health Bureau of Laboratories “Quality Laboratory Science for Healthier People and Communities” MDCH Bureau of Laboratories Announces Web Portal for Electronic Test Ordering and Results Delivery The Michigan Department of Community Health, Bureau of Laboratories (MDCH BOL), has instituted a web portal for Electronic Test Ordering and Results Delivery (ETOR). ETOR is an alternate, voluntary method for clients to order laboratory tests k and receive test results. Participating clients will be able to log into the web portal and electronically fill out test request forms; print a packing list for submission with samples to the MDCH BOL for testing; track sample progression through the MDCH laboratory; and look up, download, or print pdf copies of final reports. Clients using the web n portal will no longer have to hand write or submit test request forms. The information currently collected on the forms will be entered in the web portal and imported into the i BOL Laboratory Information Management System (LIMS) upon arrival of the specimen. Clients have the option to continue receiving final reports via fax or hard copy, as they do now. Web portal result delivery will also be available to the client. Upon request, any client may discontinue their fax or hard copy reporting system in favor of receiving only L web portal results.
    [Show full text]