INFECTIOUS DISEASES of ETHIOPIA Infectious Diseases of Ethiopia - 2011 Edition

Total Page:16

File Type:pdf, Size:1020Kb

INFECTIOUS DISEASES of ETHIOPIA Infectious Diseases of Ethiopia - 2011 Edition INFECTIOUS DISEASES OF ETHIOPIA Infectious Diseases of Ethiopia - 2011 edition Infectious Diseases of Ethiopia - 2011 edition Stephen Berger, MD Copyright © 2011 by GIDEON Informatics, Inc. All rights reserved. Published by GIDEON Informatics, Inc, Los Angeles, California, USA. www.gideononline.com Cover design by GIDEON Informatics, Inc No part of this book may be reproduced or transmitted in any form or by any means without written permission from the publisher. Contact GIDEON Informatics at [email protected]. ISBN-13: 978-1-61755-068-3 ISBN-10: 1-61755-068-X Visit http://www.gideononline.com/ebooks/ for the up to date list of GIDEON ebooks. DISCLAIMER: Publisher assumes no liability to patients with respect to the actions of physicians, health care facilities and other users, and is not responsible for any injury, death or damage resulting from the use, misuse or interpretation of information obtained through this book. Therapeutic options listed are limited to published studies and reviews. Therapy should not be undertaken without a thorough assessment of the indications, contraindications and side effects of any prospective drug or intervention. Furthermore, the data for the book are largely derived from incidence and prevalence statistics whose accuracy will vary widely for individual diseases and countries. Changes in endemicity, incidence, and drugs of choice may occur. The list of drugs, infectious diseases and even country names will vary with time. Scope of Content: Disease designations may reflect a specific pathogen (ie, Adenovirus infection), generic pathology (Pneumonia – bacterial) or etiologic grouping(Coltiviruses – Old world). Such classification reflects the clinical approach to disease allocation in the Infectious Diseases Module of the GIDEON web application. Similarly, a number of diseases which are generally diagnosed and treated outside of the field of Infectious Diseases are not included, despite the fact that a clear infectious etiology exists. Examples include Peptic ulcer, Tropical spastic paraparesis, Hairy-cell leukemia, Creutzfeldt–Jakob disease, Human papilloma virus infections, etc. In contrast, a number of other entities of unknown etiology which do present to Infectious Diseases specialists have been included: Kawasaki's disease, Chronic fatigue syndrome, Kikuchi and Kimura diseases. Several minor infections having minimal relevance to the field of Geographic Medicine are not covered: Paronychia, Otitis externa, Molluscum contagiosum, etc. © 2011 GIDEON Informatics, Inc. www.gideononline.com All Rights Reserved. Page 2 of 372 Infectious Diseases of Ethiopia - 2011 edition Introduction: The GIDEON e-book series Infectious Diseases of Ethiopia is one in a series of GIDEON ebooks which summarize the status of individual infectious diseases, in every country of the world. Data are based on the GIDEON web application (www.gideononline.com) which relies on standard text books, peer-review journals, Health Ministry reports and ProMED, supplemented by an ongoing search of the medical literature. Chapters are arranged alphabetically, by disease name. Each section is divided into four sub-sections: 1. Descriptive epidemiology 2. Summary of clinical features 3. Status of the disease in Ethiopia 4. References The initial items in the first section, Descriptive epidemiology, are defined as follows: Agent Classification (e.g., virus, parasite) and taxonomic designation. Reservoir Any animal, arthropod, plant, soil or substance in which an infectious agent normally lives and multiplies, on which it depends primarily for survival, and where it reproduces itself in such a manner that it can be transmitted to a susceptible host. Vector An arthropod or other living carrier which transports an infectious agent from an infected organism or reservoir to a susceptible individual or immediate surroundings. Vehicle The mode of transmission for an infectious agent. This generally implies a passive and inanimate (i.e., non-vector) mode. There are 347 generic infectious diseases in the world today. 224 of these are endemic, or potentially endemic, to Ethiopia. A number of other diseases are not relevant to Ethiopia and have not been included in this book. In addition to endemic diseases, we have included all published data regarding imported diseases and infection among expatriates from Ethiopia. The availability and quality of literature regarding specific infectious diseases vary from country to country. As such, you may find that many of the sections in this book are limited to a general discussion of the disease itself - with no data regarding Ethiopia. This is a book about the geography and epidemiology of Infection. Comprehensive and up-to-date information regarding the causes, diagnosis and treatment of each disease is available in the GIDEON web application. Many of the diseases are generic. For example, such designations as Pneumonia bacterial and Urinary tract infection include a number of individual diseases. These appear under the subheading, Synonyms, listed under each disease. We welcome feedback, and will be pleased to add any relevant, sourced material. Email us at [email protected] For more information about GIDEON see the section About GIDEON and visit www.gideononline.com Last updated: January 10, 2011 © 2011 GIDEON Informatics, Inc. www.gideononline.com All Rights Reserved. Page 3 of 372 Infectious Diseases of Ethiopia - 2011 edition Table of Contents Introduction: The GIDEON e-book series ......................... 3 Dientamoeba fragilis infection .......................................86 Actinomycosis .............................................................. 