RESEARCH ARTICLE Evolutionarily conserved long-chain Acyl- CoA synthetases regulate membrane composition and fluidity Mario Ruiz1†, Rakesh Bodhicharla1†, Marcus Sta˚ hlman2, Emma Svensk1, Kiran Busayavalasa1, Henrik Palmgren3, Hanna Ruhanen4,5, Jan Boren2, Marc Pilon1* 1Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; 2Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; 3Metabolism BioScience, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; 4Helsinki University Lipidomics Unit, Helsinki Institute for Life Science, Helsinki, Finland; 5Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland Abstract The human AdipoR1 and AdipoR2 proteins, as well as their C. elegans homolog PAQR- 2, protect against cell membrane rigidification by exogenous saturated fatty acids by regulating phospholipid composition. Here, we show that mutations in the C. elegans gene acs-13 help to suppress the phenotypes of paqr-2 mutant worms, including their characteristic membrane fluidity defects. acs-13 encodes a homolog of the human acyl-CoA synthetase ACSL1, and localizes to the mitochondrial membrane where it likely activates long chains fatty acids for import and *For correspondence: degradation. Using siRNA combined with lipidomics and membrane fluidity assays (FRAP and
[email protected] Laurdan dye staining) we further show that the human ACSL1 potentiates lipotoxicity by the †These authors contributed saturated fatty acid palmitate: silencing ACSL1 protects against the membrane rigidifying effects of equally to this work palmitate and acts as a suppressor of AdipoR2 knockdown, thus echoing the C. elegans findings. Competing interest: See We conclude that acs-13 mutations in C.