Legionella Feeleii: Pneumonia Or Pontiac Fever? Bacterial Virulence Traits and Host Immune Response

Total Page:16

File Type:pdf, Size:1020Kb

Legionella Feeleii: Pneumonia Or Pontiac Fever? Bacterial Virulence Traits and Host Immune Response Medical Microbiology and Immunology (2019) 208:25–32 https://doi.org/10.1007/s00430-018-0571-0 REVIEW Legionella feeleii: pneumonia or Pontiac fever? Bacterial virulence traits and host immune response Changle Wang1 · Xia Chuai1 · Mei Liang2 Received: 17 July 2018 / Accepted: 27 October 2018 / Published online: 1 November 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Gram-negative bacterium Legionella is able to proliferate intracellularly in mammalian host cells and amoeba, which became known in 1976 since they caused a large outbreak of pneumonia. It had been reported that different strains of Legionella pneumophila, Legionella micdadei, Legionella longbeachae, and Legionella feeleii caused human respiratory diseases, which were known as Pontiac fever or Legionnaires’ disease. However, the differences of the virulence traits among the strains of the single species and the pathogenesis of the two diseases that were due to the bacterial virulence factors had not been well elucidated. L. feeleii is an important pathogenic organism in Legionellae, which attracted attention due to cause an outbreak of Pontiac fever in 1981 in Canada. In published researches, it has been found that L. feeleii serogroup 2 (ATCC 35849, LfLD) possess mono-polar flagellum, and L. feeleii serogroup 1 (ATCC 35072, WRLf) could secrete some exopolysaccharide (EPS) materials to the surrounding. Although the virulence of the L. feeleii strain was evidenced that could be promoted, the EPS might be dispensable for the bacteria that caused Pontiac fever. Based on the current knowledge, we focused on bacterial infection in human and murine host cells, intracellular growth, cytopathogenicity, stimulatory capacity of cytokines secre- tion, and pathogenic effects of the EPS ofL. feeleii in this review. Keywords Legionella feeleii · Pontiac fever · Legionnaires’ disease · Flagellum · Exopolysaccharide · Bacterial infection Introduction Legionella, they will cause respiratory diseases by the air- borne agent [4]. Legionellae are gram-negative intracellular pathogenic bac- teria that are capable of living ubiquitously in natural or artificial aquatic environments, such as rivers, lakes, streams, Intracellular growth and Legionella feeleii fountains, air conditioning cooling towers, humidifiers, and whirlpool spas. The organisms live and grow in water Legionella can form a commensal relationship with freshwa- systems at temperatures of 20–50 °C, with the optimum at ter or soil amoebae [5, 6]. The bacteria can be provided with 35 °C [1]. The exception of Legionella living in the natural a niche for multiplication, and the resistance to disadvanta- environment is Legionella longbeachae, which was primar- geous environmental factors can be promoted [7–9]. Differ- ily isolated from the soil [2]. Until now, more than 60 species ent species of Legionella exhibited proliferation capacity in of Legionella have been identified, and at least 20 of them mammalian macrophages and epithelial cells [10–14]. After have been associated with the diseases [3]. Once humans entering the cytoplasm of the eukaryotes, the bacteria estab- inhale aerosolized water droplets that are contaminated by lish Legionella-containing vacuoles (LCVs) to avoid fusion with lysosomes and replicate inside the LCVs. The organ- isms rupture the vacuole membrane and lyse the host cells * Changle Wang [15]. Neighboring cells can be infected with the released [email protected] bacteria for sequential infection [16, 17]. During prolifera- tion, different species of Legionella can even form different 1 Department of Pathogenic Biology, Hebei Medical intracellular colony morphologies in mammalian cells [18]. University, Shijiazhuang 050017, People’s Republic of China Legionella feeleii serogroup 1 (ATCC 35072, hereinaf- 2 School of Basic Medical Science, Hebei Medical University, ter referred to as LfPF) was reported for the first time in Shijiazhuang 050017, People’s Republic of China Vol.:(0123456789)1 3 26 Medical Microbiology and Immunology (2019) 208:25–32 1984, since the bacteria caused an outbreak of Pontiac fever adherence to human epithelial