Surface-Selective Biochip for the Chemical Analysis of Single Cells by MALDI-TOF MS

Total Page:16

File Type:pdf, Size:1020Kb

Surface-Selective Biochip for the Chemical Analysis of Single Cells by MALDI-TOF MS Surface-Selective Biochip for the Chemical Analysis of Single Cells by MALDI-TOF MS Liang Jiang A thesis in fulfilment of the requirements for the degree of Masters by Research Supervisor: Dr William A. Donald School of Chemistry Faculty of Science University of New South Wales October 2019 Surname/Family Name : Jiang Given Name/s : Liang Abbreviation for degree as give in the : MSc (Research) University calendar Faculty : Faculty of Science School : School of chemistry Surface-Selective Biochip for the Chemical Analysis of Thesis Title : Single Cells by MALDI-TOF MS Abstract 350 words maximum: (PLEASE TYPE) Single-cell analysis is used to study cell-to-cell variation in large cell populations of multi-cellular organisms, tissues, and cell cultures. Matrix-assisted laser desorption-ionisation time-of-flight (MALDI-TOF) mass spectrometry (MS) presents a promising platform for single cell analysis owing to its ability to rapidly detect 10s to 100s of molecules nearly simultaneously from a single cell. Current single-cell MALDI MS techniques require all cells in a mixture to be diluted and dispersed onto a target plate. Thus, it is challenging to analyse ‘rare’ but important cells (e.g. circulating tumour cells) that are present at exceedingly low concentrations (e.g. one in a billion). Here, the surface of a transparent indium-tin oxide (ITO) coated borosilicate microscope slide is modified with an antifouling layer, and ‘decorated’ with surface-immobilised anti-EpCAM antibodies. In this way, model circulating tumor cells (MCF-7 cells) that overexpress EpCAM at the cell surface can be immuno-selectively captured from a complex sample mixture and then directly analysed by both microscopy and MALDI-TOF MS owing to the transparency and conductivity of the ITO substrate. The use of such a modified ITO surface can be used to capture MCF-7 cells from a mixture of blood at a ratio as low as 1 MCF-7 cell in 10 million total cells. The subsequent analysis by MALDI-MS imaging resulted in the detection of 10 phosphatidylcholine lipids. This new method will reduce the sample preparation steps required to perform MALDI- TOF MS on rare single cells and provide a platform for examining the molecular heterogeneity between single cells in a sub-population of diseased cells. This method can also be potentially used to analyse an individual single cell using both microscopy and mass spectrometry to obtain morphological and chemical information, which could be used to study the molecular origins of the heterogenous uptake of drugs and nanoparticles within a diseased population of cells. Declaration relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral theses only). …………………………………………… ……………………………………..……… …………14/10/2019……… Signature Witness Signature Date The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research. FOR OFFICE USE ONLY Date of completion of requirements for Award: ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Date ………1…4/…10…/2…0…19……………………….............. COPYRIGHT STATEMENT ‘I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstract International (this is applicable to doctoral theses only). I have either used no substantial portions of copyright material in my thesis or I have obtained permission to use copyright material; where permission has not been granted I have applied/will apply for a partial restriction of the digital copy of my thesis or dissertation.' Signed ……………………………………………........................... Date …14…/1…0…/2…01…9……………………………........................... AUTHENTICITY STATEMENT ‘I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis. No emendation of content has occurred and if there are any minor variations in formatting, they are the result of the conversion to digital format.’ Signed ……………………………………………........................... 