SEABIRD BYCATCH IDENTIFICATION GUIDE UPDATED AUGUST 2015 2 How to Use This Guide

Total Page:16

File Type:pdf, Size:1020Kb

SEABIRD BYCATCH IDENTIFICATION GUIDE UPDATED AUGUST 2015 2 How to Use This Guide SEABIRD BYCATCH IDENTIFICATION GUIDE UPDATED AUGUST 2015 2 How to use this guide 1. Identify the bird • Start by looking at its bill - size and position of nostrils as shown on pages 6-9 to decide if it’s an albatross, a petrel or another group. • If it’s an albatross, use the keys and photos on pages 10-13, to identify the bird to a particular species (or to the 2 or 3 species that it might be), and go to the page specified to confirm the identification. If it’s a petrel, use the key on pages 14-15 , then go to the page as directed. If it’s a shearwater, look at pages 66-77. 2. Record Record your identification in the logbook choosing one of the FAO codes, or a combination of codes from the list on pages 96-99. 3. Take photos Take three photos of the bird as shown on pages 78-81 and submit with the logbook. 4. Sample feathers If a sampling programme is in place, pluck some feathers for DNA analysis as shown on pages 82-83. SEABIRD BYCATCH IDENTIFICATION GUIDE 3 Contents How to use this guide 2 Measuring bill and wing length 4 Albatross, Petrel or other seabird? 6 Bill guide 8 Albatross key 10 Diomedea albatross key 12 Juvenile/Immature Thalassarche key 13 Petrel key 14 North Pacific Albatrosses 16 - 21 Waved Albatross 22 Phoebetria albatrosses (light-mantled and sooty) 24 - 27 Royal albatrosses 28 - 29 ‘Wandering-type’ albatrosses 30 - 37 Thalassarche albatrosses 38 - 51 Juvenile/Immature Thalassarche albatrosses 52 - 53 Giant petrels 54 - 55 Procellaria petrels 56 - 61 Other Petrels 62 - 65 Shearwaters 66 - 77 Data collection protocols - taking photos 78 Data collection protocols - examples of photos 80 Data collection protocols - feather samples for DNA analysis 82 Leg Bands 84 References 88 Your feedback 91 Hook Removal from Seabirds 92 Albatross species list 96 Petrel and Shearwater species list 98 4 Measuring Bill & Wing Length BILL LENGTH WING LENGTH 10 20 Ruler 30 (mm) 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 6 Albatross, Petrel, Shearwater Albatrosses Page 10 Separate nostrils. Petrels Page 14 Fused nostrils on top of short, thick based bill. SEABIRD BYCATCH IDENTIFICATION GUIDE 7 Or Other Seabird? Shearwaters Page 66-70 Fused nostrils on top of long slender bill. Other seabirds (skuas, gulls, gannets) No separate or fused tubes, just nasal cavities instead. Capep etrel Wanderinga lbatross Wanderinga lbatross West landp etrel Royala lbatross White -chin nedp etrel 8 Bill guide Albatrosses From Australian Fisheries Management Authority. 2013. Seabird ID Guide for commercial fisheries in southern Australia, modified from Simpson & Day (1995) and Slater (1970). Black-browed Albatross h-foote ds hearwate r s Fles Grey-headeda lbatros ss Black-brow eda lbatro Cape petrel Wandering Albatross Great-wingedp etrel Wandering albatross Wandering albatross ss Yellow-n oseda lbatro Bul ler ’sa lbatross ate r Wedge-tail eds hearw Westland petrel GiantP etrel Shya lbatross Royal albatross te r Sho rt-taileds hearwa etrel GiantP etrel White-chinned petrel Wilson’s tormp Black-browed albatross GiantP etrel Grey-headed albatross Flesh-footed shearwater Buller’s albatross Great-winged petrel Yellow-nosed albatross Giant Petrel Wedge-tailed shearwater Shy albatross