cells [29, 30] and invasion in Canada [19]. The same serogroup bacterium was also of Acanthamoeba atronyxis [31]. A variety of non-flagellar reported that caused pneumonia in two immunosuppressed toxins or effectors and flagellar proteins were demonstrated patients [20]. In 1985 in America, L. feeleii serogroup 2 that could be delivered to the extracellular milieu by the type (ATCC 35849, hereinafter referred to as LfLD) was iso- III-like protein secretion apparatus [32, 33]. lated from a Legionnaires’ disease patient [21]. However, Most of the Legionella species are flagellated pathogenic the pathogenesis of L. feeleii that caused Pontiac fever or organisms [34]. In previous researches, it is identified that Legionnaires’ disease has not been elucidated. L. feeleii flaA was one of the virulence factors that could affect bacte- could proliferate in human macrophages and amoeba at rial virulence in Legionella [35–37]. The flaA mutant strain 37 °C environment [22]. The bacteria can maintain the com- significantly reduced the infectious capacity to the eukaryote position of the cellular fatty acid in a stable status during the cells [38]. LfLD was observed that showed smooth-waved stationary growth phase. Due to the differences of bacterial mono-polar flagellum at 25 and 30 °C; however, LfPF did physiological age, L. feeleii could not grow as rapidly as L. not possess the flagellum [14]. Heuner et al. had reported pneumophila [23]. This organism showed lethal ability to that Western blot analysis for FlaA was positive in L. fee- guinea pigs at the bacterial concentration of 109/ml. How- leii ATCC 35849 (LfLD), but negative in L. feeleii ATCC ever, there were no death in guinea pigs after the bacteria 35072 (LfPF). They also found that L. feeleii ATCC 35849 were exposed to a series of disadvantageous factors, which (LfLD) was a flagellated bacterium by electron microscopy caused the bacterial toxic activity to be attenuated [24]. [39]. Based on these distinctions, LfLD was found that have enhanced invasion capacity to human epithelial cells and have promoted internalization by human and murine Characteristics and virulence traits macrophages (Fig. 1). While the key role of the flagellum of flagellum in Legionella feeleii for promoting bacterial entry to the host cells has been evi- denced in LfLD, the same flagellar morphology cannot be Flagellum is an appendage of the bacterium whose structure found after the bacteria were cultured between 25 °C and is mainly comprised of three parts, such as a basal body, a 37 °C [14]. The flagellum of L. pneumophila JR32 showed hook structure, and a filament [25, 26]. In the process of the same smooth-waved morphology at 25, 30, and 37 °C assembling the flagellum, a type III-like secretion system (Wang et al., unpublished data). It is hypothesized that there plays a key role in exporting the hook and the filament-form- may be some differences in flagellin arrangement of flagel- ing proteins out of the bacterial cells [27]. In general, the lar production of LfLD at higher temperature. Ott et al. had flagellum can help the bacterium to evade adverse environ- reported that the flagellum of L. pneumophila expressed in a mental conditions, mediate chemotaxis toward favorable and temperature-dependent manner [40]. Actually, the numbers rich nutrimental areas, and promote bacterial virulence [28]. of the flagellated LfLD and L. pneumophila JR32 were the The flagellum was evidenced that it was connected with bac- most at 25 °C of the bacterial culture, moderate at 30 °C, and terial virulence traits, since it could contribute to bacterial less at 37 °C under the electron microscope [14]. Fig. 1 Simple illustration of entry into cytoplasm, intracel- lular proliferation and stimu- lated cytokines secretion of Legionella feeleii LfPF (WRLf anf BTLf) and LFLD. In bacte- rial entry, both flagellum and exopolysaccharide (EPS) play an important role in promoting internalization of bacteria by the host cells. LfLD could induce a great amount of cytokines secretion (direct arrow), while LfPF induced less (indirect arrow). Whether L. feeleii could form Legionella-containing vacuole (LCV, grey color) and Utilize Type 4 Secretion Syatem (T4SS) for proliferation in the cytoplasm, and the pathway of inducing cytokines production should be demonstrated 1 3 Medical Microbiology and Immunology (2019) 