INDIA PROGRESSES DEVELOPMENT of ADVANCED SPACE TECHNOLOGY Gp Capt Vivek Kapur Senior Fellow, CAPS

Total Page:16

File Type:pdf, Size:1020Kb

INDIA PROGRESSES DEVELOPMENT of ADVANCED SPACE TECHNOLOGY Gp Capt Vivek Kapur Senior Fellow, CAPS CAPS In Focus 30 May 2016 www.capsindia.org 64/16 INDIA PROGRESSES DEVELOPMENT OF ADVANCED SPACE TECHNOLOGY Gp Capt Vivek Kapur Senior Fellow, CAPS Introduction ISRO has worked on developing its Geosynchronous Satellite Launch Vehicle (GSLV) India’s space agency, Indian Space Research in increasingly more powerful variants from Organisation (ISRO), commenced working on GSLV to GSLV-Mk-3. Conventional launch rockets developing a space launch capability in the late are one use expendable vehicles. One use rocket 1970s. Success with its satellite Launch Vehicle carries its payload to a designated point in space (SLV)-3 was first achieved in 19801. SLV-3 was at a predetermined velocity. Most space launch capable of placing a small 40 kg payload into low rockets are multistage vehicles. As each stage is earth orbit (LEO)2. Hence SLV-3 was not a really used up (its fuel is fully burnt) it is jettisoned to usable space launch capability as most satellites avoid carrying non-productive dead weight any of the time weighed above several hundred further than absolutely necessary. Thus, entire kilograms and orbits such as polar orbits and launch rocket is progressively discarded after its geosynchronous (GSO), geostationary transfer use. The jettisoned stages of the rocket burn up orbits (GTO), and Geosynchronous equatorial in the atmosphere; with surviving structures orbits (GEO) were entirely beyond SLV-3’s being destroyed on impact with the ground or capability. ISRO then put effort into developing falling into oceans, depending upon the location more powerful launch vehicles such as the Polar of the launch site. Each space launch has Satellite Launch Vehicle (PSLV)3 and Augmented traditionally required a complete freshly built Satellite Launch Vehicle (ASLV)4. Both ASLV and rocket to be used. This makes the cost of placing PSLV proved to be quite capable. However, each kilogram of payload into space very high. success was achieved after a few failed launch Considerable thought has been devoted by all attempts of these more powerful launch rockets. space faring nations to devise means of reducing The first PSLV was launched in year 1993 and launch costs.’ achieved success a year later5. In recent years, 1 Centre for Air Power Studies | @CAPS_India | Centre for Air Power Studies CAPS In Focus 30 May 2016 www.capsindia.org Reduction of Launch Costs engines; these three integral engines were in continuous operation till the Space Shuttle Even a cursory look at the means of reducing the reached orbit in outer space, hence the need for a cost of launching objects into space easily large amount of fuel8. The two strap-on solid identifies the ‘one time use’ nature of the space booster rockets were jettisoned after use and launch rocket as a major contributor to the high returned to splash down in the ocean with cost of launching objects into space. parachutes slowing down the impact speed. The Development of a launch vehicle that could be solid fuelled booster rockets were meant to be reused appeared to be the logical step towards recovered from the sea and refurbished for reducing the cost of space launches. There are reuse.9 The entire Space Shuttle returned to many possible ways of reusing launch vehicles. Earth through a glide landing and was reusable.10 The first such attempt at developing a The huge external fuel tank was, however, reusable launch system was development of the discarded after use. Some national security Space Shuttle by the US. The Space Shuttle requirements were also included in the Space involved development of a large winged vehicle Shuttle design to meet needs of the US military11. that could carry reasonable payload and crew to Despite only the external fuel tank being totally orbit and return via a glide to land like a expendable the US Space Shuttle did not meet its conventional aircraft.6 This vehicle was provided objective of making space launches less costly. with its own integral rocket engines. The aim of The development and operating costs of the the program was to make available cheap, American Space Shuttle were still quite high. The regular and fast access to space7. For launch from cost of launching a kilogram of payload to space Earth the US Space Shuttle used its three integral into low earth orbit (LEO), at an altitude of about rocket engines along with two strap-on solid fuel 330 to 430 kilometers above mean sea level booster rockets. The vehicle was launched (AMSL) where the International Space Station vertically like a space rocket. The largest (ISS) orbits the earth using various space launch structure attached to the American Space Shuttle methods available to the US were reported as at launch was a huge external fuel tank that listed at Table 1. carried fuel for the shuttle’s three integral rocket 2 Centre for Air Power Studies | @CAPS_India | Centre for Air Power Studies CAPS In Focus 30 May 2016 www.capsindia.org Table1: Cost of Launching a Kilogram to Space for USA US Civil Contractors such as Space X (with Falcon Type of space Russian Progress rockets) and now also Blue Space Shuttle launch vehicle Spacecraft Origin (with the Shepard rocket). These are still in development phases. $ cost per kilogram of payload carried to 46,789.6 39,927.8 58,894 the ISS in LEO Source: Subcommittee on Space and Aeronautics Committee on Science, Space, and Technology U.S. House of Representatives, “NASA’s Commercial Cargo Providers; Are They Ready to Supply the Space Station in the Post-Shuttle Era?”