From the Collections of the Seeley G. Mudd Manuscript Library, Princeton, NJ

Total Page:16

File Type:pdf, Size:1020Kb

From the Collections of the Seeley G. Mudd Manuscript Library, Princeton, NJ From the collections of the Seeley G. Mudd Manuscript Library, Princeton, NJ These documents can only be used for educational and research purposes (“Fair use”) as per U.S. Copyright law (text below). By accessing this file, all users agree that their use falls within fair use as defined by the copyright law. They further agree to request permission of the Princeton University Library (and pay any fees, if applicable) if they plan to publish, broadcast, or otherwise disseminate this material. This includes all forms of electronic distribution. Inquiries about this material can be directed to: Seeley G. Mudd Manuscript Library 65 Olden Street Princeton, NJ 08540 609-258-6345 609-258-3385 (fax) [email protected] U.S. Copyright law test The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or other reproduction is not to be “used for any purpose other than private study, scholarship or research.” If a user makes a request for, or later uses, a photocopy or other reproduction for purposes in excess of “fair use,” that user may be liable for copyright infringement. The Princeton Mathematics Community in the 1930s Transcript Number 36 (PMC36) © The Trustees of Princeton University, 1985 ALBERT TUCKER OVERVIEW OF MATHEMATICS AT PRINCETON IN THE 1930s This is an interview on 8 October 1984 of Albert Tucker in Princeton, New Jersey. The interviewer is William A spray. Aspray: In this session we will try to give an overview of the important developments in Princeton in the 1930s. In an earlier discussion off tape, we talked about four major kinds of contributions of the Princeton mathematical community: (1) the Ph.D.s produced; (2) the overall environment for visitors to get inspiration and, for a time, to do research; (3) the research of the faculty members; and (4) the opening up of new areas of research. I am hoping to get some perspective on which of these you see as the most important contributions. And perhaps you will talk a bit about what the particular contributions were. Tucker: The thing that strikes me first is the research program at the graduate student level, in other words, the training of graduate students in mathematical research. At Princeton this was a broadly exercised effort. The students were carefully selected for admission. No students were admitted just to get a master's degree; all admissions were for the doctor's degree or for mathematical research beyond the doctor's degree. These students seemed to live and breathe their mathematical work. The library was right there in the building and was open all hours. There were recreational facilities in the common room, and indeed there were external recreational facilities, such as on the tennis courts, and showers in the building. So Fine Hall was not only a study place, and it was not only the place where-lectures and seminars occurred. It was also a place where people met for tea in the afternoon. It was a mathematical club. (PMC36) 1 Aspray: To get a good understanding of this we might differentiate Fine Hall from some other place. You say that one thing unique about Princeton as a training ground for mathematical research is that. it's a place where people do their research in a supportive social and intellectual environment. There were a number of other centers in the United States at this time that were producing large numbers of math Ph.D.s: Harvard, Johns Hopkins, Chicago, Cornell, Columbia, Yale, ... Tucker: Illinois, Michigan, Pennsylvania. Aspray: How does Princeton differ from any of these other places? Tucker: The main difference I was able to observe was the fact that mathematics was· concentrated in one building. Whenever you wished to be involved in mathematics, all you had to do was to go into that building and participate. The students learned a great deal from one another, and students often wrote their theses using a variety of advisers. A student could, if he wished, stick to one advisor, but he could use any of the faculty members. And he could use his fellow students. There was always a room where you could go and use a blackboard and argue things out with another student or faculty member. Aspray: Let's take an example. You spent some time in the early 1930s at Harvard. Tucker: I was at Harvard in the spring term of 1933. Aspray: Would you compare the situation at Harvard with the situation at Princeton? Tucker: At Harvard it seemed as though the mathematical activity was decentralized and disorganized, because