LONGEVITY of CAPE PETRELS Daption Capense at BLUFF

Total Page:16

File Type:pdf, Size:1020Kb

LONGEVITY of CAPE PETRELS Daption Capense at BLUFF tcz K. Green and V- Wong: Winterdiet of Gentoo penquin Corella16(5) Klages, N. T. W., Pemberton, D. p. and Gales, R. (1990). Volkman, N. J., Presler, P. and Trivelpiece, W. (1980). Diets The diets of King and penguins Gentoo at Heard island- of pygoscelid penguins at King George Island, Antarctica. Aust. Wildl. Res. 17: 53-60. Condor 82:373-378. LaCock, G. D., Hecht, T. and Klages, N. (1984). The winter Williams, A. J. (1980). Aspects of the breeding biology of diet of Gentoo Penguins ar Marion Island. Osrrjcft 55: the Gentoo Penguin, Pygoscelis papua. Gerfaut 70: 188-191. 283-295. Mauchline, J. (1980). Measurement of body length of Williams, R. and McEldowney, A. (1990). A guide ro rhe fish Euphausia superba Dana. Biomass Handbook 4: l-9. otoliths from waters off the Australian Antarctic Territorv. Patterson, G. B. (1986). A statistical method of testing for Heard and Macquarie Islands. ANARE Research Notes dietary differences.N.Z. J. Ecol.13: 113-115. 15. Ridoux, V. (1988). Subantarctic krill, Euphausia vallentini Williams, T. D. (1991). Foraging ecology and diet of Genroo Stebbing, preyed upon by penguins around Crozet Island Penguins Pygoscelis papua at South Georgia during winter (Southern Indian Ocean): population structure and annual and an assessment of their winter prey consumption. lbls cycle. "/. Plank. Res. l0: 675-690. 133:3-13. Corella,1992, 16(5): 132-133 LONGEVITYOF CAPE PETRELSDaption capense AT BLUFF ISLAND,VESTFOLD HILLS, EAST ANTARCTICA F. I. NORMAN and S. J. WARD1 Department of Ecology and Evolutionary Biology, Monash University, Clayton, Victoria 3168. 'preient addrcss: Depar-tment of Zoology, James cook University, Townsville, Queensland 4811. Received24 September, I99l The Cape Petrel Daption capensenests on the Bluff Island was visited briefly in early Antarctic Peninsula.on Antarctic and Subantarctic February1989 and again,for a longer period, on islandsas well as on the continentitself (Watson 7 Januaiy 1991during studieson the SouthPolar 1975; Marchant and Higgins 1990). Breeding SkuaC aihar ac ta mac c o r micft i. Previously-ban ded occursin East Antarctica,including sites in Prydz CapePetrels were noted in 1989.In 1991petrels Bav (Woehlerand Johnstone1991). Bluff Island at nestsover muchof the Islandwere examined, '77'54'E), density was high and 1Of::'S, off Davis Station in the particularly where nest Vestfold Hills, is one such nesting area where where birds bandedprior to 1989were breeding. Cape Petrels have been banded intermittently Ot 334 adults caught at nest sites, 15 had been sinie 1959.To the endof the 1989i90summer 299 banded previously.Four adults were banded in oulli and 130 adult birds at nests have been 1989.one breedingadult was banded as a chick markedthere. in February 1974ind anotheras a pullus in 1984; December,1992 F. L Noinan and S. J.l{afd. Longevityof Cape Peirel 133 a further adult had been bandcd as a nestling at than strict philopatry (e.g. Pinder 1966;Marchant the Forbes Ctacier (67'38'3. 62"21'E). some R00 and Higgins 1990). The recapture of an adult km away near Mawson in February 1973. Eight Cape Petrel at Bluff Island originally banded adults were banded on nests in February 1984, (with a monel band) as a chick near Mawson when 68 pulli and 32 breeding birds were marked indicatesthat some birds do dispersefrom natal by K. Green. siles lo hreed clscuhere, somelimeso\er con- siderabledistance. Pinder (1966) noted that 5-16 Sincc Cape Petrelsare essentiallymonogamous, per cent of the breeding population was replaced in with a long-lastingpair bond, and show a strong any onc year and hencc estimatedadult mortality fidelity to nesting areas (Marchant and Higgins for Capc Petrels at Bluff Island may reflect both 1990),such