. The US built five Space Shuttles, these were launchers use tried and tested conventional named Columbia, Challenger, Endeavour, rocket technology of the type used in the 1950s Discovery, and Atlantis12. Construction of these to launch satellites and other payloads by the craft involved utilisation of high technology erstwhile Soviet Union. The development costs of ceramic tiles for thermal protection at re-entry these venerable rockets have been amortised into the atmosphere, provision of human fully and their manufacturing has been made habitation space with life support equipment and very efficient and reliable. There has been a high end robotics on board to simplify in space thread of opinion in various circles that the path mission tasks13. towards lower cost access to space lies not in developing reusable launch vehicles but in Table 1 brings out that the advanced features building robust, well understood, tried and incorporated in the US Space Shuttle and other tested rockets that can be mass manufactured overheads involved through the ‘cutting edge cheaply. While there is merit in this argument, high technology’ nature of the US industrial especially if one goes by the data placed at Table complex made US Space Shuttle very expensive 1 above, simple rockets do not offer the flexibility as a launch system in terms of per payload of a reusable launch platform. The erstwhile kilogram (kg) to space terms. The cheapest Soviet space program was working on launch as per the table above is provided by the developing the Buran, their version of a Space Russian Progress space craft. These Russian Shuttle when the Soviet Union was dismantled 3 Centre for Air Power Studies | @CAPS_India | Centre for Air Power Studies CAPS In Focus 30 May 2016 www.capsindia.org and a funds crunch forced the project to be kilometers) AMSL, which altitude falls in outer abandoned14. China is known to be developing its space or above the Karman line.21 Need to reach own recoverable space plane development craft such altitudes dictate a taller and more slender called the “Yuanzheng-1” or Project 921-315 . design. Blue Origin, on the other hand, rises to about 62 miles (about 99 kilometers) AMSL, Another Path to Launch Cost Reduction which is just about till the Karman line. This Meanwhile, there are two private companies in allows for a more compact and robust design the US - Space X16, founded by the entrepreneur overall. Falcon also requires, due to the altitude it Elon Musk of Tesla and Hyperloop fame17, and rises to, moving away from the absolute vertical Blue Origin, founded by Jeff Bezos of (with respect to the Earth’s surface) as it climbs Amazon.com fame - that are working on an higher, making vertical landing orientation and alternate path towards reducing space launch stabilisation of its recovered stages more costs. Both these private companies are trying to complex to control. The Blue Origin remains make conventional space rockets reusable to vertical throughout its flight, thus somewhat reduce costs. Space X is trying to make at least reducing the sensing and control needs for a some stages of its Falcon rockets reusable by successful landing. Blue Origin aims to make an ‘soft-landing’ the first stage of its Falcon rockets entire near space altitude capable rocket on a floating platform at sea18. Space X has also reusable while Falcon aims to reuse at least the made its rocket as simple as possible by using a first stage of a rocket able to take payloads to single type of engine for all stages, similar outer space. All these differences between the materials and designs for all stages, etc. thus Falcon and New Shepard rockets apart, both reducing design and manufacturing costs while systems have the soft landing and reuse of rocket also reducing complexity and increasing stages in common unlike the Space Shuttle that reliability`.19 Two such soft landings of the Falcon landed a winged orbiter. Through the process of first stage have been successfully achieved at sea overall simplification followed by Space X, it is in addition to several successful landings on land likely that the combination of simplification of as on date.20 These hold out hope for appreciable design and manufacture, and reusability of launch cost reductions in future.