the professors had offices various places. There was no common place where there were mathematics offices. The graduate students had nothing like the Fine Hall common room. A student's social activities were not organized around mathematics, but around the people in his dormitory or boarding house. While I was there I had no mathematical activities except when I went to see my supervisor Marston Morse or when I attended the weekly mathematics colloquium or when I sat in on a course that Marston Morse was giving. I would see other people in the classroom, but the moment the class was over we all went our separate ways. Most of my time was actually spent either by myself or with people who were not mathematicians. Aspray: Some outsiders might think that mathematical research ·is a solitary activity. What kind of impact did the Princeton environment have? What was the outcome of having people there breathing and talking mathematics all the time? Can you make any differentiation between the Ph.D. s from Princeton and those from Hopkins or Harvard or Chicago? ( PMC36) 2 Tucker: My belief-and I think this can be backed up by statistics-is that the Princeton Ph.D. s in mathematics were, by and large, more productive in the writing of papers and monographs and so on. I think they often became mathematical leaders in the universities where they got positions. I think that this was so because.of the close contact that the graduate students and post-docs had with members of the faculty, with Veblen, von Neumann, Eisenhart, Lefschetz. Through their seniors they began to acquire what you might describe as mathematical statesmanship. And when they took positions elsewhere they tried to carry some of this Princeton excitement with them. Aspray: You mentioned statistics a moment ago, and when we were talking before this interview you cited a particular study. Tucker: You mean the study of the productivity of mathematicians that was made somewhere around 1960? Aspray: That's correct. Tucker: In this study-we should look up the reference-the mathematics Ph.D.s who had been out so many years from their Ph.D. were put in classes according to the number of papers that they had published. These classes were then related to the institutions that had given the Ph.D.s. Princeton was spectacularly highest in the most productive of the Ph.D.s, even though it was not at all at the top in the total number of Ph.D.s. Aspray: In addition to productivity in the sense measured by the number of papers written, let's talk about productivity in the sense of finding new ways of looking at things, or of forming new fields, or of crossing disciplines. Do you think the way that education went on at Princeton, where one wasn't closely tied to an advisor but had a whole smorgasbord of mathematics to experience, somehow translated itself into mathematicians who were more willing to go outside the narrow confines of traditional discipline-boundaries? Tucker: Oh, yes. Among the Princeton Ph.D.s there were unusually many who went into things that were on the edge of traditional mathematics-or altogether outside of traditional mathematics. Aspray: Can you give some examples? Tucker: Well, Henry Wallman is an example. He took his Ph.D. at Princeton in the late '30s, and then became involved in war-work at M.l.T. During the war this work was classified, but I think it had to do with radar. It was at any rate work in electronics. After the war he was at M.l.T. for a while, but then was appointed to a professorship in Sweden. He was professor of "electrotechnics" at the Chalmers Institute of Technology in Gothenburg, Sweden. There was another Princeton math-Ph.D. who went into engineering, Paco Lagerstrom. He became professor of aeronautical engineering at Cal Tech, but was trained in mathematical analysis. ( PMC36) 3 Asp ray: He continued to use his mathematical training in his later work? Tucker: Oh yes. Aspray: ls John Tukey another example? Tucker: John Tukey is a good example. His Ph.D. was in topology with Lefschetz, but in his wartime work he became very much interested in statistics as well as in data structures. So after the war it was appropriate that he should take a position that was half-time at Princeton University and half-time at Bell Labs. At a later time when the Statistics Department at Princeton separated off from Mathematics Department, he was the first chairman of the Statistics Department. And I think that he became some sort of deputy director of research in mathematics, statistics, and information processing at Bell Labs. Aspray: One more example might be Marvin Minsky. Tucker: Marvin Minsky came later, in the early '50s.
