John Von Neumann: Selected Letters Reviewed by George Dyson

Total Page:16

File Type:pdf, Size:1020Kb

John Von Neumann: Selected Letters Reviewed by George Dyson Book Review John von Neumann: Selected Letters Reviewed by George Dyson John von Neumann: Selected Letters “but develop the worst traits of pedantism and Miklós Rédei, editor inefficiency if I attempt to give a preliminary ac- AMS/LMS History of Mathematics, 2005 count of a subject which I do not have yet in what $59.00, 301 pages I can believe to be its final form.” His hesitancy to ISBN 0-8218-3776-1 discuss unfinished work in print is marvelously absent from his informal correspondence, leaving “If influence of a scientist is interpreted broadly a record both of the development of many of his enough to include impact on fields beyond science well-known results and the germs of many still- proper, then John von Neumann was probably the undeveloped avenues of research. He was fond of most influential mathematician who ever lived,” the postscript and with a simple “P.S.” would often states Miklós Rédei in John von Neumann: Selected Letters, introducing a convincing body of evidence, sketch out some completely new idea. much of it published for the first time. The 121 The present selection is rich in von Neumann’s letters (organized by correspondent) are lightly contributions to many fields of mathematics annotated, and despite the absence of an index (or (“every part of it except number theory and topol- even a chronological listing) this will be an endur- ogy", in the assessment of his colleague Eugene ing reference work. A detailed mathematical and Wigner) and despite inevitable omissions delivers biographical introduction occupies the first forty an impressive sampling of the breadth and influ- pages of the book. ence of von Neumann’s work. The book opens John von Neumann (1903–1957) roamed freely with a brief but eloquent foreword by Peter Lax, among all branches of science and mathematics, followed by a detailed and exceptionally informa- and, in his spare time, helped create several new tive introduction by Marina von Neumann Whit- fields in the gaps where disciplines did not yet man (only child of von Neumann, and an impor- exist. He was a prolific correspondent, delivering tant figure in her own right as an economist and penetrating commentary in handwritten letters advisor to four presidents of the United States). that were often composed in hotel rooms, aboard Rédei then presents a concise introductory survey ships, in airplanes, on trains, and in between of von Neumann’s mathematical contributions, meetings that kept him from ever settling down divided into the following subject areas: logic and to uninterrupted work. On every available scrap of foundations of mathematics, operator algebras, paper, he left a trail of ideas. There is an astonish- unbounded operators, quantum mechanics, quan- ing density of expression, due, in this reviewer’s tum logic, ergodic theory, computer science, and opinion, not only to von Neumann’s intellect but to game theory. the medium of handwriting as a process for distill- Subjects that are less well represented include: ing the essentials into a minimum of words. hydrodynamics (especially turbulence, and the Von Neumann’s correspondence provides a behavior of shock waves), statistics (especially much different picture from his published work. “I the “Monte Carlo” method and its repercussions), write rather freely and fast if a subject is ‘mature’ cellular automata, meteorology, and theoretical in my mind,” he explained to F. B. Silsbee (2 July 1945), apologizing for an undelivered manuscript, biology. Von Neumann’s manifold contributions to nuclear weapons design, weapons effects, George Dyson is a research associate at Western Washing- aerospace technology, military strategy, and the ton University. His email address is [email protected]. area once known as operations research, though 724 NOTICES OF THE AMS VOLUME 54, NUMBER 6 mathematical in nature, are understandably largely Neumann was absent here. working as a The difficulty with von Neumann as a subject c o n s u l t a n t , is that he defied categorization from one minute s u p p o s e d l y to the next. “No matter which way you looked he on questions always seemed to belong somewhere else,” ex- of computer Whitman. Neumann plained Klari, his second wife who survived him modeling for John von Neumann: by six years. “The pure mathematicians claimed oil and gas that he had become a theoretical physicist; the exploration, theoretical physicists looked at him as a great but evidently Selected Letters help and advisor in applied mathematics; the ap- also on other plied mathematician was awed that such a pure things. “This and ivory-towerish mathematician would show is the letter von Marina of permission with used Photograph Reviewed by George Dyson so much interest in his applied problems and, I that I prom- suspect, in certain government circles they may i s e d y o u , ” have thought of him as an experimental physicist, begins von John von Neumann, December 28, 1903– or even an engineer.” N e u m a n n , February 8, 1957. The unifying theme in von Neumann’s life and “ r e s t a t i n g work—abundantly demonstrated by his correspon- the proposal dence—was an insatiable urge to be absorbing that I made regarding the ‘La Salina Operations information and solving problems all the time. Problem’…that we discussed when we last met in “Johnny’s most characteristic trait was his bound- New York.” Von Neumann then precisely describes less curiosity about everything and anything, his the landscape: “This