Recommended publications
  • Maintenance Strategy and Its Importance in Rocket Launching System-An Indian Prospective
    ISSN(Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 5, Issue 5, May 2016 Maintenance Strategy and its Importance in Rocket Launching System-An Indian Prospective N Gayathri1, Amit Suhane2 M. Tech Research Scholar, Mechanical Engineering, M.A.N.I.T, Bhopal, M.P. India Assistant Professor, Mechanical Engineering, M.A.N.I.T, Bhopal, M.P. India ABSTRACT: The present paper mainly describes the maintenance strategies followed at rocket launching system in India. A Launch pad is an above-ground platform from which a rocket or space vehicle is vertically launched. The potential for advanced rocket launch vehicles to meet the challenging , operational, and performance demands of space transportation in the early 21st century is examined. Space transportation requirements from recent studies underscoring the need for growth in capacity of an increasing diversity of space activities and the need for significant reductions in operational are reviewed. Maintenance strategies concepts based on moderate levels of evolutionary advanced technology are described. The vehicles provide a broad range of attractive concept alternatives with the potential to meet demanding operational and maintenance goals and the flexibility to satisfy a variety of vehicle architecture, mission, vehicle concept, and technology options. KEY WORDS: Preventive Maintenance, Rocket Launch Pad. I. INTRODUCTION A. ROCKET LAUNCH PAD A Launch pad is associate degree above-ground platform from that a rocket ballistic capsule is vertically launched. A launch advanced may be a facility which incorporates, and provides needed support for, one or a lot of launch pads.
    [Show full text]
  • EMC18 Abstracts
    EUROPEAN MARS CONVENTION 2018 – 26-28 OCT. 2018, LA CHAUX-DE-FONDS, SWITZERLAND EMC18 Abstracts In alphabetical order Name title of presentation Page n° Théodore Besson: Scorpius Prototype 3 Tomaso Bontognali Morphological biosignatures on Mars: what to expect and how to prepare not to miss them 4 Pierre Brisson: Humans on Mars will have to live according to both Martian & Earth Time 5 Michel Cabane: Curiosity on Mars : What is new about organic molecules? 6 Antonio Del Mastro Industrie 4.0 technology for the building of a future Mars City: possibilities and limits of the application of a terrestrial technology for the human exploration of space 7 Angelo Genovese Advanced Electric Propulsion for Fast Manned Missions to Mars and Beyond 8 Olivia Haider: The AMADEE-18 Mars Simulation OMAN 9 Pierre-André Haldi: The Interplanetary Transport System of SpaceX revisited 10 Richard Heidman: Beyond human, technical and financial feasibility, “mass-production” constraints of a Colony project surge. 11 Jürgen Herholz: European Manned Space Projects 12 Jean-Luc Josset Search for life on Mars, the ExoMars rover mission and the CLUPI instrument 13 Philippe Lognonné and the InSight/SEIS Team: SEIS/INSIGHT: Towards the Seismic Discovering of Mars 14 Roland Loos: From the Earth’s stratosphere to flying on Mars 15 EUROPEAN MARS CONVENTION 2018 – 26-28 OCT. 2018, LA CHAUX-DE-FONDS, SWITZERLAND Gaetano Mileti Current research in Time & Frequency and next generation atomic clocks 16 Claude Nicollier Tethers and possible applications for artificial gravity
    [Show full text]
  • SPEAKERS TRANSPORTATION CONFERENCE FAA COMMERCIAL SPACE 15TH ANNUAL John R
    15TH ANNUAL FAA COMMERCIAL SPACE TRANSPORTATION CONFERENCE SPEAKERS COMMERCIAL SPACE TRANSPORTATION http://www.faa.gov/go/ast 15-16 FEBRUARY 2012 HQ-12-0163.INDD John R. Allen Christine Anderson Dr. John R. Allen serves as the Program Executive for Crew Health Christine Anderson is the Executive Director of the New Mexico and Safety at NASA Headquarters, Washington DC, where he Spaceport Authority. She is responsible for the development oversees the space medicine activities conducted at the Johnson and operation of the first purpose-built commercial spaceport-- Space Center, Houston, Texas. Dr. Allen received a B.A. in Speech Spaceport America. She is a recently retired Air Force civilian Communication from the University of Maryland (1975), a M.A. with 30 years service. She was a member of the Senior Executive in Audiology/Speech Pathology from The Catholic University Service, the civilian equivalent of the military rank of General of America (1977), and a Ph.D. in Audiology and Bioacoustics officer. Anderson was the founding Director of the Space from Baylor College of Medicine (1996). Upon completion of Vehicles Directorate at the Air Force Research Laboratory, Kirtland his Master’s degree, he worked for the Easter Seals Treatment Air Force Base, New Mexico. She also served as the Director Center in Rockville, Maryland as an audiologist and speech- of the Space Technology Directorate at the Air Force Phillips language pathologist and received certification in both areas. Laboratory at Kirtland, and as the Director of the Military Satellite He joined the US Air Force in 1980, serving as Chief, Audiology Communications Joint Program Office at the Air Force Space at Andrews AFB, Maryland, and at the Wiesbaden Medical and Missile Systems Center in Los Angeles where she directed Center, Germany, and as Chief, Otolaryngology Services at the the development, acquisition and execution of a $50 billion Aeromedical Consultation Service, Brooks AFB, Texas, where portfolio.