Short-tailed shearwater Giant Petrel Wilson’s storm petrel Giant Petrel Cape petrel Cape petrel Wandering albatross Wandering albatross Wandering albatross Wandering albatross Cape petrel Westland petrel Wandering albatross Wandering albatross Westland petrel Royal albatross Royal albatross Westland petrel White-chinned petrel Royal albatross White-chinned petrel r r e e r r r r r l l t t e e e e e r e e r a a t t t t l t r r e e a a a a l l e t t a w w t l l t r e e r r e e a w w e e a w w l t w l r r a a r r r r p p r r e r t t e w e l l t t w e e a a r a a a r e e r p e e r e e t l e e h h t m m e e e a r r p p a p p e s s r r e l l e t t h h h h e h m e r p d d o o s s e e e e p d d s s s r l Black-browed albatross d d t h t t h r r e e p p e e d o s e e e d d e t t d s s s d d d g g t t t n n r e e e e e p e d d e e e d t s s s n n d l l o o l l n n ’ ’ g t i i p p i i n n n e e d e o o s n n n l o a a a a l n f f ai ai ’ hi hi i w w p i e e n t t l l o o t t o - - - - c c n t t a - - p p a f ai - - hi s s w t t e Grey-headed albatross - - h h t t t l White-chinned petrel o t - l l a a - c e e t a a - p i i r r s s e e - s t es es - h t C C t t g g e e l a Flesh-footed shearwater o o e e e a i i i r s e Black-browed albatross W W l l r r es d d W W C t g e h h o e i F F e e G G W l r Sh Sh d W h W W F e G W W Sh W W Grey-headed albatross Flesh-footed shearwater SEABIRD BYCATCH IDENTIFICATION GUIDE 9 Petrels Black-browed albatross Buller’s albatross Grey-headed albatross Great-winged petrel Yellow-nosed albatross Buller’s albatross Flesh-footed shearwater Great-winged petrel Yellow-nosed albatross Cape Petrel Great-winged White-chinned Petrel Petrel Northern giant Petrel s s s s s s s s s s o o s o o r r s r r o t t o t t r a a r t a a t b b a b b l l a s s l l b a a b l s s a a s l a d d Giant Petrel o o s a Wedge-tailed shearwater Buller’s albatross d d r r e e d o t t e e d s s r e a a d d t e o o s b b a a a d n n l l o e e b a a a n l h h e Great-winged petrel w- w- y y - - a h y y h h w- lo lo y Yellow-nosed albatross - e e l l Shy albatross S S Giant Petrel y h Wedge-tailed shearwater r r lo e e e l S Y Y G G r e Y G Shy albatross Shearwaters Short-tailed shearwater Short-tailed shearwater Giant Petrel Giant Petrel Wedge-tailed shearwater Wedge-tailed Shearwater Short-tailed Shearwater Giant Petrel Shy albatross Wilson’s storm petrel Wilson’s storm petrel Short-tailed shearwater Giant Petrel Giant Petrel Giant Petrel Wilson’s storm petrel Giant Petrel s s s s s o o s r r o t t s s r a a s s t s b b o o a l l s r r b a a o t t l r a a a g g t b b a n n l l g i i s s b a a r r n s s l i s l l e e o o a r s a a r r d d l e o t t y y n n a r d a a o o t a a y n b b R R a o l l a W W b a a R l W a s s s s Wandering Wandering s o o s s s Wandering r r s s o t t l l l l l l s r o o a a e e e e e e s t l l l r r r r r r r r b b o t t a e e e l l t t t t t t r a a r r r b a a e e e e e e t l t t t b b a P P P P P P l l a e e e d d b t t t t t t a a e e P P P l d s s t t t a w w e ’ ’ an an an an an an i i i i i i r r s w ’ ro ro an an an G G G G G G i i i r le le b b l l ro G G G - - le b l k k - Bu Bu c c k a a Bu c l l a B B l B 10 Albatross key Observed North of the equator Yellow bill >130mm, green tip, white head with yellow/buff crown/nape Mostly black bill, dark head Pink or flesh coloured bill >154mm, dark cutting edge Pink or flesh coloured bill >135mm, with