problem…deals with the op- compulsive ambition to know, to understand any erations of 18 tankers between La Salina and Las problem, no matter on what level,” wrote Klari after Piedras and Aruba. The comings and goings of the his death. “Anything that would tickle his curiosity tankers are described in statistical terms only, i.e., with a question mark, he could not leave alone; they are subject to fluctuations which depend on he would sulk, pout, and be generally impossible fortuitous events like weather, conditions in the ports of call, etc.” until, at least to his own satisfaction, he had found Then he becomes specific, demonstrating that the right answer.” he is not about to ignore the details: “Each one of To John von Neumann, the normal barriers be- the tankers has a separate and characteristic mean tween pure and applied mathematics did not exist. roundtrip time for its assigned run, which may be “A certain contact with the strivings and problems La Salina–Las Piedras–La Salina (for 6 tankers), or of the world that surrounds us is desirable and La Salina–Aruba–La Salina (for 12 tankers). The even necessary,” he wrote to J. Robert Oppen- times for the…actual trip of a specific tanker…may heimer (19 February 1948) defending his right, as be presumed to have a purely statistical distribu- a professor at the Institute for Advanced Study, to tion, to the extent to which it is due to weather be distracted (and remunerated) by outside work. and to similar factors. Under certain conditions, As explained by his collaborator Stanislaw Ulam, the captains or the crews of all ships heading for he had an ability, “perhaps somewhat rare among a certain port may desire to make port at a definite mathematicians, to commune with the physicists, moment. (You mentioned the effects of a good understand their language, and to transform it al- picture or amusement in port.)” most instantly into a mathematician’s schemes and expressions. Then, after following the problems as Suddenly, things don’t look so good: “My im- such, he could translate them back into expres- pression is that this problem…is one of consider- sions in common use among physicists.” able difficulty from the point of view of a strict And not only physicists. Von Neumann was able analytical-mathematical treatment. That is, I think to commune with anyone, translate their problems that it will be very difficult to derive complete (even problems that they did not recognize as formulas for the probabilities and means involved, problems) into the language of mathematics, find and to penetrate to the ultimate mean that is de- a solution, and translate this back into their lan- sired—namely, to the ‘mean turnover’ of the entire guage, bringing the results down to earth. fleet…as a function of the number of berths.” All the letters in this volume are historically or Now comes the light at the end of the tunnel: mathematically important, can be read on multiple “I would, therefore, suggest that the problem be levels, and are technically precise. To identify treated as a ‘statistical experiment’…The proce- favorites is impossible, but I will exercise the re- dure would have to be somewhat like this: Repre- viewer’s privilege by singling out one example that sent each tanker by some suitable form of record, shows the von Neumann mind at work. This letter e.g., by a punch card. Program calculations which was written on April 9, 1953, to T. V. Moore of the will develop the further history of this tanker, al- Standard Oil Development Company, for whom von ways deriving those quantities which depend on JUNE/JULY 2007 NOTICES OF THE AMS 725 chance…with for software engineers (to Marston Morse, 23 April the use of suit- 1952): “The difficulty is that most people who have able tables of been active in this field seem to believe that it is Vonneumann. random num- easier to write a new code than to understand an bers…to control old one.” Either one of these insights are worth the the behavior of price of the book.
Recommended publications
  • Edsger Dijkstra: the Man Who Carried Computer Science on His Shoulders
    INFERENCE / Vol. 5, No. 3 Edsger Dijkstra The Man Who Carried Computer Science on His Shoulders Krzysztof Apt s it turned out, the train I had taken from dsger dijkstra was born in Rotterdam in 1930. Nijmegen to Eindhoven arrived late. To make He described his father, at one time the president matters worse, I was then unable to find the right of the Dutch Chemical Society, as “an excellent Aoffice in the university building. When I eventually arrived Echemist,” and his mother as “a brilliant mathematician for my appointment, I was more than half an hour behind who had no job.”1 In 1948, Dijkstra achieved remarkable schedule. The professor completely ignored my profuse results when he completed secondary school at the famous apologies and proceeded to take a full hour for the meet- Erasmiaans Gymnasium in Rotterdam. His school diploma ing. It was the first time I met Edsger Wybe Dijkstra. shows that he earned the highest possible grade in no less At the time of our meeting in 1975, Dijkstra was 45 than six out of thirteen subjects. He then enrolled at the years old. The most prestigious award in computer sci- University of Leiden to study physics. ence, the ACM Turing Award, had been conferred on In September 1951, Dijkstra’s father suggested he attend him three years earlier. Almost twenty years his junior, I a three-week course on programming in Cambridge. It knew very little about the field—I had only learned what turned out to be an idea with far-reaching consequences. a flowchart was a couple of weeks earlier.