208:25–32 27 The virulence of the flagellum also affected cytopatho- [55]. Proinflammatory cytokines secretion is considered genicity and cytokines secretion, such as the flagellin which as a double-edged sword for the pulmonary cells and tis- were purified from two species of the motile wild type sue. It can contribute to playing a role in host defense when Legionella that triggered host cells death and induced IL-1β produced moderately [56]. Once excess of proinflammatory secretion, while the bacteria failed [41]. In L. pneumoph- cytokines are triggered to secrete, it may play as a patho- ila, the flaA mutant strain expressed deficiency in trigger- genic factor that could exacerbate the damage of the host ing murine bone marrow-derived macrophages death [42]. tissue and develop into pulmonary inflammation. In addi- Similar results were also found in L. feeleii. LfLD exhibited tion, the direct injury of the host pulmonary epithelial tissue stronger cytopathogenicity than LfPF, which killed approxi- that is caused by the intracellular
Recommended publications
  • BD-CS-057, REV 0 | AUGUST 2017 | Page 1
    EXPLIFY RESPIRATORY PATHOGENS BY NEXT GENERATION SEQUENCING Limitations Negative results do not rule out viral, bacterial, or fungal infections. Targeted, PCR-based tests are generally more sensitive and are preferred when specific pathogens are suspected, especially for DNA viruses (Adenovirus, CMV, HHV6, HSV, and VZV), mycobacteria, and fungi. The analytical sensitivity of this test depends on the cellularity of the sample and the concentration of all microbes present. Analytical sensitivity is assessed using Internal Controls that are added to each sample. Sequencing data for Internal Controls is quantified. Samples with Internal Control values below the validated minimum may have reduced analytical sensitivity or contain inhibitors and are reported as ‘Reduced Analytical Sensitivity’. Additional respiratory pathogens to those reported cannot be excluded in samples with ‘Reduced Analytical Sensitivity’. Due to the complexity of next generation sequencing methodologies, there may be a risk of false-positive results. Contamination with organisms from the upper respiratory tract during specimen collection can also occur. The detection of viral, bacterial, and fungal nucleic acid does not imply organisms causing invasive infection. Results from this test need to be interpreted in conjunction with the clinical history, results of other laboratory tests, epidemiologic information, and other available data. Confirmation of positive results by an alternate method may be indicated in select cases. Validated Organisms BACTERIA Achromobacter
    [Show full text]
  • 2012 Case Definitions Infectious Disease
    Arizona Department of Health Services Case Definitions for Reportable Communicable Morbidities 2012 TABLE OF CONTENTS Definition of Terms Used in Case Classification .......................................................................................................... 6 Definition of Bi-national Case ............................................................................................................................................. 7 ------------------------------------------------------------------------------------------------------- ............................................... 7 AMEBIASIS ............................................................................................................................................................................. 8 ANTHRAX (β) ......................................................................................................................................................................... 9 ASEPTIC MENINGITIS (viral) ......................................................................................................................................... 11 BASIDIOBOLOMYCOSIS ................................................................................................................................................. 12 BOTULISM, FOODBORNE (β) ....................................................................................................................................... 13 BOTULISM, INFANT (β) ...................................................................................................................................................