rccapturedata may provide a measure death and emigration. Such cstimates may be of minimum survival and henceannual mortality. biasedfurther by failure of nestingattempts early Minimum mean annual survival (S) may be in the breeding season, and the subscquent calculated as S = (r/n)L/ror, as a percentage,as dispersalof adults. At breeding colonies such as S = 100.i4/n. where y numberof )cars. n : Bluff Island, blizzards and resulting snow drifts number originally banded, and r : number of could reduce nest site availability, ncsting attempts recaptures (e.g. Mougin 1975). Thus for the and success,and lead to abandonmentof nesting cohorl of adult\ mrrked in 1984,minimum mean colonies. Further studiesmay clarify such tssues. survival was 0.82 (827o) and hence annual mortality (m) 0.18 (18'1,). Life expectancy(E) :2-ml2m ACKNOWLEDGMENTS (200'm/2m in percentage tbrm) and, in con- We thank the Dircctor, Australian Antarctic is some five years for such adult birds sequence, Division for the opportunity to visit BlutT Island, that mortality is independent of age. assuming and to the Station Leadcr and fellow expedition- limits about such estimatesare, how- Confidence ers at Davis during the 199011991summer for ality estimatesfrom these data, evcr, large; mo their assistancein many ways. Annie Wessing and 28 per cent. for example, vary between 12 helped in the exrminalion of the Bluff Island bircis and J. M . Cullcn, W. B. tmison and Conclusionsfrom these data are limited both anonymousreferees commented helpfully on the by the small numbers of banded birds in the manuscript. We are grateful too to the previous original cohort and their subsequentrecaptures. ANARE^expeditioneis who banded Cape Petrels In Addition, mortality estimatesmay be magnified on Bluff Island, and thank the Australian Bird by band loss (presumably minimized by the use and Bat Banding Scheme who provided the of stainless steel bands from 1984 onwards), appropriate details. the non-recapture of previously-marked birds (reduced here by the coverage of the Island in REFERENCES areasof previousbandings) and emigration. How- ever, Mougin (1975) reported some 2l per cent Beck,J. R. (1969).Food, moull and age of lirslbreeding in of marked birds at the same nest sites six years the Cape PigeonDaPlion capensisLlrnaers Bti! Antarct. later and in this study at least 25 per cent of adult Surv. Bull. 21.3344. (1966).Adult survivalcstimates for two antarctic present Hudson,R. '73 birds banded on Bluff Island in 1984were petrels.Brlt. Antarct. Surt'.Bull. 8:63 there in 1991, seven years later. Estimated Marchant,S. and Higgins,P. (1990).(Eds).'The Handbook mortality rates are, however, somewhat higher of Australian,New Zealandand Antarcticbirds' Vol I than 4J per cent previously reported (Hudson (OxfordUniversity Press: Melbourne.) (1975). dc! Procellariidae 1966; Mougin 1975), and life expectancycorres- Mougin.J. L. EcologiccomparEe ct subantarctiques.C.N.F.n,4- 36: I 195. of 68 chicksbanded antarctiques pondingly less.That only one Pinder, R. (1966). Thc Cape Pigcon. DaPtion .apensts in 1984 was recaught as a breeding adult could Linnacus,at Signy lsland, Soulh Orkney Islands Blir' suggestheavy mortality of such chicks that season Antarct. Surv. Bull. 8: 1947. 'Birds (or subsequentprebreeding mortality). However, Watson, G. E. (1975). of the Antarctic and sincethe majority of birds breed for the first time Subantarctic.'(Amer. Geophys.Union: Washington ) Johnstonc.G. W. (1991)The statusand years age (Pinder 1966; Beck Woehler.E. J. and at about five of conservationof dre seabirdsof the AuslralianAntarclic 1969) and hence would have been available for Territory. ln Seabird status and conscrvation:a supPle- capture in 1991, it may also indicate some dispersal ment.' (Ed. J. Croxall). ICBP TechniculPubli(.ttion rr: to brced at other sites (e.g. Beck 1969), rather 279-306..