Recommended publications
  • Publications of Members, 1930-1954
    THE INSTITUTE FOR ADVANCED STUDY PUBLICATIONS OF MEMBERS 1930 • 1954 PRINCETON, NEW JERSEY . 1955 COPYRIGHT 1955, BY THE INSTITUTE FOR ADVANCED STUDY MANUFACTURED IN THE UNITED STATES OF AMERICA BY PRINCETON UNIVERSITY PRESS, PRINCETON, N.J. CONTENTS FOREWORD 3 BIBLIOGRAPHY 9 DIRECTORY OF INSTITUTE MEMBERS, 1930-1954 205 MEMBERS WITH APPOINTMENTS OF LONG TERM 265 TRUSTEES 269 buH FOREWORD FOREWORD Publication of this bibliography marks the 25th Anniversary of the foundation of the Institute for Advanced Study. The certificate of incorporation of the Institute was signed on the 20th day of May, 1930. The first academic appointments, naming Albert Einstein and Oswald Veblen as Professors at the Institute, were approved two and one- half years later, in initiation of academic work. The Institute for Advanced Study is devoted to the encouragement, support and patronage of learning—of science, in the old, broad, undifferentiated sense of the word. The Institute partakes of the character both of a university and of a research institute j but it also differs in significant ways from both. It is unlike a university, for instance, in its small size—its academic membership at any one time numbers only a little over a hundred. It is unlike a university in that it has no formal curriculum, no scheduled courses of instruction, no commitment that all branches of learning be rep- resented in its faculty and members. It is unlike a research institute in that its purposes are broader, that it supports many separate fields of study, that, with one exception, it maintains no laboratories; and above all in that it welcomes temporary members, whose intellectual development and growth are one of its principal purposes.
    [Show full text]
  • A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
    Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge­ bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe­ maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe­ matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members.
    [Show full text]
  • JOHN WILDER TUKEY 16 June 1915 — 26 July 2000
    Tukey second proof 7/11/03 2:51 pm Page 1 JOHN WILDER TUKEY 16 June 1915 — 26 July 2000 Biogr. Mems Fell. R. Soc. Lond. 49, 000–000 (2003) Tukey second proof 7/11/03 2:51 pm Page 2 Tukey second proof 7/11/03 2:51 pm Page 3 JOHN WILDER TUKEY 16 June 1915 — 26 July 2000 Elected ForMemRS 1991 BY PETER MCCULLAGH FRS University of Chicago, 5734 University Avenue, Chicago, IL 60637, USA John Wilder Tukey was a scientific generalist, a chemist by undergraduate training, a topolo- gist by graduate training, an environmentalist by his work on Federal Government panels, a consultant to US corporations, a data analyst who revolutionized signal processing in the 1960s, and a statistician who initiated grand programmes whose effects on statistical practice are as much cultural as they are specific. He had a prodigious knowledge of the physical sci- ences, legendary calculating skills, an unusually sharp and creative mind, and enormous energy. He invented neologisms at every opportunity, among which the best known are ‘bit’ for binary digit, and ‘software’ by contrast with hardware, both products of his long associa- tion with Bell Telephone Labs. Among his legacies are the fast Fourier transformation, one degree of freedom for non-additivity, statistical allowances for multiple comparisons, various contributions to exploratory data analysis and graphical presentation of data, and the jack- knife as a general method for variance estimation. He popularized spectrum analysis as a way of studying stationary time series, he promoted exploratory data analysis at a time when the subject was not academically respectable, and he initiated a crusade for robust or outlier-resist- ant methods in statistical computation.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Notices: Highlights
    ------------- ----- Tacoma Meeting (June 18-20)-Page 667 Notices of the American Mathematical Society June 1987, Issue 256 Volume 34, Number 4, Pages 601 - 728 Providence, Rhode Island USA ISSN 0002-9920 Calendar of AMS Meetings THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of Notices was sent to the press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the American Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and supplementary announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meeting. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the headquarter's office of the Society. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for abstracts for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information. consult the meeting announcements and the list of organizers of special sessions.
    [Show full text]
  • John W. Tukey 1915–2000
    John W. Tukey 1915–2000 A Biographical Memoir by David R. Brillinger 2018 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. JOHN WILDER TUKEY June 16, 1915–July 26, 2000 Elected to the NAS, 1961 John Wilder Tukey was renowned for research and service in academia, industry, and government. He was born June 16, 1915, in New Bedford, Massachusetts, the only child of Adah M. Takerand Ralph H. Tukey. His parents had grad- uated first and second in the Bates College class of 1898. John had unusual talents from an early age. He could read when he was three, and had remarkable powers of mental calculation. His father had obtained a doctorate in Latin from Yale University and then moved on to teach and be principal at New Bedford High School. His mother was a substitute teacher there. Perhaps as a consequence of these backgrounds, Tukey was schooled at home, but he did attend various classes at the high school. By David R. Brillinger Tukey’s wife, Elizabeth Rapp, was born on March 2, 1920, in Ocean City, New Jersey. She went to Temple Univer- sity and was later valedictorian in the 1944 class in business administration at Radcliffe College. About meeting John, she commented that the first time she saw him he was sitting in the front row of a public lecture asking quite difficult questions of the speaker. They later met at a folkdance class that John was teaching.