or without dark cutting edge, brown or white head Orange bill, red tip, white head Mostly black bill, yellow upper ridge only Mostly black bill, yellow upper and lower ridges Yellow or grey bill, white or grey head Other SEABIRD BYCATCH IDENTIFICATION GUIDE 11 Observed North Phoebastria of the equator North Pacific Albatrosses Pages 16-21 Yellow bill >130mm, green tip, white head with Waved Albatross Page 22 yellow/buff crown/nape Phoebetria Mostly black bill, dark head Sooty Albatrosses Pages 24-27 Pink or flesh coloured Diomedea bill >154mm, dark cutting edge Royal Albatrosses Page 28 Pink or flesh coloured bill >135mm, with or without dark cutting edge, Diomedea Key Page 12 brown or white head Orange bill, red tip, Thalassarche white head Black-browed Albatrosses Page 38 Mostly black bill, yellow upper ridge only Yellow-nosed Albatrosses Page 40 Mostly black bill, yellow Grey-headed Albatross Page 42 upper and lower ridges OR Buller’s Albatross Page 44 Yellow or grey bill, white or grey head Adult ‘Shy type’ Albatrosses Pages 46-51 Other Juvenile Thalassarche Key Pages 13, 52-53 12 Diomedea Albatross Key Bill >156 mm, dark cutting edge Southern or Northern Royal Albatross Page 28 Bill <154 mm, dark cutting edge Amsterdam Albatross Page 30 Bill ≥155 mm, no dark cutting edge Wandering Albatross Page 32 Bill ≤155 mm, no dark cutting edge Pacific Ocean Antipodean Albatross Page 34 Bill ≤150 mm, no dark cutting edge Atlantic or Indian Ocean Tristan Albatross Page 36 SEABIRD BYCATCH IDENTIFICATION GUIDE 13 Juvenile/Immature Thalassarche Key Modified from Kiyota M and Minami H.
Recommended publications
  • Campbell Island Seabirds: Operation Endurance November 2019
    Rexer-Huber et al. 2020 Campbell seabirds Campbell Island seabirds: Operation Endurance November 2019 Kalinka Rexer-Huber, Kevin A. Parker, Graham C. Parker April 2020 Department of Conservation, Marine Species and Threats project BCBC 2019-03: Campbell Island Seabird Research 1 Rexer-Huber et al. 2020 Campbell seabirds Campbell Island seabirds: Operation Endurance November 2019 Final report to Department of Conservation, Marine Species and Threats April 2020 Kalinka Rexer-Huber 1*, Kevin A. Parker 2 & Graham C. Parker 1 1 Parker Conservation, 126 Maryhill Terrace, Dunedin, New Zealand 2 Parker Conservation, PO Box 130, Warkworth 0941, New Zealand * Corresponding author: [email protected] Please cite as: Rexer-Huber K., Parker K.A., Parker G.C. 2020. Campbell Island seabirds: Operation Endurance November 2019. Final report to Marine Species and Threats, Department of Conservation. Parker Conservation, Dunedin. 23 p. 2 Rexer-Huber et al. 2020 Campbell seabirds Summary Seabird population monitoring and survey on Campbell Island was enabled via Operation Endurance in November 2019. Specific objectives were to collect photo-point and ground-truthing data at Campbell and grey-headed albatross colonies, repeat whole-island counts of breeding Northern giant petrels, collect GLS trackers from Southern royal albatrosses, use sound recorders to record burrowing petrel distribution and check the bands of all banded birds seen. Photo-points for Campbell albatross and grey-headed albatross (Thalassarche impavida and T. chrysostoma) were revisited to take a new set of photographs for population monitoring. These photo-points have been used for counts since 1987, but some colonies have been photographed since the 1940s.