Recommended publications
  • Management Plan for Antarctic Specially Protected Area No
    Measure 2 (2005) Annex E Management Plan for Antarctic Specially Protected Area No. 120 POINTE-GÉOLOGIE ARCHIPELAGO, TERRE ADÉLIE Jean Rostand, Le Mauguen (former Alexis Carrel), Lamarck and Claude Bernard Islands, The Good Doctor’s Nunatak and breeding site of Emperor Penguins 1. Description of Values to be Protected In 1995, four islands, a nunatak and a breeding ground for emperor penguins were classified as an Antarctic Specially Protected Area (Measure 3 (1995), XIX ATCM, Seoul) because they were a representative example of terrestrial Antarctic ecosystems from a biological, geological and aesthetics perspective. A species of marine mammal, the Weddell seal (Leptonychotes weddelli) and various species of birds breed in the area: emperor penguin (Aptenodytes forsteri); Antarctic skua (Catharacta maccormicki); Adélie penguins (Pygoscelis adeliae); Wilson’s petrel (Oceanites oceanicus); giant petrel (Macronectes giganteus); snow petrel (Pagodrama nivea), cape petrel (Daption capense). Well-marked hills display asymmetrical transverse profiles with gently dipping northern slopes compared to the steeper southern ones. The terrain is affected by numerous cracks and fractures leading to very rough surfaces. The basement rocks consist mainly of sillimanite, cordierite and garnet-rich gneisses which are intruded by abundant dikes of pink anatexites. The lowest parts of the islands are covered by morainic boulders with a heterogenous granulometry (from a few cm to more than a m across). Long-term research and monitoring programs of birds and marine mammals have been going on for a long time already (since 1952 or 1964 according to the species). A database implemented in 1981 is directed by the Centre d'Etudes Biologiques de Chize (CEBC-CNRS).
    [Show full text]
  • Order PROCELLARIIFORMES: Albatrosses
    Text extracted from Gill B.J.; Bell, B.D.; Chambers, G.K.; Medway, D.G.; Palma, R.L.; Scofield, R.P.; Tennyson, A.J.D.; Worthy, T.H. 2010. Checklist of the birds of New Zealand, Norfolk and Macquarie Islands, and the Ross Dependency, Antarctica. 4th edition. Wellington, Te Papa Press and Ornithological Society of New Zealand. Pages 64, 78-79 & 82-83. Order PROCELLARIIFORMES: Albatrosses, Petrels, Prions and Shearwaters Checklist Committee (1990) recognised three families within the Procellariiformes, however, four families are recognised here, with the reinstatement of Pelecanoididae, following many other recent authorities (e.g. Marchant & Higgins 1990, del Hoyo et al. 1992, Viot et al. 1993, Warham 1996: 484, Nunn & Stanley 1998, Dickinson 2003, Brooke 2004, Onley & Scofield 2007). The relationships of the families within the Procellariiformes are debated (e.g. Sibley & Alquist 1990, Christidis & Boles 1994, Nunn & Stanley 1998, Livezey & Zusi 2001, Kennedy & Page 2002, Rheindt & Austin 2005), so a traditional arrangement (Jouanin & Mougin 1979, Marchant & Higgins 1990, Warham 1990, del Hoyo et al. 1992, Warham 1996: 505, Dickinson 2003, Brooke 2004) has been adopted. The taxonomic recommendations (based on molecular analysis) on the Procellariiformes of Penhallurick & Wink (2004) have been heavily criticised (Rheindt & Austin 2005) and have seldom been followed here. Family PROCELLARIIDAE Leach: Fulmars, Petrels, Prions and Shearwaters Procellariidae Leach, 1820: Eleventh room. In Synopsis Contents British Museum 17th Edition, London: 68 – Type genus Procellaria Linnaeus, 1758. Subfamilies Procellariinae and Fulmarinae and shearwater subgenera Ardenna, Thyellodroma and Puffinus (as recognised by Checklist Committee 1990) are not accepted here given the lack of agreement about to which subgenera some species should be assigned (e.g.