    [Show full text]
  • Council Congratulates Exxon Education Foundation
    from.qxp 4/27/98 3:17 PM Page 1315 From the AMS ics. The Exxon Education Foundation funds programs in mathematics education, elementary and secondary school improvement, undergraduate general education, and un- dergraduate developmental education. —Timothy Goggins, AMS Development Officer AMS Task Force Receives Two Grants The AMS recently received two new grants in support of its Task Force on Excellence in Mathematical Scholarship. The Task Force is carrying out a program of focus groups, site visits, and information gathering aimed at developing (left to right) Edward Ahnert, president of the Exxon ways for mathematical sciences departments in doctoral Education Foundation, AMS President Cathleen institutions to work more effectively. With an initial grant Morawetz, and Robert Witte, senior program officer for of $50,000 from the Exxon Education Foundation, the Task Exxon. Force began its work by organizing a number of focus groups. The AMS has now received a second grant of Council Congratulates Exxon $50,000 from the Exxon Education Foundation, as well as a grant of $165,000 from the National Science Foundation. Education Foundation For further information about the work of the Task Force, see “Building Excellence in Doctoral Mathematics De- At the Summer Mathfest in Burlington in August, the AMS partments”, Notices, November/December 1995, pages Council passed a resolution congratulating the Exxon Ed- 1170–1171. ucation Foundation on its fortieth anniversary. AMS Pres- ident Cathleen Morawetz presented the resolution during —Timothy Goggins, AMS Development Officer the awards banquet to Edward Ahnert, president of the Exxon Education Foundation, and to Robert Witte, senior program officer with Exxon.
    [Show full text]
  • 26 February 2016 ECE 438 Lecture Notes
    ECE 438 Lecture Notes Page 1 2/26/2016 Computer Pioneers - James William Cooley 2/26/16, 10:58 AM IEEE-CS Home | IEEE Computer Society History Committee Computer Pioneers by J. A. N. Lee « Cook, Stephen A. index Coombs, Allen W. M. » James William Cooley Born September 18, 1926; with John Tukey, creator of the fast Fourier transform. Education: BA, arts, Manhattan College, 1949; MA, mathematics, Columbia University, 1951; PhD, applied mathematics, Columbia University, 1961. Professional Experience: programmer, Institute for Advanced Study, Princeton University, 1953-1956; research assistant, mathematics, Courant Institute, New York University, 1956-1962; research staff, IBM Watson Research Center, 1962-1991; professor, electrical engineering, University of Rhode Island, 1991-present. Honors and Awards: Contribution Award, Audio and Acoustics Society, 1976; Meritorious Service Award, ASSP Society, 1980; Society Award, Acoustics Speech and Signal Processing, 1984; IEEE Centennial Award, 1984; fellow, IEEE James W. Cooley started his career in applied mathematics and computing when he worked and studied under Professor F.J. Murray at Columbia University. He then became a programmer in the numerical weather prediction group at John von Neumann's computer project at the Institute for Advanced Study in Princeton, New Jersey. [See the biography of Jule Charney.] In 1956, he started working as a research assistant at the Courant Institute at New York University, New York. Here he worked on numerical methods and programming of quantum mechanical calculations (Cooley 1961). This led to his thesis for his PhD degree from Columbia University. In 1962 he obtained a position as a research staff member at the IBM Watson Research Center in Yorktown Heights, New York.