    [Show full text]
  • Legionella Shows a Diverse Secondary Metabolism Dependent on a Broad Spectrum Sfp-Type Phosphopantetheinyl Transferase
    Legionella shows a diverse secondary metabolism dependent on a broad spectrum Sfp-type phosphopantetheinyl transferase Nicholas J. Tobias1, Tilman Ahrendt1, Ursula Schell2, Melissa Miltenberger1, Hubert Hilbi2,3 and Helge B. Bode1,4 1 Fachbereich Biowissenschaften, Merck Stiftungsprofessur fu¨r Molekulare Biotechnologie, Goethe Universita¨t, Frankfurt am Main, Germany 2 Max von Pettenkofer Institute, Ludwig-Maximilians-Universita¨tMu¨nchen, Munich, Germany 3 Institute of Medical Microbiology, University of Zu¨rich, Zu¨rich, Switzerland 4 Buchmann Institute for Molecular Life Sciences, Goethe Universita¨t, Frankfurt am Main, Germany ABSTRACT Several members of the genus Legionella cause Legionnaires’ disease, a potentially debilitating form of pneumonia. Studies frequently focus on the abundant number of virulence factors present in this genus. However, what is often overlooked is the role of secondary metabolites from Legionella. Following whole genome sequencing, we assembled and annotated the Legionella parisiensis DSM 19216 genome. Together with 14 other members of the Legionella, we performed comparative genomics and analysed the secondary metabolite potential of each strain. We found that Legionella contains a huge variety of biosynthetic gene clusters (BGCs) that are potentially making a significant number of novel natural products with undefined function. Surprisingly, only a single Sfp-like phosphopantetheinyl transferase is found in all Legionella strains analyzed that might be responsible for the activation of all carrier proteins in primary (fatty acid biosynthesis) and secondary metabolism (polyketide and non-ribosomal peptide synthesis). Using conserved active site motifs, we predict Submitted 29 June 2016 some novel compounds that are probably involved in cell-cell communication, Accepted 25 October 2016 Published 24 November 2016 differing to known communication systems.
    [Show full text]
  • Emerging Infectious Diseases Objectives What
    12/2/2015 EMERGING INFECTIOUS DISEASES What could be emerging in North Dakota? TRACY K. MILLER, PHD, MPH STATE EPIDEMIOLOGIST [email protected] OBJECTIVES 1. Identify new or re-emerging infections 2. Identify ways outside agencies can help the health department monitor for disease 3. Determine what education needs are available. 2 WHAT ARE "EMERGING" INFECTIOUS DISEASES? Infectious diseases whose incidence in humans has increased in the past two decades or threatens to increase in the near future have been defined as "emerging." These diseases, which respect no national boundaries, include: • New infections resulting from changes or evolution of existing organisms • Known infections spreading to new geographic areas or populations • Previously unrecognized infections appearing in areas undergoing ecologic transformation 3 1 12/2/2015 WHAT ARE RE-EMERGING INFECTIOUS DISEASES? Any condition, usually an infection, that had decreased in incidence in the global population and was brought under control through effective health care policy and improved living conditions, reached a nadir, and, more recently, began to resurge as a health problem due to changes in the health status of a susceptible population. 4 REPORTABLE CONDITIONS 5 CDC’S LIST OF EIDS • malaria • drug-resistant infections (antimicrobial resistance) • Marburg hemorrhagic fever • bovine spongiform encephalopathy (Mad cow disease) & variant Creutzfeldt-Jakob disease (vCJD) • measles • campylobacteriosis • meningitis • Chagas disease • monkeypox • cholera • MRSA (Methicillin Resistant
    [Show full text]
  • Choline Supplementation Sensitizes Legionella Dumoffii to Galleria
    International Journal of Molecular Sciences Article Choline Supplementation Sensitizes Legionella dumoffii to Galleria mellonella Apolipophorin III 1, , 2, 3 Marta Palusi ´nska-Szysz * y , Agnieszka Zdybicka-Barabas y , Rafał Luchowski , Emilia Reszczy ´nska 4, Justyna Smiałek´ 5 , Paweł Mak 5 , Wiesław I. Gruszecki 3 and Małgorzata Cytry ´nska 2 1 Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland 2 Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; [email protected] (A.Z.-B.); [email protected] (M.C.) 3 Department of Biophysics, Institute of Physics, Faculty of Mathematics, Physics and Computer Science, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 1, 20-031 Lublin, Poland; [email protected] (R.L.); [email protected] (W.I.G.) 4 Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; [email protected] 5 Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow, Poland; [email protected] (J.S.);´ [email protected] (P.M.) * Correspondence: [email protected] These authors contributed equally to the work. y Received: 15 June 2020; Accepted: 11 August 2020; Published: 13 August 2020 Abstract: The growth of Legionella dumoffii can be inhibited by Galleria mellonella apolipophorin III (apoLp-III) which is an insect homologue of human apolipoprotein E., and choline-cultured L.