7 Diphtheria+ ................................................................87 Adenovirus infection ..................................................... 9 Diphyllobothriasis ........................................................90 Aeromonas & marine Vibrio infx. .................................. 11 Dipylidiasis .................................................................91 African tick bite fever+ ................................................ 13 Dirofilariasis ...............................................................92 AIDS+....................................................................... 15 Dracunculiasis+ ...........................................................93 Amoeba - free living ................................................... 20 Ebola+ .......................................................................96 Amoebic abscess+ ...................................................... 22 Echinococcosis - unilocular+..........................................98 Amoebic colitis+ ......................................................... 23 Endemic syphilis (bejel) ............................................. 100 Animal bite-associated infection ................................... 25 Endocarditis - infectious ............................................. 101 Anisakiasis ................................................................ 26 Enterobiasis+ ............................................................ 102 Anthrax+ ................................................................... 27 Enterovirus infection .................................................. 103 Ascariasis+ ................................................................ 33 Epidural abscess ....................................................... 105 Aspergillosis .............................................................. 35 Erysipelas or cellulitis................................................. 106 Bacillary angiomatosis................................................. 36 Erysipeloid ............................................................... 107 Bacillus cereus food poisoning ...................................... 37 Erythrasma .............................................................. 108 Bacterial vaginosis...................................................... 38 Escherichia coli diarrhea+ ........................................... 109 Balantidiasis .............................................................. 39 Fascioliasis+ ............................................................. 111 Bartonellosis - cat borne.............................................. 40 Filariasis - Bancroftian+ .............................................. 113 Bartonellosis - other systemic+..................................... 42 Fungal infection - invasive .......................................... 115 Blastocystis hominis infection+ ..................................... 43 Gastroenteritis - viral................................................. 117 Botulism.................................................................... 44 Gianotti-Crosti syndrome............................................ 118 Brain abscess............................................................. 45 Giardiasis+ ............................................................... 119 Brucellosis+ ............................................................... 46 Glanders+ ................................................................ 121 Bunyaviridae infections - misc.+ ................................... 49 Gonococcal infection+ ................................................ 122 Campylobacteriosis+ ................................................... 50 Granuloma inguinale.................................................. 124 Candidiasis ................................................................ 52 Hepatitis A+.............................................................
Recommended publications
  • Detection of Leishmania Aethiopica in Paraffin-Embedded Skin Biopsies Using the Polymerase Chain Reaction T
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Mitteilungen der Österreichischen Gesellschaft für Tropenmedizin und Parasitologie Jahr/Year: 1994 Band/Volume: 16 Autor(en)/Author(s): Laskay T., Miko T. L., Teferedegn H., Negesse Y., Rodgers M. R., Solbach W., Röllinghoff M., Frommel D. Artikel/Article: Onchozerkose-Kontrolle in Mali - Darstellung eines Kommunikationsdefizites und seine Entwicklung. 141-146 ©Österr. Ges. f. Tropenmedizin u. Parasitologie, download unter www.biologiezentrum.at Mitt. Österr. Ges. Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia (Director: Dr. D. Frommel) (1) Tropenmed. Parasitol. 16 (1994) All Africa Leprosy Rehabilitation and Training Center (ALERT), Addis Ababa, Ethiopia 141 - 146 (Managing Director: Mr. J. N. Alldred) (2) Department of Tropical Public Health, Harvard School of Public Health, Boston, MA (Head of Unit: Dr. Dyann Wirth) (3) Institute for Clinical Microbiology, Univerity of Erlangen-Nürnberg, Erlangen, F. R. G. (Director: Prof. Dr. M. Röllinghoff) (4) Detection of Leishmania aethiopica in paraffin-embedded skin biopsies using the polymerase chain reaction T. Laskay14, T. L. Miko1-2, H. Teferedegn1, Y. Negesse12, M. R. Rodgers3, W. Solbach4, M. Röllinghoff4, D. Frommel1 Introduction Cutaneous leishmaniasis (CL) is a serious public health problem in several areas of the world. Current reports indicate that the prevalence of the disease is increasing in many countries (4). One major focus of CL in the Old World is found in Ethiopia where the aetiological agent is Leishmania aethiopica (1, 2, 7). At present diagnosis relies on the detection of the parasite in smears or skin biopsy specimens by histopathological examination and/or by in vitro culture.