    [Show full text]
  • “All of These Political Questions”: Anticommunism, Racism, and the Origin of the Notices of the American Mathematical Society
    Journal of Humanistic Mathematics Volume 10 | Issue 2 July 2020 “All of These Political Questions”: Anticommunism, Racism, and the Origin of the Notices of the American Mathematical Society Michael J. Barany University of Edinburgh Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the History of Science, Technology, and Medicine Commons, Mathematics Commons, and the United States History Commons Recommended Citation Barany, M. J. "“All of These Political Questions”: Anticommunism, Racism, and the Origin of the Notices of the American Mathematical Society," Journal of Humanistic Mathematics, Volume 10 Issue 2 (July 2020), pages 527-538. DOI: 10.5642/jhummath.202002.24 . Available at: https://scholarship.claremont.edu/jhm/ vol10/iss2/24 ©2020 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. “All of These Political Questions”: Anticommunism, Racism, and the Origin of the Notices of the American Mathematical Society Cover Page Footnote This essay began as an extended thread on Twitter, and I would like to thank my Twitter interlocutors from the mathematics community for challenging and encouraging me to address my historical research to current debates in the discipline.
    [Show full text]
  • Math Derived, Math Applied
    MATH DERIVED, MATH APPLIED THE ESTABLISHMENT OF BROWN UNIVERSITY’S DIVISION OF APPLIED MATHEMATICS, 1940-1946 Senior Thesis By Clare Kim Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Arts In the Department of History at Brown University Thesis Advisor: Luther Spoehr Submitted 18 April 2011 2 “Is it coincidence that the founding of the École Polytechnique just preceded the beginning of Napoleon’s successful army campaigns? Is it coincidence that fundamental research in ship construction was assiduously prosecuted in Britain during the period just before 1900, when the maritime commerce of that great nation held an assured position of world leadership? Is it coincidence that over the last quarter century airplane research at Göttingen and other German centers was heavily subsidized and vigorously pursued and that in this war German aviation has come spectacularly to the forefront? Is there a lesson to be learned here in America from the consideration of such concurrence?” —R.G.D. Richardson, April 1943 American Journal of Physics 3 CONTENTS ACKNOWLEDGEMENTS INTRODUCTION CHAPTER 1 From Dysfunction to Unity, 1940-1941 CHAPTER 2 Meeting the Challenge, 1941-1942 CHAPTER 3 Expanding Horizons, 1942-1943 CHAPTER 4 Applied Mathematics Established, 1944-1946 CONCLUSION BIBLIOGRAPHY 4 ACKNOWLEDGEMENTS Most importantly, I have benefited enormously under the guidance of Professors Luther Spoehr and Joan Richards. Their humor, wisdom, encouragement, and thoughtful comments guided me through the thesis process to the very end. It is also a privilege to be able to thank the wide variety of scholars and individuals who took the time to discuss my research.
    [Show full text]
  • 50(1) P164-180.Pdf
    Title サヴェジ氏の略伝 Author(s) 園, 信太郎 Citation 經濟學研究, 50(1), 164-180 Issue Date 2000-06 Doc URL http://hdl.handle.net/2115/32191 Type bulletin (article) File Information 50(1)_P164-180.
    [Show full text]
  • Congress Passes Science and Mathematics Education Bill
    THE NEWSLETTER OF THE MATHEMATICAL ASSOCIATION OF AMERICA VOLUME 4 NUMBER 4 SEPTEMBER 1984 Congress Passes Science and Mathematics Education Bill . Peter Farnham n July 25, 1984, the House agreed overwhelmingly to tionary projects. Professional societies or associations "in approve the Education for Economic Security Act the fields of mathematics, physical or biological sciences, O(S.1285), a massive science and mathematics educa­ or engineering" may enter into cooperative agreements with tion bill. S.1285was approved by the Senate Labor and Human NSF, local education agencies, or institutions of higher edu­ Resources Committee in May 1983, but languished at that cation to develop 1) teacher training and retraining pro­ point until late June 1984, when it was finally passed by the grams, and 2) instructional programs and materials in sci­ Senate. The House version of the bill, H.R. 1310, passed the ence and mathematics. House in March 1983. Title II is primarily a formula grant program administered The long delay in securing Senate approval of the bill was by the Department of Education, and carries an authorization caused by a controversial "equal access" amendment, which of $350 million for FY 1984 and $400 million for FY 1985. allows religious student groups to meet on school property Ninety percent of the funds will be made available to the after classes. This amendment was opposed by civil liber­ states; of those funds, 70% will be passed on to local edu­ tarians on grounds that it infringed on the separation of cation agencies and 30% to state higher education agencies church and state.
    [Show full text]