    [Show full text]
  • Plumage Variation and Hybridization in Black-Footed and Laysan Albatrosses
    PlumaDevariation and hybridizationin Black-footedand LaysanAlbatrosses Tristan McKee P.O. Box631 Ferndale,California 95536 (eraall:bertmckee•yahoo.com) PeterPyle 4990Shoreline Highway SUnsonBeach, California 94970 (email:[email protected]) INTRODUCTION Black-footed(Phoebastria nigripes) and Laysan (P. immutabilis) Albatrosses nest sideby sidein denseisland colonies. Their breeding populations center in the northwesternHawaiian Islands, with smaller colonies scattered across the subtrop- icalNorth Pacific. Both species visit nutrient-rich waters off the west coast of North Americathroughout the year to forage. Black-footeds concentrate in coastal waters fromnorthern California tosouthern Alaska, while Laysans frequent more offshore andnortherly waters in thisregion. Bkders on pelagic trips off the West Coast often encountersignificant numbers of oneor bothof thesespecies, and searching for other,rarer albatrosses among them has proven to be a worthwhile pursuit in recen! years(Stallcup and Terrill 1996, Cole 2000). Albatrossesidentified as Black-looted x Laysan hybrids have been seen and studiedon MidwayAtoll and other northwestern Hawaiian Islands since the late 1800s(Rothschild 1900, Fisher 1948, 1972). In addition,considerable variation in appearanceis found within both species, indMduals with strikinglyaberrant plumageand soft part colors occasionally being encountered (Fisher 1972, Whittow 1993a).Midway Atoll hosts approximately two-thirds of the world'sbreeding A presumedhybrid Laysan x Black-lootedAlbatross tends a chickat Midway LaysanAlbatrosses
    [Show full text]
  • Conservation Problems on Tristan Da Cunha Byj
    28 Oryx Conservation Problems on Tristan da Cunha ByJ. H. Flint The author spent two years, 1963-65, as schoolmaster on Tristan da Cunha, during which he spent four weeks on Nightingale Island. On the main island he found that bird stocks were being depleted and the islanders taking too many eggs and young; on Nightingale, however, where there are over two million pairs of great shearwaters, the harvest of these birds could be greater. Inaccessible Island, which like Nightingale, is without cats, dogs or rats, should be declared a wildlife sanctuary. Tl^HEN the first permanent settlers came to Tristan da Cunha in " the early years of the nineteenth century they found an island rich in bird and sea mammal life. "The mountains are covered with Albatross Mellahs Petrels Seahens, etc.," wrote Jonathan Lambert in 1811, and Midshipman Greene, who stayed on the island in 1816, recorded in his diary "Sea Elephants herding together in immense numbers." Today the picture is greatly changed. A century and a half of human habitation has drastically reduced the larger, edible species, and the accidental introduction of rats from a shipwreck in 1882 accelerated the birds' decline on the main island. Wood-cutting, grazing by domestic stock and, more recently, fumes from the volcano have destroyed much of the natural vegetation near the settlement, and two bird subspecies, a bunting and a flightless moorhen, have become extinct on the main island. Curiously, one is liable to see more birds on the day of arrival than in several weeks ashore. When I first saw Tristan from the decks of M.V.
    [Show full text]
  • Puffinus Gravis (Great Shearwater)
    Maine 2015 Wildlife Action Plan Revision Report Date: January 13, 2016 Puffinus gravis (Great Shearwater) Priority 3 Species of Greatest Conservation Need (SGCN) Class: Aves (Birds) Order: Procellariiformes (Tubenoses) Family: Procellariidae (Fulmers, Petrels, And Shearwaters) General comments: Status seems secure though limited data Species Conservation Range Maps for Great Shearwater: Town Map: Puffinus gravis_Towns.pdf Subwatershed Map: Puffinus gravis_HUC12.pdf SGCN Priority Ranking - Designation Criteria: Risk of Extirpation: NA State Special Concern or NMFS Species of Concern: NA Recent Significant Declines: NA Regional Endemic: NA High Regional Conservation Priority: North American Waterbird Conservation Plan: High Concern United States Birds of Conservation Concern: Bird of Conservation Concern in Bird Conservation Regions 14 and/or 30: Yes High Climate Change Vulnerability: NA Understudied rare taxa: NA Historical: NA Culturally Significant: NA Habitats Assigned to Great Shearwater: Formation Name Cliff & Rock Macrogroup Name Rocky Coast Formation Name Subtidal Macrogroup Name Subtidal Pelagic (Water Column) Habitat System Name: Offshore **Primary Habitat** Stressors Assigned to Great Shearwater: No Stressors Currently Assigned to Great Shearwater or other Priority 3 SGCN. Species Level Conservation Actions Assigned to Great Shearwater: No Species Specific Conservation Actions Currently Assigned to Great Shearwater or other Priority 3 SGCN. Guild Level Conservation Actions: This Species is currently not attributed to a guild.