    [Show full text]
  • The Turing Approach Vs. Lovelace Approach
    Connecting the Humanities and the Sciences: Part 2. Two Schools of Thought: The Turing Approach vs. The Lovelace Approach* Walter Isaacson, The Jefferson Lecture, National Endowment for the Humanities, May 12, 2014 That brings us to another historical figure, not nearly as famous, but perhaps she should be: Ada Byron, the Countess of Lovelace, often credited with being, in the 1840s, the first computer programmer. The only legitimate child of the poet Lord Byron, Ada inherited her father’s romantic spirit, a trait that her mother tried to temper by having her tutored in math, as if it were an antidote to poetic imagination. When Ada, at age five, showed a preference for geography, Lady Byron ordered that the subject be replaced by additional arithmetic lessons, and her governess soon proudly reported, “she adds up sums of five or six rows of figures with accuracy.” Despite these efforts, Ada developed some of her father’s propensities. She had an affair as a young teenager with one of her tutors, and when they were caught and the tutor banished, Ada tried to run away from home to be with him. She was a romantic as well as a rationalist. The resulting combination produced in Ada a love for what she took to calling “poetical science,” which linked her rebellious imagination to an enchantment with numbers. For many people, including her father, the rarefied sensibilities of the Romantic Era clashed with the technological excitement of the Industrial Revolution. Lord Byron was a Luddite. Seriously. In his maiden and only speech to the House of Lords, he defended the followers of Nedd Ludd who were rampaging against mechanical weaving machines that were putting artisans out of work.
    [Show full text]
  • CODEBREAKING Suggested Reading List (Can Also Be Viewed Online at Good Reads)
    MARSHALL LEGACY SERIES: CODEBREAKING Suggested Reading List (Can also be viewed online at Good Reads) NON-FICTION • Aldrich, Richard. Intelligence and the War against Japan. Cambridge: Cambridge University Press, 2000. • Allen, Robert. The Cryptogram Challenge: Over 150 Codes to Crack and Ciphers to Break. Philadelphia: Running Press, 2005 • Briggs, Asa. Secret Days Code-breaking in Bletchley Park. Barnsley: Frontline Books, 2011 • Budiansky, Stephen. Battle of Wits: The Complete Story of Codebreaking in World War Two. New York: Free Press, 2000. • Churchhouse, Robert. Codes and Ciphers: Julius Caesar, the Enigma, and the Internet. Cambridge: Cambridge University Press, 2001. • Clark, Ronald W. The Man Who Broke Purple. London: Weidenfeld and Nicholson, 1977. • Drea, Edward J. MacArthur's Ultra: Codebreaking and the War Against Japan, 1942-1945. Kansas: University of Kansas Press, 1992. • Fisher-Alaniz, Karen. Breaking the Code: A Father's Secret, a Daughter's Journey, and the Question That Changed Everything. Naperville, IL: Sourcebooks, 2011. • Friedman, William and Elizebeth Friedman. The Shakespearian Ciphers Examined. Cambridge: Cambridge University Press, 1957. • Gannon, James. Stealing Secrets, Telling Lies: How Spies and Codebreakers Helped Shape the Twentieth century. Washington, D.C.: Potomac Books, 2001. • Garrett, Paul. Making, Breaking Codes: Introduction to Cryptology. London: Pearson, 2000. • Hinsley, F. H. and Alan Stripp. Codebreakers: the inside story of Bletchley Park. Oxford: Oxford University Press, 1993. • Hodges, Andrew. Alan Turing: The Enigma. New York: Walker and Company, 2000. • Kahn, David. Seizing The Enigma: The Race to Break the German U-boat Codes, 1939-1943. New York: Barnes and Noble Books, 2001. • Kahn, David. The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet.