    [Show full text]
  • 2012 Case Definitions Infectious Disease
    Arizona Department of Health Services Case Definitions for Reportable Communicable Morbidities 2012 TABLE OF CONTENTS Definition of Terms Used in Case Classification .......................................................................................................... 6 Definition of Bi-national Case ............................................................................................................................................. 7 ------------------------------------------------------------------------------------------------------- ............................................... 7 AMEBIASIS ............................................................................................................................................................................. 8 ANTHRAX (β) ......................................................................................................................................................................... 9 ASEPTIC MENINGITIS (viral) ......................................................................................................................................... 11 BASIDIOBOLOMYCOSIS ................................................................................................................................................. 12 BOTULISM, FOODBORNE (β) ....................................................................................................................................... 13 BOTULISM, INFANT (β) ...................................................................................................................................................
    [Show full text]
  • Combating the Coronavirus Pandemic Early Detection, Medical Treatment
    AAAS Research Volume 2020, Article ID 6925296, 35 pages https://doi.org/10.34133/2020/6925296 Review Article Combating the Coronavirus Pandemic: Early Detection, Medical Treatment, and a Concerted Effort by the Global Community Zichao Luo,1 Melgious Jin Yan Ang,1,2 Siew Yin Chan,3 Zhigao Yi,1 Yi Yiing Goh,1,2 Shuangqian Yan,1 Jun Tao,4 Kai Liu,5 Xiaosong Li,6 Hongjie Zhang ,5,7 Wei Huang ,3,8 and Xiaogang Liu 1,9,10 1Department of Chemistry, National University of Singapore, Singapore 117543, Singapore 2NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore 3Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China 4Sports Medical Centre, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China 5State Key Laboratory of Rare Earth Resource Utilization, Chang Chun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China 6Department of Oncology, The Fourth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100048, China 7Department of Chemistry, Tsinghua University, Beijing 100084, China 8Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China 9The N.1 Institute for Health, National University of Singapore, Singapore 10Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350807, China Correspondence should be addressed to Hongjie Zhang; [email protected], Wei Huang; [email protected], and Xiaogang Liu; [email protected] Received 19 April 2020; Accepted 20 April 2020; Published 16 June 2020 Copyright © 2020 Zichao Luo et al.
    [Show full text]
  • Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
    viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission.