    [Show full text]
  • Petrelsrefs V1.1.Pdf
    Introduction I have endeavoured to keep typos, errors, omissions etc in this list to a minimum, however when you find more I would be grateful if you could mail the details during 2017 & 2018 to: [email protected]. Please note that this and other Reference Lists I have compiled are not exhaustive and are best employed in conjunction with other sources. Grateful thanks to Killian Mullarney and Tom Shevlin (www.irishbirds.ie) for the cover images. All images © the photographers. Joe Hobbs Index The general order of species follows the International Ornithologists' Union World Bird List (Gill, F. & Donsker, D. (eds.) 2017. IOC World Bird List. Available from: http://www.worldbirdnames.org/ [version 7.3 accessed August 2017]). Version Version 1.1 (August 2017). Cover Main image: Bulwer’s Petrel. At sea off Madeira, North Atlantic. 14th May 2012. Picture by Killian Mullarney. Vignette: Northern Fulmar. Great Saltee Island, Co. Wexford, Ireland. 5th May 2008. Picture by Tom Shevlin. Species Page No. Antarctic Petrel [Thalassoica antarctica] 12 Beck's Petrel [Pseudobulweria becki] 18 Blue Petrel [Halobaena caerulea] 15 Bulwer's Petrel [Bulweria bulweri] 24 Cape Petrel [Daption capense] 13 Fiji Petrel [Pseudobulweria macgillivrayi] 19 Fulmar [Fulmarus glacialis] 8 Giant Petrels [Macronectes giganteus & halli] 4 Grey Petrel [Procellaria cinerea] 19 Jouanin's Petrel [Bulweria fallax] 27 Kerguelen Petrel [Aphrodroma brevirostris] 16 Mascarene Petrel [Pseudobulweria aterrima] 17 Parkinson’s Petrel [Procellaria parkinsoni] 23 Southern Fulmar [Fulmarus glacialoides] 11 Spectacled Petrel [Procellaria conspicillata] 22 Snow Petrel [Pagodroma nivea] 14 Tahiti Petrel [Pseudobulweria rostrata] 18 Westland Petrel [Procellaria westlandica] 23 White-chinned Petrel [Procellaria aequinoctialis] 20 1 Relevant Publications Beaman, M.
    [Show full text]
  • Importance of Ice Algal Production for Top Predators: New Insights Using Sea-Ice Biomarkers
    Vol. 513: 269–275, 2014 MARINE ECOLOGY PROGRESS SERIES Published October 22 doi: 10.3354/meps10971 Mar Ecol Prog Ser FREEREE ACCESSCCESS Importance of ice algal production for top predators: new insights using sea-ice biomarkers A. Goutte1,2,*, J.-B. Charrassin1, Y. Cherel2, A. Carravieri2, S. De Grissac2, G. Massé1,3 1LOCEAN/IPSL — UMR 7159 Centre National de la Recherche Scientifique/Université Pierre et Marie Curie/ Institut de Recherche pour le Développement/Museum National d’Histoire Naturelle, 75005 Paris, France 2Centre d’Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, UPR 1934, 79360 Beauvoir sur Niort, France 3Centre National de la Recherche Scientifique and Université Laval, UMI 3376, Takuvik, Québec G1V 0A6, Canada ABSTRACT: Antarctic seals and seabirds are strongly dependent on sea-ice cover to complete their life history. In polar ecosystems, sea ice provides a habitat for ice-associated diatoms that en - sures a substantial production of organic matter. Recent studies have presented the potential of highly branched isoprenoids (HBIs) for tracing carbon flows from ice algae to higher-trophic-level organisms. However, to our knowledge, this new method has never been applied to sub-Antarctic species and Antarctic seals. Moreover, seasonal variations in HBI levels have never been investi- gated in Antarctic predators, despite a likely shift in food source from ice-derived to pelagic organic matter after sea-ice retreat. In the present study, we described HBI levels in a community of seabirds and seals breeding in Adélie Land, Antarctica. We then validated that sub-Antarctic seabirds had lower levels of diene, a HBI of sea-ice diatom origin, and higher levels of triene, a HBI of phytoplanktonic origin, compared with Antarctic seabirds.