    [Show full text]
  • An Early Program Proof by Alan Turing F
    An Early Program Proof by Alan Turing F. L. MORRIS AND C. B. JONES The paper reproduces, with typographical corrections and comments, a 7 949 paper by Alan Turing that foreshadows much subsequent work in program proving. Categories and Subject Descriptors: 0.2.4 [Software Engineeringj- correctness proofs; F.3.1 [Logics and Meanings of Programs]-assertions; K.2 [History of Computing]-software General Terms: Verification Additional Key Words and Phrases: A. M. Turing Introduction The standard references for work on program proofs b) have been omitted in the commentary, and ten attribute the early statement of direction to John other identifiers are written incorrectly. It would ap- McCarthy (e.g., McCarthy 1963); the first workable pear to be worth correcting these errors and com- methods to Peter Naur (1966) and Robert Floyd menting on the proof from the viewpoint of subse- (1967); and the provision of more formal systems to quent work on program proofs. C. A. R. Hoare (1969) and Edsger Dijkstra (1976). The Turing delivered this paper in June 1949, at the early papers of some of the computing pioneers, how- inaugural conference of the EDSAC, the computer at ever, show an awareness of the need for proofs of Cambridge University built under the direction of program correctness and even present workable meth- Maurice V. Wilkes. Turing had been writing programs ods (e.g., Goldstine and von Neumann 1947; Turing for an electronic computer since the end of 1945-at 1949). first for the proposed ACE, the computer project at the The 1949 paper by Alan M.
    [Show full text]
  • Turing's Influence on Programming — Book Extract from “The Dawn of Software Engineering: from Turing to Dijkstra”
    Turing's Influence on Programming | Book extract from \The Dawn of Software Engineering: from Turing to Dijkstra" Edgar G. Daylight∗ Eindhoven University of Technology, The Netherlands [email protected] Abstract Turing's involvement with computer building was popularized in the 1970s and later. Most notable are the books by Brian Randell (1973), Andrew Hodges (1983), and Martin Davis (2000). A central question is whether John von Neumann was influenced by Turing's 1936 paper when he helped build the EDVAC machine, even though he never cited Turing's work. This question remains unsettled up till this day. As remarked by Charles Petzold, one standard history barely mentions Turing, while the other, written by a logician, makes Turing a key player. Contrast these observations then with the fact that Turing's 1936 paper was cited and heavily discussed in 1959 among computer programmers. In 1966, the first Turing award was given to a programmer, not a computer builder, as were several subsequent Turing awards. An historical investigation of Turing's influence on computing, presented here, shows that Turing's 1936 notion of universality became increasingly relevant among programmers during the 1950s. The central thesis of this paper states that Turing's in- fluence was felt more in programming after his death than in computer building during the 1940s. 1 Introduction Many people today are led to believe that Turing is the father of the computer, the father of our digital society, as also the following praise for Martin Davis's bestseller The Universal Computer: The Road from Leibniz to Turing1 suggests: At last, a book about the origin of the computer that goes to the heart of the story: the human struggle for logic and truth.
    [Show full text]
  • The Development of Military Nuclear Strategy And
    The Development of Military Nuclear Strategy and Anglo-American Relations, 1939 – 1958 Submitted by: Geoffrey Charles Mallett Skinner to the University of Exeter as a thesis for the degree of Doctor of Philosophy in History, July 2018 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ……………………………………………………………………………… 1 Abstract There was no special governmental partnership between Britain and America during the Second World War in atomic affairs. A recalibration is required that updates and amends the existing historiography in this respect. The wartime atomic relations of those countries were cooperative at the level of science and resources, but rarely that of the state. As soon as it became apparent that fission weaponry would be the main basis of future military power, America decided to gain exclusive control over the weapon. Britain could not replicate American resources and no assistance was offered to it by its conventional ally. America then created its own, closed, nuclear system and well before the 1946 Atomic Energy Act, the event which is typically seen by historians as the explanation of the fracturing of wartime atomic relations. Immediately after 1945 there was insufficient systemic force to create change in the consistent American policy of atomic monopoly. As fusion bombs introduced a new magnitude of risk, and as the nuclear world expanded and deepened, the systemic pressures grew.
    [Show full text]
  • Publications of Members, 1930-1954
    THE INSTITUTE FOR ADVANCED STUDY PUBLICATIONS OF MEMBERS 1930 • 1954 PRINCETON, NEW JERSEY . 1955 COPYRIGHT 1955, BY THE INSTITUTE FOR ADVANCED STUDY MANUFACTURED IN THE UNITED STATES OF AMERICA BY PRINCETON UNIVERSITY PRESS, PRINCETON, N.J. CONTENTS FOREWORD 3 BIBLIOGRAPHY 9 DIRECTORY OF INSTITUTE MEMBERS, 1930-1954 205 MEMBERS WITH APPOINTMENTS OF LONG TERM 265 TRUSTEES 269 buH FOREWORD FOREWORD Publication of this bibliography marks the 25th Anniversary of the foundation of the Institute for Advanced Study. The certificate of incorporation of the Institute was signed on the 20th day of May, 1930. The first academic appointments, naming Albert Einstein and Oswald Veblen as Professors at the Institute, were approved two and one- half years later, in initiation of academic work. The Institute for Advanced Study is devoted to the encouragement, support and patronage of learning—of science, in the old, broad, undifferentiated sense of the word. The Institute partakes of the character both of a university and of a research institute j but it also differs in significant ways from both. It is unlike a university, for instance, in its small size—its academic membership at any one time numbers only a little over a hundred. It is unlike a university in that it has no formal curriculum, no scheduled courses of instruction, no commitment that all branches of learning be rep- resented in its faculty and members. It is unlike a research institute in that its purposes are broader, that it supports many separate fields of study, that, with one exception, it maintains no laboratories; and above all in that it welcomes temporary members, whose intellectual development and growth are one of its principal purposes.