    [Show full text]
  • Emerging Infectious Diseases Objectives What
    12/2/2015 EMERGING INFECTIOUS DISEASES What could be emerging in North Dakota? TRACY K. MILLER, PHD, MPH STATE EPIDEMIOLOGIST [email protected] OBJECTIVES 1. Identify new or re-emerging infections 2. Identify ways outside agencies can help the health department monitor for disease 3. Determine what education needs are available. 2 WHAT ARE "EMERGING" INFECTIOUS DISEASES? Infectious diseases whose incidence in humans has increased in the past two decades or threatens to increase in the near future have been defined as "emerging." These diseases, which respect no national boundaries, include: • New infections resulting from changes or evolution of existing organisms • Known infections spreading to new geographic areas or populations • Previously unrecognized infections appearing in areas undergoing ecologic transformation 3 1 12/2/2015 WHAT ARE RE-EMERGING INFECTIOUS DISEASES? Any condition, usually an infection, that had decreased in incidence in the global population and was brought under control through effective health care policy and improved living conditions, reached a nadir, and, more recently, began to resurge as a health problem due to changes in the health status of a susceptible population. 4 REPORTABLE CONDITIONS 5 CDC’S LIST OF EIDS • malaria • drug-resistant infections (antimicrobial resistance) • Marburg hemorrhagic fever • bovine spongiform encephalopathy (Mad cow disease) & variant Creutzfeldt-Jakob disease (vCJD) • measles • campylobacteriosis • meningitis • Chagas disease • monkeypox • cholera • MRSA (Methicillin Resistant
    [Show full text]
  • Molecular Characterization of Leishmania RNA Virus 2 in Leishmania Major from Uzbekistan
    G C A T T A C G G C A T genes Article Molecular Characterization of Leishmania RNA virus 2 in Leishmania major from Uzbekistan 1, 2,3, 1,4 2 Yuliya Kleschenko y, Danyil Grybchuk y, Nadezhda S. Matveeva , Diego H. Macedo , Evgeny N. Ponirovsky 1, Alexander N. Lukashev 1 and Vyacheslav Yurchenko 1,2,* 1 Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia; [email protected] (Y.K.); [email protected] (N.S.M.); [email protected] (E.N.P.); [email protected] (A.N.L.) 2 Life Sciences Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; [email protected] (D.G.); [email protected] (D.H.M.) 3 CEITEC—Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic 4 Department of Molecular Biology, Faculty of Biology, Moscow State University, 119991 Moscow, Russia * Correspondence: [email protected]; Tel.: +420-597092326 These authors contributed equally to this work. y Received: 19 September 2019; Accepted: 18 October 2019; Published: 21 October 2019 Abstract: Here we report sequence and phylogenetic analysis of two new isolates of Leishmania RNA virus 2 (LRV2) found in Leishmania major isolated from human patients with cutaneous leishmaniasis in south Uzbekistan. These new virus-infected flagellates were isolated in the same region of Uzbekistan and the viral sequences differed by only nineteen SNPs, all except one being silent mutations. Therefore, we concluded that they belong to a single LRV2 species. New viruses are closely related to the LRV2-Lmj-ASKH documented in Turkmenistan in 1995, which is congruent with their shared host (L.
    [Show full text]
  • Report June 2
    COMMUNICABLE DISEASES • ISSN 1361 - 1887 Provisional Summary 2003 Northern Ireland Edition Vol 12 No 13 COMMUNICABLE DISEASES ISSN 1361 - 1887 Introduction This report summarises the main trends in communicable disease in Northern Ireland during 2003. It is primarily based on laboratory reports forward to CDSC (NI) and information supplied by Consultants in Communicable Disease Control. This is a more detailed annual summary than in previous years and replaces our annual report. The data for 2003 should be regarded as provisional to allow for late reporting of results and further typing of organisms. CDSC (NI) is extremely grateful to colleagues in Trusts and Boards for providing timely data and information on a wide range of infections and communicable disease issues. This summary can also be downloaded from our website http://www.cdscni.org.uk Contributing Laboratories Information Altnagelvin Mater Editorial Team: CDSC (NI) Antrim Musgrave Park Belfast City Hospital Belfast City Regional Mycology Dr Brian Smyth Lisburn Road, Belfast, BT9 7AB Belvoir Park Regional Virus Audrey Lynch N.Ireland Causeway Royal Victoria Dr Julie McCarroll Telephone: 028 9026 3765 Craigavon Tyrone County Dr Hilary Kennedy Fax: 028 9026 3511 Daisyhill Ulster Ruth Fox Email: [email protected] Erne Julie Boucher COMMUNICABLE DISEASES: Provisional Summary 1 Contents 1 Gastrointestinal Infections 3 Foodborne and Gastrointestinal outbreaks: 2003 2 Imported Infections 9 3 Human Brucellosis in Northern Ireland, 2003 13 4 Enhanced Surveillance of Influenza in Northern Ireland 15 5 Enhanced Surveillance of Meningococcal Disease 19 6 Enhanced Surveillance of Tuberculosis 23 7 Legionella Infections 27 8 Hepatitis 29 9 HIV and AIDS 33 10 Syphilis Outbreak in Northern Ireland 2001-2003 37 11 Childhood Vaccination Programme 41 Appendix 1 – Trends in Specific Reported Pathogens Appendix 2 – Notifications of Infections Diseases COMMUNICABLE DISEASES: Provisional Summary 2 1 Gastrointestinal infections Notifications of food poisoning increased steadily from1991 to 2000.