    [Show full text]
  • Proposal for Inclusion of the Antipodean Albatross in Appendix I
    CONVENTION ON UNEP/CMS/COP13/Doc. 27.1.7 MIGRATORY 25 September 2019 Original: English SPECIES 13th MEETING OF THE CONFERENCE OF THE PARTIES Gandhinagar, India, 17 - 22 February 2020 Agenda Item 27.1 PROPOSAL FOR THE INCLUSION OF THE ANTIPODEAN ALBATROSS (Diomedea antipodensis) ON APPENDIX I OF THE CONVENTION Summary: The Governments of New Zealand, Australia and Chile have submitted the attached proposal for the inclusion of the Antipodean albatross (Diomedea antipodensis) on Appendix I of CMS. The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CMS Secretariat (or the United Nations Environment Programme) concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. UNEP/CMS/COP13/Doc. 27.1.7 PROPOSAL FOR INCLUSION OF THE ANTIPODEAN ALBATROSS (Diomedea antipodensis) ON APPENDIX I OF THE CONVENTION A. PROPOSAL Inclusion of Diomedea antipodensis on the Convention on the Conservation of Migratory Species of Wild Animals (CMS) Appendix I. The current CMS Appendix II listing will remain in place. Diomedea antipodensis is classified as Endangered (IUCN) as it is undergoing a very rapid decline in population size. B. PROPONENT: Governments of New Zealand, Australia and Chile. C. SUPPORTING STATEMENT 1. Taxonomy 1.1 Class: Aves 1.2 Order: Procellariiformes 1.3 Family: Diomedeidae (albatrosses) 1.4 Genus, species or subspecies, including author and year: Diomedea antipodensis (Robertson & Warham 1992), including two subspecies: Diomedea antipodensis antipodensis and Diomedea antipodensis gibsoni 1.5 Scientific synonyms: Diomedea exulans antipodensis Diomedea antipodensis was formerly included in the wandering albatross complex (Diomedea exulans) (e.g.
    [Show full text]
  • University of Cape Town
    The effects of introduced mice on seabirds breeding at sub-Antarctic Islands Ben J. Dilley Thesis presented for the degree of Doctor of Philosophy Town FitzPatrick Institute of African Ornithology DST/NRF Centre of Excellence Department of Biological Sciences, Faculty of Science University of CapeCape Town of June 2018 University Supervised by Professor Peter G. Ryan The copyright of this thesis vests in the author. No quotation from it or information derivedTown from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes Capeonly. of Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Declaration This thesis reports original research that I conducted under the auspices of the FitzPatrick Institute, University of Cape Town. All assistance received has been fully acknowledged. This work has not been submitted in any form for a degree at another university. ………………….................. Ben J. Dilley Cape Town, June 2018 i A 10 day-old great shearwater Ardenna gravis chick being attacked by an invasive House mouse Mus musculus in an underground burrow on Gough Island in 2014 (photo Ben Dilley). ii Table of Contents Page Abstract ....................................................................................................................................... iv Acknowledgements .......................................................................................................................... vi Chapter 1 General introduction: Islands, mice and seabirds ......................................................... 1 Chapter 2 Clustered or dispersed: testing the effect of sampling strategy to census burrow-nesting petrels with varied distributions at sub-Antarctic Marion Island ...... 13 Chapter 3 Modest increases in densities of burrow-nesting petrels following the removal of cats Felis catus from sub-Antarctic Marion Island ...................................