14/10/2019 Date ……………………………………………........................... iii INCLUSION OF PUBLICATIONS STATEMENT UNSW is supportive of candidates publishing their research results during their candidature as detailed in the UNSW Thesis Examination Procedure. Publications can be used in their thesis in lieu of a Chapter if: • The student contributed greater than 50% of the content in the publication and is the “primary author”, ie. the student was responsible primarily for the planning, execution and preparation of the work for publication • The student has approval to include the publication in their thesis in lieu of a Chapter from their supervisor and Postgraduate Coordinator. • The publication is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in the thesis Please indicate whether this thesis contains published material or not. This thesis contains no publications, either published or submitted for ☒ publication (if this box is checked, you may delete all the material on page 2) Some of the work described in this thesis has been published and it has been documented in the relevant Chapters with acknowledgement (if this ☐ box is checked, you may delete all the material on page 2) This thesis has publications (either published or submitted for publication) ☐ incorporated into it in lieu of a chapter and the details are presented below CANDIDATE’S DECLARATION I declare that: • I have complied with the Thesis Examination Procedure • where I have used a publication in lieu of a Chapter, the listed publication(s) below meet(s) the requirements to be included in the thesis. Name Signature Date (dd/mm/yy) Liang Jiang 14/10/2019 Postgraduate Coordinator’s Declaration (to be filled in where publications are used in lieu of Chapters) I declare that: • the information below is accurate • where listed publication(s) have been used in lieu of Chapter(s), their use complies with the Thesis Examination Procedure • the minimum requirements for the format of the thesis have been met. PGC’s Name PGC’s Signature Date (dd/mm/yy) iv Acknowledgements First and foremost, I would like to thank my Supervisor, Dr Alex Donald, for his support and guidance throughout my entire research project. I will always appreciate him for the opportunity he provided so that I could work on this project and take this research journey. He always encouraged and pushed me to tackle all the challenges and difficulties I encountered along the way and to achieve better results. During these past two years, what I learnt from him was far more than this master project. Next, I would like to thank my co-Supervisors, Dr Fabio Lisi and Scientia Professor J. Justin Gooding. Fabio helped me with all experimental details and provided me with many compelling ideas. I learned a lot from him, not only the specific scientific topics but also the hands-on way to do research. Justin was an outstanding scientific mentor that kept me on track in the right direction. I gratefully acknowledge all the members in the Donald research group for all the support and company for all these years. Every time when I discuss my project with them, I could always get unexpected suggestions. Special thanks are also given to Diana Zhang and K M Mohibul Kabir for their proofreading of my thesis. I would like to thank Jiaxin Lian and Ying Yang for their help with regards to understanding the cell biology requirements. I would also like to thank Dr. Stephen G Parker and Lachlan Carter for the help with surface chemistry and electrochemistry. I would also like to thank Dr Anjaneyaswamy Ravipati and Ms Sydney Liu Lau from the i BMSF at UNSW for their technical support in operating the Bruker ultrafleXtreme MALDI-ToF/ToF. Finally, I would like to thank my parents and boyfriend. Without their patience and support, I would not be able to deal with all the challenges I experienced alone.
Recommended publications
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Influence of Cholesterol on Phospholipid Bilayers Phase Domains As Detected by Laurdan Fluorescence
    120 Biophysical Journal Volume 66 January 1994 120-132 Influence of Cholesterol on Phospholipid Bilayers Phase Domains as Detected by Laurdan Fluorescence Tiziana Parasassi,* Massimo Di Stefano,* Marianna Loiero,* Giampietro Ravagnan,* and Enrico Grattont *Istituto di Medicina Sperimentale, Consiglio Nazionale Ricerche, 00137 Rome, Italy, and tLaboratory for Fluorescence Dynamics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA ABSTRACT Coexisting gel and liquid-crystalline phospholipid phase domains can be observed in synthetic phospholipid vesicles during the transition from one phase to the other and, in vesicles of mixed phospholipids, at intermediate temperatures between the transitions of the different phospholipids. The presence of cholesterol perturbs the dynamic properties of both phases to such an extent as to prevent the detection of coexisting phases. 6-Lauroyl-2-dimethylaminonaphthalene (Laurdan) fluorescence offers the unique advantage of well resolvable spectral parameters in the two phospholipid phases that can be used for the detection and quantitation of coexisting gel and liquid-crystalline domains. From Laurdan fluorescence excitation and emission spectra, the generalized polarization spectra and values were calculated. By the generalized polarization phos- pholipid phase domain coexistence can be detected, and each phase can be quantitated. In the same phospholipid vesicles where without cholesterol domain coexistence can be detected, above 15 mol % and, remarkably, at physiological cholesterol concentrations,
