Plumage Variation and Hybridization in Black-Footed and Laysan Albatrosses

Total Page:16

File Type:pdf, Size:1020Kb

Plumage Variation and Hybridization in Black-Footed and Laysan Albatrosses PlumaDevariation and hybridizationin Black-footedand LaysanAlbatrosses Tristan McKee P.O. Box631 Ferndale,California 95536 (eraall:bertmckee•yahoo.com) PeterPyle 4990Shoreline Highway SUnsonBeach, California 94970 (email:[email protected]) INTRODUCTION Black-footed(Phoebastria nigripes) and Laysan (P. immutabilis) Albatrosses nest sideby sidein denseisland colonies. Their breeding populations center in the northwesternHawaiian Islands, with smaller colonies scattered across the subtrop- icalNorth Pacific. Both species visit nutrient-rich waters off the west coast of North Americathroughout the year to forage. Black-footeds concentrate in coastal waters fromnorthern California tosouthern Alaska, while Laysans frequent more offshore andnortherly waters in thisregion. Bkders on pelagic trips off the West Coast often encountersignificant numbers of oneor bothof thesespecies, and searching for other,rarer albatrosses among them has proven to be a worthwhile pursuit in recen! years(Stallcup and Terrill 1996, Cole 2000). Albatrossesidentified as Black-looted x Laysan hybrids have been seen and studiedon MidwayAtoll and other northwestern Hawaiian Islands since the late 1800s(Rothschild 1900, Fisher 1948, 1972). In addition,considerable variation in appearanceis found within both species, indMduals with strikinglyaberrant plumageand soft part colors occasionally being encountered (Fisher 1972, Whittow 1993a).Midway Atoll hosts approximately two-thirds of the world'sbreeding A presumedhybrid Laysan x Black-lootedAlbatross tends a chickat Midway LaysanAlbatrosses (Fig. 1) andone-third of theworld's breeding Black-footed Atoll, 14 February2000. Photographby PeterPyle. Albatrosses.These populations have provided us with many opportunities tostudy andphotograph presumed hybrids and unusual individuals. In this paper, we dis- BLACK-FOOTEDALBATROSS cussvariation in theplumages of bothspedes and the appearances of aberrant Worldwide,the Black-looted Albatross isthe less common of thetwo species, with indMdualsand probable hybrids, as well as the potential pitfalls to identificationpopulation estimates ranging from 200,000 to 300,000 individuals (Whittow 1993a, thatsuch birds may pose. Our observations arebased on a collective21months on Cousins& Cooper 2000). Adults arrive at colonies in lateOc!ober, fledging takes Midwayfrom 1997 to 2000,in additionto the study of thousandsof Black-footed place in late June and July, and adults have an incomplete tocomplete molt during andhundreds of LaysanAlbatrosses at sea off California. April(non-breeding individuals) or July (breeders) through October. This species islargely dark brown at all ages, with white shafts to the outer primaries. Juveniles havewhitish bases to the feathers encircling the bill and to those feathers in a cres- centimmediately under the eye. The resulting pale areas are obscured at fledging, resultingin wholly dark plumage (Fig. 2) butquickly become visible with wear. Fledglingsusually show well-developed white areas on the face by the time they reachNorth America in latesummer. We have seen one or twobreeding adults that lackedthe eye crescent and showed limited white around the bill, but these features areobvious on the vast majority of individualsafter fledging. Feather edges on the headbecome very frayed and bleached on birds of alllater ages in the summer, and thewhite area can encompass most of thehead on some birds in thisstate (Fig. 3). Adultswith heavily bleached heads from April to August likely represent breeding individualsthat have spent significant time at subtropical latitudes, whereas those showingless bleaching probably are prebreeders (ages 2-10 or moreyears) or birds thatskipped breeding that year and remained attemperate or subarcticlatitudes, thusbeing exposed toless intense sunlight. Feather edges throughout the neck and underpartsalso become bleached and frayed, and on manybirds the edges contrast distinctlywith dark feather bases and create a scalloped look of tanon brown (see Miller 1940). Figure1. MidwayAtoll hosts significant portions of thebreeding populations of Whiteleathering develops on therump, uppertail coverts, lower belly, vent, and bothBlack-looted and Laysan Albatrosses. Presumed hybrids and aberrant indi- undertailcoverts, and its extent has been linked to age and sex (Streets 1877, Bourne vidualsare found regularly in thesedense colonies. Photograph byPeter Pyle. 1982,Pyle unpubl. data), old males being whitest. Birds showing areas of white VOLUME 56 (2002), NUM.ER 2 131 Figure2. JuvenileBlack-tooted Albatross near fledging. Pale areas are Figure3. Anexceptionally worn and