    [Show full text]
  • Bear River Refuge
    Bear River Refuge MIGRATION MATTERS Summary Student participants increase their understanding of migration and migratory birds by playing Migration Matters. This game demonstrates the main needs Grade Level: (habitat, food/water, etc.) for migratory birds, and several of the pitfalls and 1 - 6 dangers of NOT having any of those needs readily available along the migratory flyway. Setting: Outside – pref. on grass, or large indoor Objectives - “Students will…” space with room to run. ● understand the concept of Migration / Migratory birds and be able to name at least two migratory species Time Involved: 20 – 30 min. ● indentify three reasons/barriers that explain why “Migration activity, 5 – 10 min. setup isn’t easy” (example: loss of food, habitat) Key Vocabulary: Bird ● describe how invasive species impact migratory birds Migration, Flyways, Wetland, Habitat, Invasive species Materials ● colored pipe-cleaners in rings to represent “food” Utah Grade Connections 5-6 laminated representations of wetland habitats 35 Bird Name tags (1 bird per student; 5 spp / 7 ea) 2 long ropes to delineate start/end of migration Science Core Background Social Studies Providing food, water, and habitat for migratory birds is a major portion of the US FWS & Bear River MBR’s mission. Migratory birds are historically the reason the refuge exists, and teaching the students about the many species of migratory birds that either nest or stop-off at the refuge is an important goal. The refuge hosts over 200 migratory species including large numbers of Wilson’s phalaropes, Tundra swans and most waterfowl, and also has upwards of 70 species nesting on refuge land such as White-faced ibis, American Avocet and Grasshopper sparrows.
    [Show full text]
  • Psittacine Beak and Feather Disease (Or Psittacine Circovirus, PCV)
    Psittacine beak and feather disease (or psittacine circovirus, PCV) Published by The recent diagnosis of psittacine beak and feather disease in wild Biosecurity Unit parrots is a cause of concern to the Department of Conservation. It Department of Conservation was diagnosed in a wild eastern rosella in the Wellington region in PO Box 12–416 Wellington, New Zealand August 2003. This disease is caused by a highly infectious virus and April 2004 affects the skin, feathers and immune system of parrots. There is po- tential for the disease to be transmitted to other wild parrots, in par- ticular New Zealand’s native species, such as the endangered kakapo and kaka. The potential impact of this disease on these spe- cies is unknown as it has affected parrot species in other countries in unpredictable patterns. However, the disease, also known as psit- tacine circovirus (PCV), could decimate the already depleted populations of our treasured native parrots and it therefore repre- sents a significant threat to biodiversity. What is psittacine beak and What happens if birds are feather disease? infected with this disease? Psittacine beak and feather disease Three forms of the disease exist: per- (also known as psittacine circovirus, acute (very sudden onset), acute (sud- PCV) is a highly infectious viral dis- den onset) and chronic (long term). ease of parrots that can cause high ju- The peracute form affects neonatal venile mortality, or long-term immu- (baby) parrots and causes septicae- Parrot infected with psittacine nological suppression, feather abnor- mia, pneumonia, enteritis (inflam- beak and feather disease. Photograph: Mary Wagner malities and (in cockatoos) beak rot.
    [Show full text]
  • Beak and Feather Disease Viru
    Fact sheet Beak and feather disease virus (BFDV) is the causative agent of psittacine beak and feather disease (PBFD), an endemic disease in Australia’s wild parrot populations. Descriptions of parrots with feather loss consistent with the disease date back to the late 1800s (Ashby 1907). The virus is believed to have originated in Australia sometime following the separation of the continent from Gondwanaland, with spread to other parts of the world with modern movement of parrots as pet and aviary species . It has the potential to impact on several endangered Australian and non-Australian parrot populations and is listed as a key threatening process by the Australian government. Of late, the virus also has been identified in various non-psittacine species . Beak and feather disease virus is a 14 to 16 nm non-enveloped icosahedral DNA virus belonging to the family Circoviridae. Formerly, it was believed that the circoviruses recovered from a diverse range of psittacines were all antigenically similar. Doubt was cast on this theory when a virus that appeared to be serologically and genetically different was isolated from cockatiels (Nymphicus hollandicus) (Shearer et al. 2008). More recent research appears to indicate that psittacine circoviruses can be divided into two species and multiple viral strains. Based on work by Varsani et al. (2011), BFDV contains 14 strains, while budgerigar circovirus (BCV), a newly defined species to date only found in budgerigars (Melopsittacus undulates), contains three strains. However, it is likely that this number will continue to increase as shown by the discovery of two new distinct BFDV lineages in orange-bellied parrots (Neophema chrysogaster) (Peters et al.