    [Show full text]
  • Report June 2
    COMMUNICABLE DISEASES • ISSN 1361 - 1887 Provisional Summary 2003 Northern Ireland Edition Vol 12 No 13 COMMUNICABLE DISEASES ISSN 1361 - 1887 Introduction This report summarises the main trends in communicable disease in Northern Ireland during 2003. It is primarily based on laboratory reports forward to CDSC (NI) and information supplied by Consultants in Communicable Disease Control. This is a more detailed annual summary than in previous years and replaces our annual report. The data for 2003 should be regarded as provisional to allow for late reporting of results and further typing of organisms. CDSC (NI) is extremely grateful to colleagues in Trusts and Boards for providing timely data and information on a wide range of infections and communicable disease issues. This summary can also be downloaded from our website http://www.cdscni.org.uk Contributing Laboratories Information Altnagelvin Mater Editorial Team: CDSC (NI) Antrim Musgrave Park Belfast City Hospital Belfast City Regional Mycology Dr Brian Smyth Lisburn Road, Belfast, BT9 7AB Belvoir Park Regional Virus Audrey Lynch N.Ireland Causeway Royal Victoria Dr Julie McCarroll Telephone: 028 9026 3765 Craigavon Tyrone County Dr Hilary Kennedy Fax: 028 9026 3511 Daisyhill Ulster Ruth Fox Email: [email protected] Erne Julie Boucher COMMUNICABLE DISEASES: Provisional Summary 1 Contents 1 Gastrointestinal Infections 3 Foodborne and Gastrointestinal outbreaks: 2003 2 Imported Infections 9 3 Human Brucellosis in Northern Ireland, 2003 13 4 Enhanced Surveillance of Influenza in Northern Ireland 15 5 Enhanced Surveillance of Meningococcal Disease 19 6 Enhanced Surveillance of Tuberculosis 23 7 Legionella Infections 27 8 Hepatitis 29 9 HIV and AIDS 33 10 Syphilis Outbreak in Northern Ireland 2001-2003 37 11 Childhood Vaccination Programme 41 Appendix 1 – Trends in Specific Reported Pathogens Appendix 2 – Notifications of Infections Diseases COMMUNICABLE DISEASES: Provisional Summary 2 1 Gastrointestinal infections Notifications of food poisoning increased steadily from1991 to 2000.
    [Show full text]
  • The Value of UV for Legionella Control in Cooling Towers
    The Value of UV for Legionella Control in Cooling Towers By Ytzhak Rozenberg, Assaf Lowentahl, Ph.D. Atlantium Technologies, [email protected], www.atlantium.com. ABSTRACT: Excessive growth of Legionella in cooling towers and water systems can cause significant negative health effects. Legionella and free-living amoebae may be present together and amoebae can act as a shield for Legionella, protecting it from traditional chemical disinfectants. Ultraviolet (UV) disinfection offers a non-chemical treatment approach that is effective for reducing biofilm potential in cooling tower water and provides reliable protection against the spread of Legionella and inac- tivation of amoebae. However, all UV technologies are not created equal; low-pressure (LP) and medium-pressure (MP) UV lamp technology have different effects on a microorganism’s mortality rate at different UV dose rates. In this comparative study, a proprietary MP lamp technology (Hydro-Optic™ [HOD]) manufactured by Atlantium Technologies was evaluated and determined to achieve 100% mortality of Entamoeba Histolytica (E. histolytica) at a dose of 8.8 mJ/cm2, while LP UV systems, even at a dose of 90 mJ/cm2, did not achieve 100% mortality. E. histolytica served as a Legionella host model in the study. INTRODUCTION Cooling towers operate at temperatures that can provide optimal conditions for the growth of microorganisms in wa- Various studies have shown that 40-60% of all cooling tow- ter (20-45°C, 68-113°F), including Legionella. ers harbor Legionella bacteria. Cooling towers are the larg- est and most common source of Legionnaire’s disease out- Other operating conditions contributing to the growth of Le- breaks because of their risk for widespread circulation.