    [Show full text]
  • The SKYLON Spaceplane
    The SKYLON Spaceplane Borg K.⇤ and Matula E.⇤ University of Colorado, Boulder, CO, 80309, USA This report outlines the major technical aspects of the SKYLON spaceplane as a final project for the ASEN 5053 class. The SKYLON spaceplane is designed as a single stage to orbit vehicle capable of lifting 15 mT to LEO from a 5.5 km runway and returning to land at the same location. It is powered by a unique engine design that combines an air- breathing and rocket mode into a single engine. This is achieved through the use of a novel lightweight heat exchanger that has been demonstrated on a reduced scale. The program has received funding from the UK government and ESA to build a full scale prototype of the engine as it’s next step. The project is technically feasible but will need to overcome some manufacturing issues and high start-up costs. This report is not intended for publication or commercial use. Nomenclature SSTO Single Stage To Orbit REL Reaction Engines Ltd UK United Kingdom LEO Low Earth Orbit SABRE Synergetic Air-Breathing Rocket Engine SOMA SKYLON Orbital Maneuvering Assembly HOTOL Horizontal Take-O↵and Landing NASP National Aerospace Program GT OW Gross Take-O↵Weight MECO Main Engine Cut-O↵ LACE Liquid Air Cooled Engine RCS Reaction Control System MLI Multi-Layer Insulation mT Tonne I. Introduction The SKYLON spaceplane is a single stage to orbit concept vehicle being developed by Reaction Engines Ltd in the United Kingdom. It is designed to take o↵and land on a runway delivering 15 mT of payload into LEO, in the current D-1 configuration.
    [Show full text]
  • 20110015353.Pdf
    ! ! " # $ % & # ' ( ) * ! * ) + ' , " ! - . - ( / 0 - ! Interim Report Design, Cost, and Performance Analyses Executive Summary This report, jointly sponsored by the Defense Advanced Research Projects Agency (DARPA) and the National Aeronautics and Space Administration (NASA), is the result of a comprehensive study to explore the trade space of horizontal launch system concepts and identify potential near- and mid-term launch system concepts that are capable of delivering approximately 15,000 lbs to low Earth orbit. The Horizontal Launch Study (HLS) has produced a set of launch system concepts that meet this criterion and has identified potential subsonic flight test demonstrators. Based on the results of this study, DARPA has initiated a new program to explore horizontal launch concepts in more depth and to develop, build, and fly a flight test demonstrator that is on the path to reduce development risks for an operational horizontal take-off space launch system. The intent of this interim report is to extract salient results from the in-process HLS final report that will aid the potential proposers of the DARPA Airborne Launch Assist Space Access (ALASA) program. Near-term results are presented for a range of subsonic system concepts selected for their availability and relatively low development costs. This interim report provides an overview of the study background and assumptions, idealized concepts, point design concepts, and flight test demonstrator concepts. The final report, to be published later this year, will address more details of the study processes, a broader trade space matrix including concepts at higher speed regimes, operational analyses, benefits of targeted technology investments, expanded information on models, and detailed appendices and references.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2012
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly.