bleached adult Black-tooted Albatross. alreadydeveloping on the face,before all the downis lost.Midway Atoll, Thebill is nearthe paleextreme for the species.Photographed in Monterey June1999. Photographby PeterPyle. Bay,off SantaCruz, California, 15 October2000. Photograph by Michael Donahue. Figure4. A strikingleucistic Black-tooted Albatross in MontereyBay, California,18 September1988. The bill shape eliminates Southern Giant- Petreland Laysan Albatross; the birdalso shows a shadowof the Black-toot- ed'sfacial pattern. Photograph by SergeLaFrance. Figure5. A leucisticBlack-tooted Albatross on Tern Island, Hawaii, January Figure6. Leucismoften appears in patches,as in thisBlack-tooted with 1993. Bocumenteddetails of the wingand tail patternindicate that this is whiteouter primaries and a whitestrip across the belly;note also the pale the sameindividual as presentedin Figure4, photographedseveral years splotchingon lhe feet. The facial pattern is typicalof adults.Midway Atoll, earlier.Photographs from U.S. Fishand Wildlife Service files. 23 June2000. Photograph by PeterPyle. 132 NORTH AMERICAN BIRDS Black-lootedand LaysanAlbatrosses elsewhereonthe body due to leucism are very rare but have been photographed in severallocations (e.•, Figs.4, 5, and6). In extremecases, such as the mostly white birdin Figures4 and 5, this can create an appearance reminiscent of a light-morph SouthernGiant-Petrel (MacroheRes giganteus). The distinctivebill structureof MacroheReswith external nasal tubes atop the culmen, consistently distinguishes thisgenus from all albatrosses (Harrison 1983). Roberson (1980) mentioned white in therectrices and light dusky-yellow feet on some birds. We have seen pale col- orationin theseareas only on obviouslyleudstic Black-footeds, soit doesnot appearto be age-related.Similarly, pale underwings apply only to presumed hybridsand leucistic birds in ourexperience. Such birds were noted by Stallcup (1976),who felt that it wasage-related, and by Roberson (1980), who considered it a featureof aberrantbirds or hybrids.The appearance of indistinct pale areas can alsobe created by the exposure of featherbases of birds in heavymolt in earlysum- meen TheBlack-footed's billis blackish, usually with a pinkishtinge of varyinginten- sityat the base. This color is well developed in some individuals of both sexes, mak- ingthe bill appear fairly bright pink with a blackishor darkgray nail (Fig. 3), espe- Figure7. JuvenileLaysan Albatross, showing white auriculars; adult bill color ciallyin brightsunlight. Pink-billed birds may cause confusion with juvenile Short- beginsto developnear fledging. Midway Atoll, June 1999. Photograph by tailedAlbatross (P.. albatrus), which has a considerablylarger bill. The bill of Short- PeterPyle. tailedis dark at fledging (H. Hasegawa, pers. comm. to Pyle), but eventually it devel- opsa brightpink base and pale blue tip. The timing of thischange is unknown. Largelydark, pink-billed birds photographed off Californiain Octoberto Decemberhave been regarded asjuveniles (e.g., Stallcup and Terrill 1996, N.A.B. 52: 203),but these birds show worn, retained feathers, suggesting that the second pre- basicmolt has taken place. Pink-billed birds photographed in Oregon in March (N..A.B.55: 506) and California in lanuary(McKee and Erickson, in press) may in factbe juveniles, but ageing criteria in thisspedes are still undeaen Short-tailedAlbatrosses slowly acquire an extensively white adult plumage (cf. Roberson1980, Erickson and Hamilton 2001). Pale areas on the upperwing coverts canbe among the first signs of this transition in Short-tailed,but it shouldbe noted that the innermostgreater coverts, tertials, and humeralson Black-looted Albatrosseshave paler inner webs. When worn, this patch of featherscan contrast withthe remainder of theupperwing, creating an appearancesimilar to Short- tailed.Leg and foot color of Black-lootedusually isblackish or darkgray. We have foundseveral individuals with irregular pale splotching on thelegs and feet (e.g., Fig6; thesebirds often show ieucistic plumage as well), but in no casewas this extensiveenough to resemble the entirely pink feet of juvenile Short-taileds. LAYSANALBATROSS Figure8 A Laysanwith rather pale underwings, showing narrow black margins.Midway Atoll, May 1999. Photographby Tristar/McKee. Althoughabout ten times more numerous than the Black-looted Albatross, with a worldpopulation estimated at 2.5 millionbirds (Whittow 1993b), the Laysan Albatrossisnot encountered asfrequently dose to theNorth American continent. Laysansalso arrive at breeding colonies inNovember, fledge young in Julyand early August,and have an annual incomplete tocomplete molt from April to October. Thisspecies was named immutabilis, meaning unchangeable, because of itslack of obviouslydifferent innnature and adult plumages (Jobling 1991). While it is true thatage-related variation is subtle,this species nonetheless shows a considerable