    [Show full text]
  • Disruption of Membrane Cholesterol Organization Impairs the Concerted Activity of PIEZO1 Channel Clusters
    bioRxiv preprint doi: https://doi.org/10.1101/604488; this version posted April 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Disruption of membrane cholesterol organization impairs the concerted activity of PIEZO1 channel clusters P. Ridone1,*, E. Pandzic2,*, M. Vassalli3, C. D. Cox1,5, A. Macmillan2, P.A. Gottlieb4 and B. Martinac1,5 1The Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia, 2Biomedical Imaging Facility (BMIF), Mark Wainwright Analytical Centre, Lowy Cancer Research Centre, The University of New South Wales, NSW, 2052, Australia , 3Institute of Biophysics, National Research Council, Genova, Italy , 4Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, 14214, USA , 5St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia *These authors have equally contributed to this work Corresponding author: Dr. Boris Martinac Victor Chang Cardiac Research Institute Lowy Packer Building Darlinghurst, NSW 2010, Australia E-mail [email protected] Key words: Mechanosensitive channel, Cholesterol, STORM, Patch-Clamp, Fluorescence Microscopy. SUMMARY: The essential mammalian mechanosensitive channel PIEZO1 organizes in the plasma membrane into nanometric clusters which depend on the integrity of cholesterol domains to rapidly detect applied force and especially inactivate syncronously, the most commonly altered feature of PIEZO1 in pathology. 1 bioRxiv preprint doi: https://doi.org/10.1101/604488; this version posted April 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved.
    [Show full text]
  • New Insights on the Fluorescent Emission Spectra of Prodan and Laurdan
    J Fluoresc (2015) 25:621–629 DOI 10.1007/s10895-015-1545-x ORIGINAL PAPER New Insights on the Fluorescent Emission Spectra of Prodan and Laurdan Cíntia C. Vequi-Suplicy & Kaline Coutinho & M. Teresa Lamy Received: 12 December 2014 /Accepted: 23 February 2015 /Published online: 10 March 2015 # Springer Science+Business Media New York 2015 Abstract Prodan and Laurdan are fluorescent probes largely Introduction used in biological systems. They were synthetized to be sen- sitive to the environment polarity, and their fluorescent emis- The fluorescent probes Prodan (2-dimethylamino-6- sion spectrum shifts around 120 nm, from cyclohexane to propionylnaphthalene) and Laurdan (2-dimethylamino-6- water. Although accepted that their emission spectrum is com- dodecanoylnaphthalene) have been widely used in biological posed by two emission bands, the origin of these two bands is relevant systems [1–7]. They were synthetized [1]tobesen- still a matter of discussion. Here we analyze the fluorescent sitive to the environment polarity, so their emission spectra spectra of Prodan and Laurdan in solvents of different polar- shifts about 120 nm from cyclohexane to water [1, 8, 9]. ities, both by decomposing the spectrum into two Gaussian Moreover, when inserted into membranes, their emission bands and by computing the Decay Associated Spectra spectra is extremely dependent on the lipid bilayer phase (DAS), the latter with time resolved fluorescence. Our data (gel or fluid), the maximum of the spectrum shifting around show that the intensity of the lower energy emission band of 50 nm from one phase to the other [4, 6, 10]. Prodan and Laurdan (attributed, in the literature, to the decay Although Prodan and Laurdan have been extensively used, of a solvent relaxed state) is higher in cyclohexane than in their structure and electronic distribution, in different solvents, water, showing a decrease as the polarity of the medium in- are still a matter of discussion [11–13].
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • In Pdf Format
    lós 1877 Mik 88 ge N 18 e N i h 80° 80° 80° ll T 80° re ly a o ndae ma p k Pl m os U has ia n anum Boreu bal e C h o A al m re u c K e o re S O a B Bo l y m p i a U n d Planum Es co e ria a l H y n d s p e U 60° e 60° 60° r b o r e a e 60° l l o C MARS · Korolev a i PHOTOMAP d n a c S Lomono a sov i T a t n M 1:320 000 000 i t V s a Per V s n a s l i l epe a s l i t i t a s B o r e a R u 1 cm = 320 km lkin t i t a s B o r e a a A a A l v s l i F e c b a P u o ss i North a s North s Fo d V s a a F s i e i c a a t ssa l vi o l eo Fo i p l ko R e e r e a o an u s a p t il b s em Stokes M ic s T M T P l Kunowski U 40° on a a 40° 40° a n T 40° e n i O Va a t i a LY VI 19 ll ic KI 76 es a As N M curi N G– ra ras- s Planum Acidalia Colles ier 2 + te .