    [Show full text]
  • Alan Turing, Marshall Hall, and the Alignment of WW2 Japanese Naval Intercepts
    Alan Turing, Marshall Hall, and the Alignment of WW2 Japanese Naval Intercepts Peter W. Donovan arshall Hall Jr. (1910–1990) is de- The statistician Edward Simpson led the JN-25 servedly well remembered for his team (“party”) at Bletchley Park from 1943 to 1945. role in constructing the simple group His now declassified general history [12] of this of order 604800 = 27 × 33 × 52 × 7 activity noted that, in November 1943: Mas well as numerous advances in [CDR Howard Engstrom, U.S.N.] gave us combinatorics. A brief autobiography is on pages the first news we had heard of a method 367–374 of Duran, Askey, and Merzbach [5]. Hall of testing the correctness of the relative notes that Howard Engstrom (1902–1962) gave setting of two messages using only the him much help with his Ph.D. thesis at Yale in property of divisibility by three of the code 1934–1936 and later urged him to work in Naval In- groups [5-groups is the usage of this paper]. telligence (actually in the foreign communications The method was known as Hall’s weights unit Op-20-G). and was a useful insurance policy just in I was in a research division and got to see case JN-25 ever became more difficult. He work in all areas, from the Japanese codes promised to send us a write-up of it. to the German Enigma machine which Alan The JN-25 series of ciphers, used by the Japanese Turing had begun to attack in England. I Navy (I.J.N.) from 1939 to 1945, was the most made significant results on both of these important source of communications intelligence areas.
    [Show full text]
  • Alan Turing's Forgotten Ideas
    Alan Turing, at age 35, about the time he wrote “Intelligent Machinery” Copyright 1998 Scientific American, Inc. lan Mathison Turing conceived of the modern computer in 1935. Today all digital comput- Aers are, in essence, “Turing machines.” The British mathematician also pioneered the field of artificial intelligence, or AI, proposing the famous and widely debated Turing test as a way of determin- ing whether a suitably programmed computer can think. During World War II, Turing was instrumental in breaking the German Enigma code in part of a top-secret British operation that historians say short- ened the war in Europe by two years. When he died Alan Turing's at the age of 41, Turing was doing the earliest work on what would now be called artificial life, simulat- ing the chemistry of biological growth. Throughout his remarkable career, Turing had no great interest in publicizing his ideas. Consequently, Forgotten important aspects of his work have been neglected or forgotten over the years. In particular, few people— even those knowledgeable about computer science— are familiar with Turing’s fascinating anticipation of connectionism, or neuronlike computing. Also ne- Ideas glected are his groundbreaking theoretical concepts in the exciting area of “hypercomputation.” Accord- ing to some experts, hypercomputers might one day in solve problems heretofore deemed intractable. Computer Science The Turing Connection igital computers are superb number crunchers. DAsk them to predict a rocket’s trajectory or calcu- late the financial figures for a large multinational cor- poration, and they can churn out the answers in sec- Well known for the machine, onds.
    [Show full text]
  • A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
    Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge­ bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe­ maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe­ matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • The Los Alamos Thermonuclear Weapon Project, 1942-1952
    Igniting The Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952 by Anne Fitzpatrick Dissertation submitted to the Faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in SCIENCE AND TECHNOLOGY STUDIES Approved: Joseph C. Pitt, Chair Richard M. Burian Burton I. Kaufman Albert E. Moyer Richard Hirsh June 23, 1998 Blacksburg, Virginia Keywords: Nuclear Weapons, Computing, Physics, Los Alamos National Laboratory Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952 by Anne Fitzpatrick Committee Chairman: Joseph C. Pitt Science and Technology Studies (ABSTRACT) The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors -- fusion (or hydrogen) devices -- are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory’s staff and affiliates were responsible for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the U. S. Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership’s struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos’s leaders’ decisions as to the course of weapons design and development projects.
    [Show full text]