    [Show full text]
  • Middle East Respiratory Syndrome Coronavirus Update Legionnaires' Disease Outbreak in Shelby County
    WINTER IS NORO- ISSUE 1 VOLUME 7 2014 VIRUS SEASON ....... 2 ASSESSING DISPENS- ING ACCURACY FOR MEDICAL COUNTER- MEASURE EXCERCIS- ES .......................... 2 ONE HEALTH: WILD PIGS, HUNTERS AND BRUCELLOSIS……...3 WATCHING OUT FOR FLU ........................ 3 THE LIST OF REPORT- ABLE DISEASES AND EVENTS .................. 3 Tennessee TENNESSEE DEPARTMENT OF HEALTH COMMISSIONER JOHN J. DREYZEHNER, MD, MPH epi-news Legionnaires’ Disease Outbreak in Shelby County In June 2013, the Shelby County Health areas and to conduct environmental sam- Department received multiple reports of pling, testing and remediation using estab- Legionnaires’ disease among inpatients at lished methodologies. The investigators local hospitals. Health department epide- also initiated active surveillance for le- miologists quickly responded, conducting gionellosis and soon found four more cases detailed interviews with the patients using sharing this exposure. an interview form they had adapted with questions specific to Shelby County expo- Legionnaires’ disease is a form of commu- sures. nity-acquired pneumonia caused by Le- gionella species. A less severe form of Interviews with the first seven identified legionellosis is known as Pontiac fever. patients revealed that five of them had fre- Legionella bacteria are ubiquitous in the quented the same hot tub and steam room environment and thrive in warm, manmade conditions are predisposing factors. Most in a fitness center within two to ten days water systems. People can become infected cases occur sporadically
    [Show full text]
  • Host-Adaptation in Legionellales Is 2.4 Ga, Coincident with Eukaryogenesis
    bioRxiv preprint doi: https://doi.org/10.1101/852004; this version posted February 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Host-adaptation in Legionellales is 2.4 Ga, 2 coincident with eukaryogenesis 3 4 5 Eric Hugoson1,2, Tea Ammunét1 †, and Lionel Guy1* 6 7 1 Department of Medical Biochemistry and Microbiology, Science for Life Laboratories, 8 Uppsala University, Box 582, 75123 Uppsala, Sweden 9 2 Department of Microbial Population Biology, Max Planck Institute for Evolutionary 10 Biology, D-24306 Plön, Germany 11 † current address: Medical Bioinformatics Centre, Turku Bioscience, University of Turku, 12 Tykistökatu 6A, 20520 Turku, Finland 13 * corresponding author 14 1 bioRxiv preprint doi: https://doi.org/10.1101/852004; this version posted February 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 15 Abstract 16 Bacteria adapting to living in a host cell caused the most salient events in the evolution of 17 eukaryotes, namely the seminal fusion with an archaeon 1, and the emergence of both the 18 mitochondrion and the chloroplast 2. A bacterial clade that may hold the key to understanding 19 these events is the deep-branching gammaproteobacterial order Legionellales – containing 20 among others Coxiella and Legionella – of which all known members grow inside eukaryotic 21 cells 3.
    [Show full text]
  • List of the Pathogens Intended to Be Controlled Under Section 18 B.E
    (Unofficial Translation) NOTIFICATION OF THE MINISTRY OF PUBLIC HEALTH RE: LIST OF THE PATHOGENS INTENDED TO BE CONTROLLED UNDER SECTION 18 B.E. 2561 (2018) By virtue of the provision pursuant to Section 5 paragraph one, Section 6 (1) and Section 18 of Pathogens and Animal Toxins Act, B.E. 2558 (2015), the Minister of Public Health, with the advice of the Pathogens and Animal Toxins Committee, has therefore issued this notification as follows: Clause 1 This notification is called “Notification of the Ministry of Public Health Re: list of the pathogens intended to be controlled under Section 18, B.E. 2561 (2018).” Clause 2 This Notification shall come into force as from the following date of its publication in the Government Gazette. Clause 3 The Notification of Ministry of Public Health Re: list of the pathogens intended to be controlled under Section 18, B.E. 2560 (2017) shall be cancelled. Clause 4 Define the pathogens codes and such codes shall have the following sequences: (1) English alphabets that used for indicating the type of pathogens are as follows: B stands for Bacteria F stands for fungus V stands for Virus P stands for Parasites T stands for Biological substances that are not Prion R stands for Prion (2) Pathogen risk group (3) Number indicating the sequence of each type of pathogens Clause 5 Pathogens intended to be controlled under Section 18, shall proceed as follows: (1) In the case of being the pathogens that are utilized and subjected to other law, such law shall be complied. (2) Apart from (1), the law on pathogens and animal toxin shall be complied.