    [Show full text]
  • The Incidence, Functions and Ecological Significance of Petrel Stomach Oils
    84 PROCEEDINGS OF THE NEW ZEALAND ECOLOGICAL SOCIETY, VOL. 24, 1977 THE INCIDENCE, FUNCTIONS AND ECOLOGICAL SIGNIFICANCE OF PETREL STOMACH OILS JOHN WARHAM Department of Zoology, University of Canterbury, Chrb;tchurch SUMMARY: Recent research into the origins and compositions of the stomach oils unique to sea~birds of the order Procellariifonnes is reviewed. The sources of these oils, most of which contain mainly wax esters and/or trigIycerides, is discussed in relation to the presence of such compounds in the marine environment. A number of functions are proposed as the ecological roles of the oils, including their use as slowIy~mobilisable energy and water reserves for adults and chicks and as defensive weaponry for surface-nesting species. Suggestions are made for further research, particularly into physiological and nutritional aspects. INTRODUCTION their table, a balm for their wounds, and a medicine Birds of the Order Procellariiforrnes (albatrosses, for their distempers." In New Zealand, Travers and fuJmars, shearwaters and other petrels) are peculiar Travers (1873) described how the Chatham Island in being able to store oil in their large, glandular and Morioris held young petrels over their mouths and very distensible fore-guts or proventriculi.. All petrel allowed the oil to drain directly into them. In some spedes so far examined, with the significant excep- years the St Kildans exported part of thei.r oil har~ tion of the diving petrels, Fam. Pelecanoididae, have vest, as the Australian mutton-birders stilI do with been found to contain oil at various times. The oi.1 oil from the chicks of P. tenuirostris. This has been occurs in both adults and chicks, in breeders and used as a basis for sun~tan lotions, but most nowa- non~breeders, and in birds taken at sea and on land.
    [Show full text]
  • Cape Petrel (Southern)
    RECOVERY OUTLINE Cape Petrel (southern) 1 Family Procellariidae 2 Scientific name Daption capense capense Linnaeus, 1758 3 Common name Cape Petrel (southern) 4 Conservation status Australian breeding population Vulnerable: D2 Population visiting Australian territory Least Concern 5 Reasons for listing The Australian population breeds at a single location (Vulnerable: D2). Globally the species is listed as Least Concern. Site fidelity is high, so it is assumed that the immigration rate is low. The national status of the breeding population is therefore determined independently of the global status (as per Gärdenfors et al., 1999). Australian breeding Estimate Reliability colonies Extent of occurrence 5,000,000 km2 low trend stable high 2 Area of occupancy 20 km medium 10 Threats trend stable low There are no imminent threats. At sea, some birds are No. of breeding birds 1,000 low likely to be caught on long-lines, but the subspecies is trend stable low usually displaced at feeding areas by larger scavengers, No. of sub-populations 1 high such as albatrosses and giant-petrels. The accidental Generation time 15 years low introduction of rats or cats is a potential threat. Global population share < 1 % high 11 Information required Level of genetic exchange low low None. 6 Infraspecific taxa D. c. australe (New Zealand region) is Least Concern. 12 Recovery objectives 12.1 Maintenance of the existing population. 7 Past range and abundance In Australian waters, breeding on Heard I. (Downes et 13 Actions completed or under way al., 1959, Woehler, 1991). Extralimitally, breeding on 13.1 Population is monitored opportunistically. islands throughout Southern Ocean.