    [Show full text]
  • Middle East Respiratory Syndrome Coronavirus Update Legionnaires' Disease Outbreak in Shelby County
    WINTER IS NORO- ISSUE 1 VOLUME 7 2014 VIRUS SEASON ....... 2 ASSESSING DISPENS- ING ACCURACY FOR MEDICAL COUNTER- MEASURE EXCERCIS- ES .......................... 2 ONE HEALTH: WILD PIGS, HUNTERS AND BRUCELLOSIS……...3 WATCHING OUT FOR FLU ........................ 3 THE LIST OF REPORT- ABLE DISEASES AND EVENTS .................. 3 Tennessee TENNESSEE DEPARTMENT OF HEALTH COMMISSIONER JOHN J. DREYZEHNER, MD, MPH epi-news Legionnaires’ Disease Outbreak in Shelby County In June 2013, the Shelby County Health areas and to conduct environmental sam- Department received multiple reports of pling, testing and remediation using estab- Legionnaires’ disease among inpatients at lished methodologies. The investigators local hospitals. Health department epide- also initiated active surveillance for le- miologists quickly responded, conducting gionellosis and soon found four more cases detailed interviews with the patients using sharing this exposure. an interview form they had adapted with questions specific to Shelby County expo- Legionnaires’ disease is a form of commu- sures. nity-acquired pneumonia caused by Le- gionella species. A less severe form of Interviews with the first seven identified legionellosis is known as Pontiac fever. patients revealed that five of them had fre- Legionella bacteria are ubiquitous in the quented the same hot tub and steam room environment and thrive in warm, manmade conditions are predisposing factors. Most in a fitness center within two to ten days water systems. People can become infected cases occur sporadically
    [Show full text]
  • A Review on Biology, Epidemiology And
    iolog ter y & c P a a B r f a o s i l Journal of Bacteriology and t o Dawit et al., J Bacteriol Parasitol 2013, 4:2 a l n o r g u DOI: 10.4172/2155-9597.1000166 y o J Parasitology ISSN: 2155-9597 Research Article Open Access A Review on Biology, Epidemiology and Public Health Significance of Leishmaniasis Dawit G1, Girma Z1 and Simenew K1,2* 1College of Veterinary Medicine and Agriculture, Addis Ababa University, Debre Zeit, Ethiopia 2College of Agricultural Sciences, Dilla University, Dilla, Ethiopia Abstract Leishmaniasis is a major vector-borne disease caused by obligate intramacrophage protozoa of the genus Leishmania, and transmitted by the bite of phlebotomine female sand flies of the genera Phlebotomus and Lutzomyia, in the old and new worlds, respectively. Among 20 well-recognized Leishmania species known to infect humans, 18 have zoonotic nature, which include agents of visceral, cutaneous, and mucocutaneous forms of the disease, in both the old and new worlds. Currently, leishmaniasis show a wider geographic distribution and increased global incidence. Environmental, demographic and human behaviors contribute to the changing landscape for zoonotic cutaneous and visceral leishmaniasis. The primary reservoir hosts of Leishmania are sylvatic mammals such as forest rodents, hyraxes and wild canids, and dogs are the most important species among domesticated animals in the epidemiology of this disease. These parasites have two basic life cycle stages: one extracellular stage within the invertebrate host (phlebotomine sand fly), and one intracellular stage within a vertebrate host. Co-infection with HIV intensifies the burden of visceral and cutaneous leishmaniasis by causing severe forms and more difficult to manage.
    [Show full text]
  • Investigating the Role of Bats in Emerging Zoonoses
    12 ISSN 1810-1119 FAO ANIMAL PRODUCTION AND HEALTH manual INVESTIGATING THE ROLE OF BATS IN EMERGING ZOONOSES Balancing ecology, conservation and public health interest Cover photographs: Left: © Jon Epstein. EcoHealth Alliance Center: © Jon Epstein. EcoHealth Alliance Right: © Samuel Castro. Bureau of Animal Industry Philippines 12 FAO ANIMAL PRODUCTION AND HEALTH manual INVESTIGATING THE ROLE OF BATS IN EMERGING ZOONOSES Balancing ecology, conservation and public health interest Edited by Scott H. Newman, Hume Field, Jon Epstein and Carol de Jong FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2011 Recommended Citation Food and Agriculture Organisation of the United Nations. 2011. Investigating the role of bats in emerging zoonoses: Balancing ecology, conservation and public health interests. Edited by S.H. Newman, H.E. Field, C.E. de Jong and J.H. Epstein. FAO Animal Production and Health Manual No. 12. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO.