    [Show full text]
  • The Cuckoo Sheds New Light on the Scientific Mystery of Bird Migration 20 November 2015
    The cuckoo sheds new light on the scientific mystery of bird migration 20 November 2015 Evolution and Climate at the University of Copenhagen led the study with the use of miniature satellite tracking technology. In an experiment, 11 adult cuckoos were relocated from Denmark to Spain just before their winter migration to Africa was about to begin. When the birds were released more than 1,000 km away from their well-known migration route, they navigated towards the different stopover areas used along their normal route. "The release site was completely unknown to the cuckoos, yet they had no trouble finding their way back to their normal migratory route. Interestingly though, they aimed for different targets on the route, which we do not consider random. This individual and flexible choice in navigation indicates an ability to assess advantages and disadvantages of different routes, probably based on their health, age, experience or even personality traits. They evaluate their own condition and adjust their reaction to it, displaying a complicated behavior which we were able to document for the first time in migratory birds", says postdoc Mikkel Willemoes from the Center for Macroecology, Evolution and Climate at the University of Copenhagen. Previously, in 2014, the Center also led a study mapping the complete cuckoo migration route from Satellite technology has made it possible for the first Denmark to Africa. Here they discovered that time to track the complete migration of a relocated during autumn the birds make stopovers in different species and reveal individual responses. Credit: Mikkel areas across Europe and Africa.
    [Show full text]
  • Tube-Nosed Seabirds) Unique Characteristics
    PELAGIC SEABIRDS OF THE CALIFORNIA CURRENT SYSTEM & CORDELL BANK NATIONAL MARINE SANCTUARY Written by Carol A. Keiper August, 2008 Cordell Bank National Marine Sanctuary protects an area of 529 square miles in one of the most productive offshore regions in North America. The sanctuary is located approximately 43 nautical miles northwest of the Golden Gate Bridge, and San Francisco California. The prominent feature of the Sanctuary is a submerged granite bank 4.5 miles wide and 9.5 miles long, which lay submerged 115 feet below the ocean’s surface. This unique undersea topography, in combination with the nutrient-rich ocean conditions created by the physical process of upwelling, produces a lush feeding ground. for countless invertebrates, fishes (over 180 species), marine mammals (over 25 species), and seabirds (over 60 species). The undersea oasis of the Cordell Bank and surrounding waters teems with life and provides food for hundreds of thousands of seabirds that travel from the Farallon Islands and the Point Reyes peninsula or have migrated thousands of miles from Alaska, Hawaii, Australia, New Zealand, and South America. Cordell Bank is also known as the albatross capital of the Northern Hemisphere because numerous species visit these waters. The US National Marine Sanctuaries are administered and managed by the National Oceanic and Atmospheric Administration (NOAA) who work with the public and other partners to balance human use and enjoyment with long-term conservation. There are four major orders of seabirds: 1) Sphenisciformes – penguins 2) *Procellariformes – albatross, fulmars, shearwaters, petrels 3) Pelecaniformes – pelicans, boobies, cormorants, frigate birds 4) *Charadriiformes - Gulls, Terns, & Alcids *Orders presented in this seminar In general, seabirds have life histories characterized by low productivity, delayed maturity, and relatively high adult survival.
    [Show full text]
  • Iucn Red Data List Information on Species Listed On, and Covered by Cms Appendices
    UNEP/CMS/ScC-SC4/Doc.8/Rev.1/Annex 1 ANNEX 1 IUCN RED DATA LIST INFORMATION ON SPECIES LISTED ON, AND COVERED BY CMS APPENDICES Content General Information ................................................................................................................................................................................................................................ 2 Species in Appendix I ............................................................................................................................................................................................................................... 3 Mammalia ............................................................................................................................................................................................................................................ 4 Aves ...................................................................................................................................................................................................................................................... 7 Reptilia ............................................................................................................................................................................................................................................... 12 Pisces .................................................................................................................................................................................................................................................
    [Show full text]