    [Show full text]
  • Biomimetic Curvature and Tension-Driven Membrane
    1 Biomimetic curvature and tension-driven membrane 2 fusion induced by silica nanoparticles 3 4 Marcos Arribas Perez1 and Paul A. Beales1,2,* 5 6 1 Astbury Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, 7 Leeds, LS2 9JT, UK. 8 2 Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK. 9 10 * Correspondence: [email protected] 11 12 1 13 Abstract 14 Membrane fusion is a key process to develop new technologies in synthetic biology, where 15 artificial cells function as biomimetic chemical microreactors. Fusion events in living cells are 16 intricate phenomena that require the coordinate action of multicomponent protein complexes. 17 However, simpler synthetic tools to control membrane fusion in artificial cells are highly desirable. 18 Native membrane fusion machinery mediates fusion driving a delicate balance of membrane 19 curvature and tension between two closely apposed membranes. Here we show that silica 20 nanoparticles (SiO2 NPs) at a size close to the cross-over between tension-driven and curvature- 21 driven interaction regimes initiate efficient fusion of biomimetic model membranes. Fusion 22 efficiency and mechanisms are studied by Förster Resonance Energy Transfer (FRET) and 23 confocal fluorescence microscopy. SiO2 NPs induce a slight increase in lipid packing likely to 24 increase the lateral tension of the membrane. We observe a connection between membrane 25 tension and fusion efficiency. Finally, real-time confocal fluorescence microscopy reveals three 26 distinct mechanistic pathways for membrane fusion. SiO2 NPs show significant potential for 27 inclusion in the synthetic biology toolkit for membrane remodelling and fusion in artificial cells.
    [Show full text]
  • Svensk Ortnamnsatlas
    SKRIFTER UTGIVNA AV KUNGL. GUSTAV ADOLFS AKADEMIEN. 22. STUDIER TILL EN SVENSK ORTNAMNSATLAS UTGIVNA AV JÖRAN SAHLGREN 7. ORTNAMN OCH BEBYGGELSE I ESTLANDS FORNA OCH HITTILLSVARANDE SVENSKBYGDER OSTHARRIEN MED NARGÖ Av PER W rnsELGREN A.-B. LUNDEQUISTSKA BOKHANDELN, UPPSALA EJNAR MUNKSGAARD, K0BENHAVN Utgivet med understöd av Humanistiska fonden. LUND HÅKAN OHLSSONS BOKTRYCKERI 1 9 5 1 Förord. Det stora arbete, som pågår, för att insamla och tyda Sveriges ortnamn, bör omfatta även de svenska namn, som finnas utanför rikets nuvarande gränser. Finland äger forskare i stånd att själva sörja för de uppgifter, som där behöva lösas; annorlunda ställer sig saken för Estlands vidkommande. Föreliggande undersökning, vars första del härmed framlägges, har satt sig före att sprida ljus över det svenska namnbeståndet i Estland och i sammanhang härmed bättre än hittills varit möjligt kartlägga den svenska bosättningens tidigare utbredning. Arbetets första del är ägnad landskapet Harrien, estn. Harjumaa, varvid början gjorts med denna provins östligare del och öarna vid in­ loppet till Reval (Tallinn). Sedan därpå den västra delen av detta landskap med Rågöarna och Vippal-Korkisbygden behandlats, skulle arbetet fortsätta med en monografi över den estländska svenskbygdens gamla kärnområden N uckö och Ormsö, vilkas namnbestånd tack vare Fridolf Isbergs i sista stund på ort och ställe igångsatta energiska insamlingsarbete nu blivit tillgängligt för vetenskaplig bearbetning. Slutligen skulle Dagö, Ösel med .Mohn (estn . .Muhu), de forna bosättningarna på cLet västliga fast­ landet samt Runö komma under behandling. Framställningen i den nu färdiga delen av mitt arbete är mycket utförligare än vad som plägar vara fallet med ortnamnsstudier. Orsakerna härtill äro flera.