    [Show full text]
  • SKYLON User's Manual
    SKYLON User's Manual Doc. Number - SKY-REL-MA-0001 Version – Revision 2 Date – May 2014 Compiled: Mark Hempsell Checked: Roger Longstaff Authorised: Richard Varvill Document Change Log Revision Description Date 1 First issue of document Nov 2009 1.1 Minor Corrections and revisions Jan 2010 Major revision in light of D1 work and the European Space Agency May 2014 2 study into a SKYLON based European Launch System 2.1 Minor Corrections and revisions June 2014 Contact One of the purposes of this document is to elicit feedback from potential users as part of the validation of SKYLON’s requirements. Comments are most welcome and should be sent to: Reaction Engines Ltd Building D5, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK Email: [email protected] © Reaction Engines Limited – 2014 SKYLON USER'S MANUAL © Reaction Engines Limited – 2014 Reaction Engines Ltd Building D5, Culham Science Centre, Abingdon, Oxon, OX14 3DB UK Email: [email protected] Website: www.reactionengines.co.uk SKY-REL-MA-0001 SKYLON User’s Manual Revision 2 Frontispiece: SUS Upper Stage Approaching SKYLON ii SKY-REL-MA-0001 SKYLON User’s Manual Revision 2 SKYLON User's Manual Contents Acronyms and Abbreviations v 1. INTRODUCTION 1 2. VEHICLE AND MISSION DESCRIPTION 3 2.1 SKYLON Vehicle 3 2.2 SABRE Engine 6 2.3 Typical Mission Profile 7 3. PAYLOAD PROVISIONS 9 3.1 Deployed Payload Mass 9 3.2 Injection Accuracy 12 3.3 In orbit Manoeuvring Capability. 12 3.4 Envelope and Attachments 12 3.5 Payload Mass Property Constraints 16 3.6 Environment 17 3.7 Payload Services 19 3.8 Mission Duration 20 4.
    [Show full text]
  • Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
    Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1.
    [Show full text]
  • Issue #1 – 2012 October
    TTSIQ #1 page 1 OCTOBER 2012 Introducing a new free quarterly newsletter for space-interested and space-enthused people around the globe This free publication is especially dedicated to students and teachers interested in space NEWS SECTION pp. 3-22 p. 3 Earth Orbit and Mission to Planet Earth - 13 reports p. 8 Cislunar Space and the Moon - 5 reports p. 11 Mars and the Asteroids - 5 reports p. 15 Other Planets and Moons - 2 reports p. 17 Starbound - 4 reports, 1 article ---------------------------------------------------------------------------------------------------- ARTICLES, ESSAYS & MORE pp. 23-45 - 10 articles & essays (full list on last page) ---------------------------------------------------------------------------------------------------- STUDENTS & TEACHERS pp. 46-56 - 9 articles & essays (full list on last page) L: Remote sensing of Aerosol Optical Depth over India R: Curiosity finds rocks shaped by running water on Mars! L: China hopes to put lander on the Moon in 2013 R: First Square Kilometer Array telescopes online in Australia! 1 TTSIQ #1 page 2 OCTOBER 2012 TTSIQ Sponsor Organizations 1. About The National Space Society - http://www.nss.org/ The National Space Society was formed in March, 1987 by the merger of the former L5 Society and National Space institute. NSS has an extensive chapter network in the United States and a number of international chapters in Europe, Asia, and Australia. NSS hosts the annual International Space Development Conference in May each year at varying locations. NSS publishes Ad Astra magazine quarterly. NSS actively tries to influence US Space Policy. About The Moon Society - http://www.moonsociety.org The Moon Society was formed in 2000 and seeks to inspire and involve people everywhere in exploration of the Moon with the establishment of civilian settlements, using local resources through private enterprise both to support themselves and to help alleviate Earth's stubborn energy and environmental problems.