    [Show full text]
  • Legionnaires' Disease at an Automobile and Scrap Metal Shredding Facility, New York
    Workplace Safety and Health Legionnaires’ Disease at an Automobile and Scrap Metal Shredding Facility, New York Randy Boylstein, MS, REHS Rachel Bailey, DO, MPH Chris Piacitelli, MS, CIH Christine Schuler, PhD Jean Cox-Ganser, PhD Kathleen Kreiss, MD Health Hazard Evaluation Report HETA 2011-0109-3162 New York August 2012 DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health The employer shall post a copy of this report for a period of 30 calendar days at or near the workplace(s) of affected employees. The employer shall take steps to insure that the posted determinations are not altered, defaced, or covered by other material during such period. [37 FR 23640, November 7, 1972, as amended at 45 FR 2653, January 14, 1980]. CON T EN T S REPO rt Abbreviations .......................................................................2 Highlights of the NIOSH Health Hazard Evaluation.............3 Summary.............................................................................. 6 Introduction ..........................................................................8 Background.......................................................................... 8 Assessment .......................................................................14 Results...............................................................................17 Discussion .........................................................................25 Conclusions .......................................................................29
    [Show full text]
  • Genetic and Functional Studies of the Mip Protein of Legionella
    t1.ì. Genetic and Functional Studies of the Mip Protein of Legionella Rodney Mark Ratcliff, BSc (Hons)' MASM Infectious Diseases Laboratories Institute of Medical and Veterinary Science and Department of Microbiology and Immunology UniversitY of Adelaide. Adelaide, South Australia A thesis submitted to the University of Adelaide for the degree of I)octor of Philosophy 15'h March 2000 amended 14th June 2000 Colonies of several Legionella strains on charcoal yeast extract agar (CYE) after 4 days incubation at 37"C in air. Various magnifications show typical ground-glass opalescent appearance. Some pure strains exhibit pleomorphic growth or colour. The top two photographs demonstrate typical red (LH) and blue-white (RH) fluorescence exhibited by some species when illuminated by a Woods (IJV) Lamp. * t Table of Contents .1 Chapter One: Introduction .1 Background .............'. .2 Morphology and TaxonomY J Legionellosis ............. 5 Mode of transmission "..'....'. 7 Environmental habitat 8 Interactions between Legionella and phagocytic hosts 9 Attachment 11 Engulfment and internalisation.'.. 13 Intracellular processing 13 Intracellular replication of legionellae .. " "' " "' 15 Host cell death and bacterial release 18 Virulence (the Genetic factors involved with intracellular multiplication and host cell killing .20 icm/dot system) Legiolysin .25 Msp (Znn* metaloprotease) ...'..... .25 .28 Lipopolysaccharide .29 The association of flagella with disease.. .30 Type IV fimbriae.... .31 Major outer membrane proteins....'.......'. JJ Heat shock proteins'.'. .34 Macrophage infectivity potentiator (Mip) protein Virulenceiraits of Legionella species other than L. pneumophila..........' .39 phylogeny .41 Chapter One (continued): Introduction to bacterial classification and .41 Identificati on of Legionella...'.,..'.. .46 Phylogeny .52 Methods of phylogenetic analysis' .53 Parsimony methods.'.. .55 Distance methods UPGMA cluster analYsis.'.'...
    [Show full text]