    [Show full text]
  • Land•By•Marked
    BJØRN POULSEN ~.--~ .- - __o - ~ _.___- ;:-~_ _~-' .t.- -; •. 0 ••• -, .I' LAND •BY • MARKED TO ØKONOMISKE LANDSKABER I 1400-TALLETS SLESVIG Studieafdelingen Dansk Centralbibliotek for Sydslesvig BJØRN POULSEN LAND-BY-MARKED To økonomiske landskaber i 1400-tallets Slesvig. Udgivet af Studieafdelingen ved Dansk Centralbibliotek for Sydslesvig FLENSBORG 1988 Studieafdelingen takker Statens Humanistiske Forskningsråd for støtte til udgivelsen og Sydbanks Fond for støtte til bogens kort. Bjørn Poulsen: Land - By - Marked To Økonomiske landskaber i 1400-tallets Slesvig Udgivet af Studieafdelingen ved Dansk Centralbibliotek for Sydslesvig, Flensborg, 1988 Sats og tryk: Winds Bogtrykkeri ApS, Haderslev Bogbinderarbejde: J.P. Møller Bogbinderi, Haderslev Bogens omslag: Bengt G. Pettersson, Køge Kort: Helge Krempin, Flensborg © Studieafdelingen ved Dansk Centralbibliotek for Sydslesvig, Flensborg, 1988 I kommission hos Padborg Boghandel DK 6330 Padborg IS BN 87-89178-00-9 Studieafdelingens udgivelser er redigeret af Dr. Johann Runge Forord Et stipendium på Studieafdelingen ved Dansk Centralbibliotek for Sydslesvig gjorde det muligt for mig at arbejde med den slesvigske middelalder. Jeg fik her chancen for at studere de økonomiske forbindelser mellem landet, byen og det større marked, som gennem længere tid havde haft min interesse. Forfatteren har selv lært meget under skrivningen og håber, at den foreliggende afhandling kan være til gavn for såvel den lokalhistorisk interesserede som for den generelle diskussion af det sen­ middelalderlige samfund. Jeg siger tak for den støtte, som alle på Studieafdelingen og Dansk Centralbiblio­ tek har givet. Her i huset skabtes de bedst mulige arbejdsbetingelser. Mange gode råd har jeg modtaget fra lektor, dr. phil. Esben Albrectsen, lektor dr. phil. Poul Enemark, lektor Fritz Saaby-Petersen, ligesom samtaler på symposierne 'Land og by i middelalderen' har været mig til stor inspiration.
    [Show full text]
  • And Leanne Brown Eat Well on $4/Day
    EAT WELL ON $4/DAY GOOD AND CHEAP LEANNE BROWN Salad ...............................................42 Broiled Eggplant Salad ....................................43 Kale Salad ..................................................... 44 NEW Ever-Popular Potato Salad ........................46 Introduction ....................5 NEW Spicy Panzanella......................................49 Text, recipes, and most photographs and A Note on $4/Day ...........................................6 Cold (and Spicy?) Asian Noodles .....................50 design by Leanne Brown, in fulfillment My Philosophy ................................................7 Taco Salad ......................................................52 of a final project for a master’s degree in Tips for Eating and Shopping Well ...................8 Beet and Chickpea Salad ................................53 First, I’d like to thank my husband, Food Studies at New York University. Pantry Basics .................................................12 Broccoli Apple Salad .......................................54 Dan. Without him this book would not NEW Charred Summer Salad ............................55 exist. Thank you also to my wonderful This book is distributed under a family and friends, who believed in this Creative Commons Attribution- idea before anyone else. And thank you NonCommercial ShareAlike 4.0 license. Breakfast ..............................14 to everyone who has taken the time to For more information, visit Tomato Scrambled Eggs .................................15 Snacks,
    [Show full text]
  • Volume 60, I'lum6eit , JAN /Feb Me