    [Show full text]
  • Appendix D New Zealand Conservation Status And
    Appendix D New Zealand conservation status and International Union for Conservation of Nature (IUCN) ‘Red List’ threat classification of seabirds mentioned in the report and additionally in Paragraphs 12, 23 and 24 of my evidence. New Zealand conservation status is taken from Robertson et al. (2013), and ‘Red List’ classification from http://www.iucnredlist.org/, where further information regarding categories and criteria employed by the two systems can be found. Taxa marked * were referred to in general, non-specific terms in the report (for example, northern royal albatross here was referred to as ‘unidentified royal albatross’ in the report), but are included here as species for completeness. Taxa are listed in the order they appear in the report, then in the order they appear in Paragraphs 12, 23 and 24 of my evidence. Taxa NZ Conservation Status Red List classification Wandering albatross Migrant Vulnerable Northern royal albatross* At Risk – Naturally Uncommon Endangered Southern royal albatross* At Risk – Naturally Uncommon Vulnerable Antipodean albatross Threatened – Nationally Critical Vulnerable Gibson’s albatross Threatened – Nationally Critical Vulnerable Black-browed albatross Coloniser Near Threatened Campbell albatross At Risk - Naturally Uncommon Vulnerable Grey-headed albatross Threatened – Nationally Vulnerable Endangered Southern Buller’s albatross At Risk - Naturally Uncommon Near Threatened Salvin’s albatross Threatened – Nationally Critical Vulnerable Northern giant petrel* At Risk - Naturally Uncommon Least Concern
    [Show full text]
  • Procellariidae Species Tree
    Procellariidae I Snow Petrel, Pagodroma nivea Antarctic Petrel, Thalassoica antarctica Fulmarinae Cape Petrel, Daption capense Southern Giant-Petrel, Macronectes giganteus Northern Giant-Petrel, Macronectes halli Southern Fulmar, Fulmarus glacialoides Atlantic Fulmar, Fulmarus glacialis Pacific Fulmar, Fulmarus rodgersii Kerguelen Petrel, Aphrodroma brevirostris Peruvian Diving-Petrel, Pelecanoides garnotii Common Diving-Petrel, Pelecanoides urinatrix South Georgia Diving-Petrel, Pelecanoides georgicus Pelecanoidinae Magellanic Diving-Petrel, Pelecanoides magellani Blue Petrel, Halobaena caerulea Fairy Prion, Pachyptila turtur ?Fulmar Prion, Pachyptila crassirostris Broad-billed Prion, Pachyptila vittata Salvin’s Prion, Pachyptila salvini Antarctic Prion, Pachyptila desolata ?Slender-billed Prion, Pachyptila belcheri Bonin Petrel, Pterodroma hypoleuca ?Gould’s Petrel, Pterodroma leucoptera ?Collared Petrel, Pterodroma brevipes Cook’s Petrel, Pterodroma cookii ?Masatierra Petrel / De Filippi’s Petrel, Pterodroma defilippiana Stejneger’s Petrel, Pterodroma longirostris ?Pycroft’s Petrel, Pterodroma pycrofti Soft-plumaged Petrel, Pterodroma mollis Gray-faced Petrel, Pterodroma gouldi Magenta Petrel, Pterodroma magentae ?Phoenix Petrel, Pterodroma alba Atlantic Petrel, Pterodroma incerta Great-winged Petrel, Pterodroma macroptera Pterodrominae White-headed Petrel, Pterodroma lessonii Black-capped Petrel, Pterodroma hasitata Bermuda Petrel / Cahow, Pterodroma cahow Zino’s Petrel / Madeira Petrel, Pterodroma madeira Desertas Petrel, Pterodroma
    [Show full text]
  • Trophic Relationships Among Antarctic Fulmarine Petrels: Insights Into