    [Show full text]
  • Impact of Emerging Infectious Diseases on Global Health and Economies
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 The Future of Humanity and Microbes: Impact of Emerging Infectious Diseases on Global Health and Economies Tabish SA1, Nabil Syed2 1Professor, FRCP, FACP, FAMS, FRCPE, MHA (AIIMS), Postdoctoral Fellowship, University of Bristol (England), Doctorate in Educational Leadership (USA); Sher-i-Kashmir Institute of Medical Sciences, Srinagar 2MA, Kings College, London Abstract: Infectious diseases have affected humans since the first recorded history of man. Infectious diseases cause increased morbidity and a loss of work productivity as a result of compromised health and disability, accounting for approximately 30% of all disability-adjusted life years globally. The world has experienced an increased incidence and transboundary spread of emerging infectious diseases due to population growth, urbanization and globalization over the past four decades. Most of these newly emerging and re-emerging pathogens are viruses, although fewer than 200 of the approximately 1400 pathogen species recognized to infect humans are viruses. On average, however, more than two new species of viruses infecting humans are reported worldwide every year most of which are likely to be RNA viruses. Establishing laboratory and epidemiological capacity at the country and regional levels is critical to minimize the impact of future emerging infectious disease epidemics. Improved surveillance and monitoring of the influenza outbreak will significantly enhance the options of how best we can manage outreach to both treat as well as prevent spread of the virus. To develop and establish an effective national public health capacity to support infectious disease surveillance, outbreak investigation and early response, a good understanding of the concepts of emerging infectious diseases and an integrated public health surveillance system in accordance with the nature and type of emerging pathogens, especially novel ones is essential.
    [Show full text]
  • Copyrighted Material
    INDEX A American hemorrhagic fevers: Antibiotic action; Drug resistance; Α-dystroglycan, 301 Argentine, 16–17, 35, 279–280; Immune system; specifi c disease Abrus precatorius, 689 Bolivian, 277, 280, 287–288; Antiviral agents: AZT (zidovudine), Acid-fast bacteria, 212 Brazilian, 277, 281; overview of, 13, 32, 38, 48, 340–341, 355, 356; Active Bacterial Core (ABCs) 274, 274–279, 282–286; treatment, blocking synthesis of bacterial surveillance, 240 prevention, surveillance of, 275, RNA, 47; categories of HIV, 356; Active immunization, 465 287–289; Venezuelan, 277, 280–281 dengue fever, DHF, and DSS, 327– Acute glomerulonephritis, 119, 121, 126 Amoeba histolytica, 34 328; description of, 32; HAART, Acute Q fever, 15 Anaplasma phagocytophilum, 36, 76, 77, 48, 356–357, 382; hepatitis C virus Adaptive immunity, 40–42 84, 85, 86, 89, 90, 640–641, 645 (HCV), 391, 402–403; HHV-8 Adenocarcinoma of the lower Anaplasmosis, 552 and KS treatment using, 380–382; esophagus, 167–168 Andes virus, 442 SARS, 466–467. See also Interferons Adenovirus infection, 646–647 Anemia, 176, 528 Arenaviridae, 300 Aedes aegypti mosquito, 318, 322, Angiotensin-converting enzyme 2 Argentine hemorrhagic fever, 16–17, 328–329 (ACE-2), 463–464 35, 279–280 Aedes albopictus mosquito, 318, 322–323 Anopheles mosquitoes, 35, 525, 526, 537 Artemisinin, 535 Age-related immune system defects, Anthrax, 15, 670, 674–676 “Asian Flu” pandemic (type H2N2) 639–640, 642 Antibiotic action, 226, 228–229, 235– [1957], 413 Agglutination, 44 237. See also Antimicrobial agents; Aspergillus fungi,
    [Show full text]