    OREGON GEOLOGY published by the Oregon Deportment of Geology and Mineral Industries OREGON GEOLOGY Barnett appointed to OOGAMI Governing Board --VOlUME 60, i'lUM6EIt , JAN /fEB Me... N. Barnett at Pa1Iond ho.I bMn oppoinl8d b)' c:.o... .... 10M 16tz1lo ... ."d ....1.rnMI by !he Or."", ...... ... .. -~....... " "" _..-.-- _-_._--_ - .. .. '--. S,n." lor • fOUl-year Ie!m be""'" OKombel " _"'.eI ,"7, 0$ c.c:-mIn, 1\oaI,j ".,..,w.., of ,110 Ole,,,,, -~ o.pll"",nt aI c.doC one! Mlnaol Induwles --- , ~. - (OOCoAMl) Bornoort ."a: .." John W. S\olJl~ '" _.- -_-- ..... Pa1Iond • .me....-..d two f""' - ~ _.., Ihe Go.<- --. _u_- --~- """"...... d ----______- - .. ~ ... _. ... _.>m. ......... ,... ... ........ - ---- _ 1oIoM.,.,- ... _ ,, -""'"'+ .......,0>, ... '"___ cc,.", .. _ ...' , """.~ ""1>'11 .n-, - ~- ,...,...-..... .. ,_.c:.- .......... ---__ (0'1" ''''''''_lM'I . ,. ,, ~ -,--~. " ~ -., W»o-~ _IM',_->cuo' -- .... I"",. ..... _ "'" ....... ....._ _-..., r-__.. , , ':--,--.. ,1>._ .- ..._ _.. ........ _ -...m.I>W __ .n-".., .... _"'Jr--. -",--....,-- ..._., , AriHoI It. "tftOft ,...I"-_.. ,_..,. ___ u , _ , -, ... ..... .. "' .... .............. .......... BlIlIOn Is tho M.".,. 01 1"- Humon ~ - ""-__",-_._- . ,,,._.nn_ .. _. _ __ ot _- •.. ...... OpeI.lioN 00tp0." ......1 01 PortIa..a General E~1c Company (PGEJ. $110 ".. bftn wo<ldn, .mt. P'GE oIr>e. '918. mostly ... ........,..,. /v..ctloro. ",,j _.'_'_._-""'_--~"'----"--.""-"--"'"_._- ___ ".... _ _ ' F........ p''"''''''"''"''tIy ... II>e .." af ........., RQoourcn. Silo _ .... _.. __ .. _R__ .. _• ott.odod "-PP-.... ~ one! " .....Iod hom AbiIono Chnstian 1..Wvoni1y 11\ .... Shoo 10 rrwrI.cI 0IId : -_ .. __ .. ..... two -.,..I ~... She Is .., Itw M,->, -----""'---........ .. .-_ -- CcundI 01 INS. alia, Asmy Gt-v..... .. and""- --,.-_............ -_--- 11\ IN """" ".ObtIy 01 r.
    [Show full text]
  • Laurdan Fluorescence Lifetime Discriminates Cholesterol Content from Changes in Fluidity in Living Cell Membranes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector 1238 Biophysical Journal Volume 104 March 2013 1238–1247 Laurdan Fluorescence Lifetime Discriminates Cholesterol Content from Changes in Fluidity in Living Cell Membranes Ottavia Golfetto, Elizabeth Hinde, and Enrico Gratton* Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California ABSTRACT Detection of the fluorescent properties of Laurdan has been proven to be an efficient tool to investigate membrane packing and ordered lipid phases in model membranes and living cells. Traditionally the spectral shift of Laurdan’s emission from blue in the ordered lipid phase of the membrane (more rigid) toward green in the disordered lipid phase (more fluid) is quantified by the generalized polarization function. Here, we investigate the fluorescence lifetime of Laurdan at two different emission wavelengths and find that when the dipolar relaxation of Laurdan’s emission is spectrally isolated, analysis of the fluorescence decay can distinguish changes in membrane fluidity from changes in cholesterol content. Using the phasor representation to analyze changes in Laurdan’s fluorescence lifetime we obtain two different phasor trajectories for changes in polarity versus changes in cholesterol content. This gives us the ability to resolve in vivo membranes with different properties such as water content and cholesterol content and thus perform a more comprehensive analysis of cell membrane heterogeneity. We demon- strate this analysis in NIH3T3 cells using Laurdan as a biosensor to monitor changes in the membrane water content during cell migration. INTRODUCTION From the biological perspective, cell membranes influence that provide guidelines for understanding the complexity of many cell functions and are involved in most of the cellular cellular membranes.
    [Show full text]