    MARINE ECOLOGY PROGRESS SERIES Published June 5 Mar Ecol Prog Ser I Trophic relationships among Antarctic fulmarine petrels: insights into dietary overlap and chick provisioning strategies inferred from stable-isotope (615~and 613c)analyses Peter J. Hoduml1*,Keith A. ~obson~ 'Department of Avian Sciences, University of California, Davis, California 95616-8532, USA 'canadian Wildlife Service, 115 Perimeter Road, Saskatoon, Saskatchewan S7N 0x4, Canada ABSTRACT: We used stable-isotope analysis (SIA) to evaluate trophc relationships in an Antarctic seabird community. We deterrnined natural abundances of stable-nitrogen (St5N)and stable-carbon (613C)isotopes from blood samples (n = 283) from adults and chicks of 4 Antarctic fulrnarine petrel spe- cies (Fulmarus glaciaioides, Thalassoica antarctica, Daption capense and Pagodroma nivea) during 2 consecutive breeding seasons, 1994/1995 and 1995/1996, and from representative prey items. Our objectives were to use the isotope approach to infer trophic Status and diet composition within and between species, addressing interspecific and temporal variability within this seabird community, and to investigate potential age-related differences in assumed trophic position within species. Prey 613C values ranged from -26.8% in amphipods to -23.9% in adult Antarctic silverfish. Seabird St3C values ranged from -25.3 Yw in Antarctic petrel chicks to -23.8760 in Cape petrel adults. Prey 6I5N values ranged from 4.0Yw in euphausiids to 10.7Ywin adult Antarctic silverfish. Seabird 615N values ranged from 8.47~ in Antarctic petrel adults to 12.0%0in Snow petrel chicks. There was considerable interspecific overlap in assumed trophic positions amongst the 4 petrel species, and we conclude aii species consumed fish and krill.
    [Show full text]
  • Testing Olfactory Foraging Strategies in an Antarctic Seabird Assemblage
    The Journal of Experimental Biology 207, 3537-3544 3537 Published by The Company of Biologists 2004 doi:10.1242/jeb.01198 Testing olfactory foraging strategies in an Antarctic seabird assemblage Gabrielle Nevitt1,*, Keith Reid2 and Phil Trathan2 1Section of Neurobiology, Physiology and Behaviour, University of California, Davis, California 95616, USA and 2High Cross, British Antarctic Survey, Madingley Road, Cambridge CB3 OET, UK *Author for correspondence (e-mail: [email protected]) Accepted 19 July 2004 Summary Procellariiform seabirds (petrels, albatrosses and chinned petrels (Procellaria aequinoctialis) were sighted at shearwaters) forage over thousands of square kilometres least 1.8–4 times as often at pyrazine-scented slicks than for patchily distributed prey resources. While these birds at control slicks. Black-browed albatrosses (Diomedea are known for their large olfactory bulbs and excellent melanophris) were only sighted at pyrazine-scented slicks sense of smell, how they use odour cues to locate prey and never at control slicks. Wilson’s storm-petrels patches in the vast ocean is not well understood. Here, we (Oceanites oceanicus), black-bellied storm-petrels investigate species-specific responses to 3-methyl pyrazine (Fregetta tropica), great shearwaters (Puffinus gravis) and in a sub-Antarctic species assemblage near South Georgia prions (Pachyptila sp.) were sighted with equal frequency Island (54°00′ S, 36°00′ W). Pyrazines are scented at control and pyrazine-scented slicks. As expected, compounds found in macerated Antarctic krill (Euphausia responses to herring oil were more common. With the superba), a primary prey item for many seabird species in exception of great shearwaters (Puffinus gravis), each of this region.