    [Show full text]
  • Zero Robotics Tournaments
    Collaborative Competition for Crowdsourcing Spaceflight Software and STEM Education using SPHERES Zero Robotics by Sreeja Nag B.S. Exploration Geophysics, Indian Institute of Technology, Kharagpur, 2009 M.S. Exploration Geophysics, Indian Institute of Technology, Kharagpur, 2009 Submitted to the Department of Aeronautics and Astronautics and the Engineering Systems Division in Partial Fulfillment of the Requirements for the Degrees of Master of Science in Aeronautics and Astronautics and Master of Science in Technology and Policy at the Massachusetts Institute of Technology June 2012 © 2012 Massachusetts Institute of Technology. All rights reserved Signature of Author ____________________________________________________________________ Department of Aeronautics and Astronautics and Engineering Systems Division May 11, 2012 Certified by __________________________________________________________________________ Jeffrey A. Hoffman Professor of Practice in Aeronautics and Astronautics Thesis Supervisor Certified by __________________________________________________________________________ Olivier L. de Weck Associate Professor of Aeronautics and Astronautics and Engineering Systems Thesis Supervisor Accepted by __________________________________________________________________________ Eytan H. Modiano Professor of Aeronautics and Astronautics Chair, Graduate Program Committee Accepted by __________________________________________________________________________ Joel P. Clark Professor of Materials Systems and Engineering Systems Acting Director,
    [Show full text]
  • Thermal Protection System Analysis and Sizing for Spaceplane Configurations
    ; Thermal Protection System Analysis AND Sizing FOR Spaceplane ConfiGURATIONS PrELIMINARY DESIGN OF THE TPS AND OPTIMIZATION OF THE INSULATION LAYER EvELYNE Roorda ii 1 1Cover image from http://www.cbsnews.com/pictures/space-plane-of-tomorrow/8/, visited on 20/06/2017 Thermal Protection System Analysis and Sizing for Spaceplane Configurations Preliminary design of the TPS and optimization of the insulation layer by Evelyne Roorda to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Monday July 17, 2017 at 14:00 AM. Student number: 4044398 Project duration: June 1, 2016 – July 17, 2017 Thesis committee: Dr. ir. E. Mooij, TU Delft, supervisor Ir. A. Kopp, DLR, supervisor Prof. Dr. P. Visser, TU Delft Dr. Ir. D.I. Gransden, TU Delft Ir. K.J. Sudmeijer, TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. ii Preface I would like to take this opportunity to thank my two supervisors, Erwin Mooij and Alexander Kopp. Erwin thank you for your understanding and patience during my thesis, and your useful (though sometimes frus- trating) input and comments. Alexander, I would also like to thank you for your patience, as well as your willingness to always help me think about the problems I encountered and your useful suggestions. Furthermore I would like to sincerely thank all who have taken the time to given me their expert opinions and help during my thesis, especially Dominic Dirkx, Kees Sudmeijer, Javad Fatemi and Martin Lemmen. My friends and fellow students have helped keep me sane throughout my study and the thesis process.
    [Show full text]
  • ESD Combined Report Oct 2017
    EXPLORATION SYSTEMS DEVELOPMENT COMBINED MONTHLY REPORT OCTOBER 2017 ORION 4 Pad Abort Test Ensures Astronaut, Ground Crew Safety Before Orion Launches 5 Exploring Outer Space in the President’s Place 5 VP Pence Aims to Continue America’s Leadership in Space 6 Orion Testing Paves the Way for Crew to Explore Deep Space 7 Orion Team Inspires Globally 8 Orion Progress on the East Coast 10 Popular Mechanics Features Orion Engineer 10 There’s No Place Like Home: Kansas State Helps Astronauts Return to Earth 11 Assembling Orion to Protect Crew 12 Supplier Spotlight: Avatar Machine SPACE LAUNCH SYSTEM 14 Space Launch System, Stennis Test RS-25 Engine Slated for Second Mission 14 National Space Council Affirms American Leadership, Establishes Moon, Mars Missions 15 Engine Upgrades Complete, Testing Continues 16 Engines Ready to Meet Core Stage 17 Marshall Engineer Barreda Helps Steer SLS to Deep Space 18 On the Road with SLS 19 What’s New in SLS Social Media 19 SpaceFlight Partners: Titeflex Aerospace GROUND SYSTEMS DEVELOPMENT & OPERATIONS 22 Crew Access Arm for Space Launch System Arrives at Kennedy 23 Core Stage Inner-Tank Umbilical Fit Checked on Mobile Launcher 24 Faces of GSDO – Philip Weber 25 New Winch for Orion Landing and Recovery ORION SAFETY OCTOBER 2017 FIRST PAD ABORT TEST ENSURES ASTRONAUT, GROUND CREW SAFETY BEFORE ORION LAUNCHES NASA recently performed a series of tests to evaluate how is helping engineers evaluate hardware designs and establish astronauts and ground crew involved in final preparations procedures that will be used to get astronauts and ground before Orion missions will quickly get out of the spacecraft if crew out of the capsule as quickly as possible.
    [Show full text]