    [Show full text]
  • SEABIRD BYCATCH IDENTIFICATION GUIDE UPDATED AUGUST 2015 2 How to Use This Guide
    SEABIRD BYCATCH IDENTIFICATION GUIDE UPDATED AUGUST 2015 2 How to use this guide 1. Identify the bird • Start by looking at its bill - size and position of nostrils as shown on pages 6-9 to decide if it’s an albatross, a petrel or another group. • If it’s an albatross, use the keys and photos on pages 10-13, to identify the bird to a particular species (or to the 2 or 3 species that it might be), and go to the page specified to confirm the identification. If it’s a petrel, use the key on pages 14-15 , then go to the page as directed. If it’s a shearwater, look at pages 66-77. 2. Record Record your identification in the logbook choosing one of the FAO codes, or a combination of codes from the list on pages 96-99. 3. Take photos Take three photos of the bird as shown on pages 78-81 and submit with the logbook. 4. Sample feathers If a sampling programme is in place, pluck some feathers for DNA analysis as shown on pages 82-83. SEABIRD BYCATCH IDENTIFICATION GUIDE 3 Contents How to use this guide 2 Measuring bill and wing length 4 Albatross, Petrel or other seabird? 6 Bill guide 8 Albatross key 10 Diomedea albatross key 12 Juvenile/Immature Thalassarche key 13 Petrel key 14 North Pacific Albatrosses 16 - 21 Waved Albatross 22 Phoebetria albatrosses (light-mantled and sooty) 24 - 27 Royal albatrosses 28 - 29 ‘Wandering-type’ albatrosses 30 - 37 Thalassarche albatrosses 38 - 51 Juvenile/Immature Thalassarche albatrosses 52 - 53 Giant petrels 54 - 55 Procellaria petrels 56 - 61 Other Petrels 62 - 65 Shearwaters 66 - 77 Data collection protocols - taking photos 78 Data collection protocols - examples of photos 80 Data collection protocols - feather samples for DNA analysis 82 Leg Bands 84 References 88 Your feedback 91 Hook Removal from Seabirds 92 Albatross species list 96 Petrel and Shearwater species list 98 4 Measuring Bill & Wing Length BILL LENGTH WING LENGTH 10 20 Ruler 30 (mm) 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 6 Albatross, Petrel, Shearwater Albatrosses Page 10 Separate nostrils.
    [Show full text]
  • Considering Nominations to Annex 1 of the Agreement – List of Candidate Species
    AC11 Inf 04 Agenda Item 10 & 14 Eleventh Meeting of the Advisory Committee Florianópolis, Brazil, 13 – 17 May 2019 Considering nominations to Annex 1 of the Agreement – list of candidate species Secretariat At AC3, 129 species of Procellariformes were assessed using a number of categories in order to provide Parties with an approximate priority list of new species that might be considered for nomination to Annex 1 of ACAP (AC3 Doc 18). Following discussions at AC8, six of the original eight categories were retained and the scoring system was adopted by the 5th session of the Meeting of Parties (MoP5 Doc 21). Subsequent to MoP5, the at-sea threats and migratory nature scores for all species were reviewed (SBWG7 Doc 25). The review recommended updates to those scores for 15 species, and noted the need for clarification regarding the categorization of at-sea threats, as well as the overlap between some of the categories. AC8 also asked the Taxonomy Working Group (TWG) to recommend a standard taxonomy to be used when considering new species for Annex 1 and for other ACAP purposes. At AC10, the TWG recommended the use of the International Ornithological Congress (IOC) listing based on its use of the widest evidence base and peer review process (AC10 Doc 22 Rev 1). AC10 endorsed this recommendation and advised MoP6 accordingly. The taxonomic treatment used currently for species already listed on Annex 1 remains unchanged (Thalassarche steadi remains on the list as a full species). Table 1 lists all procellariform species according to IOC World Bird List v9.1 taxonomy, together with the scores assigned to assess their suitability and priority for listing on Annex 1 of the Agreement.
    [Show full text]