Recommended publications
  • Behavior and Attendance Patterns of the Fork-Tailed Storm-Petrel
    BEHAVIOR AND ATTENDANCE PATTERNS OF THE FORK-TAILED STORM-PETREL THEODORE R. SIMONS Wildlife Science Group, Collegeof Forest Resources, University of Washington, Seattle, Washington 98195 USA ABSTRACT.--Behavior and attendance patterns of breeding Fork-tailed Storm-Petrels (Ocea- nodromafurcata) were monitored over two nesting seasonson the Barren Islands, Alaska. The asynchrony of egg laying and hatching shown by these birds apparently reflects the influence of severalfactors, including snow conditionson the breedinggrounds, egg neglectduring incubation, and food availability. Communication between breeding birds was characterized by auditory and tactile signals.Two distinct vocalizationswere identified, one of which appearsto be a sex-specific call given by males during pair formation. Generally, both adults were present in the burrow on the night of egg laying, and the male took the first incubation shift. Incubation shiftsranged from 1 to 5 days, with 2- and 3-day shifts being the most common. Growth parameters of the chicks, reproductive success, and breeding chronology varied considerably between years; this pre- sumably relates to a difference in conditions affecting the availability of food. Adults apparently responded to changes in food availability during incubation by altering their attendance patterns. When conditionswere good, incubation shifts were shorter, egg neglectwas reduced, and chicks were brooded longer and were fed more frequently. Adults assistedthe chick in emerging from the shell. Chicks became active late in the nestling stage and began to venture from the burrow severaldays prior to fledging. Adults continuedto visit the chick during that time but may have reducedthe amountof fooddelivered. Chicks exhibiteda distinctprefledging weight loss.Received 18 September1979, accepted26 July 1980.
    [Show full text]
  • The Taxonomy of the Procellariiformes Has Been Proposed from Various Approaches
    山 階 鳥 研 報(J. Yamashina Inst. Ornithol.),22:114-23,1990 Genetic Divergence and Relationships in Fifteen Species of Procellariiformes Nagahisa Kuroda*, Ryozo Kakizawa* and Masayoshi Watada** Abstract The genetic analysis of 23 protein loci in 15 species of Procellariiformes was made The genetic distancesbetween the specieswas calculatedand a dendrogram was formulated of the group. The separation of Hydrobatidae from all other taxa including Diomedeidae agrees with other precedent works. The resultsof the present study support the basic Procellariidclassification system. However, two points stillneed further study. The firstpoint is that Fulmarus diverged earlier from the Procellariidsthan did the Diomedeidae. The second point is the position of Puffinuspacificus which appears more closely related to the Pterodroma petrels than to other Puffinus species. These points are discussed. Introduction The taxonomy of the Procellariiformes has been proposed from various approaches. The earliest study by Forbes (1882) was made by appendicular myology. Godman (1906) and Loomis (1918) studied this group from a morphological point of view. The taxonomy of the Procellariiformes by functional osteology and appendicular myology was studied by Kuroda (1954, 1983) and Klemm (1969), The results of the various studies agreed in proposing four families of Procellariiformes: Diomedeidae, Procellariidae, Hydrobatidae, and Pelecanoididae. They also pointed out that the Procellariidae was a heterogenous group among them. Timmermann (1958) found the parallel evolution of mallophaga and their hosts in Procellariiformes. Recently, electrophoretical studies have been made on the Procellariiformes. Harper (1978) found different patterns of the electromorph among the families. Bar- rowclough et al. (1981) studied genetic differentiation among 12 species of Procellari- iformes at 16 loci, and discussed the genetic distances among the taxa but with no consideration of their phylogenetic relationships.
    [Show full text]
  • Tube-Nosed Seabirds) Unique Characteristics
    PELAGIC SEABIRDS OF THE CALIFORNIA CURRENT SYSTEM & CORDELL BANK NATIONAL MARINE SANCTUARY Written by Carol A. Keiper August, 2008 Cordell Bank National Marine Sanctuary protects an area of 529 square miles in one of the most productive offshore regions in North America. The sanctuary is located approximately 43 nautical miles northwest of the Golden Gate Bridge, and San Francisco California. The prominent feature of the Sanctuary is a submerged granite bank 4.5 miles wide and 9.5 miles long, which lay submerged 115 feet below the ocean’s surface. This unique undersea topography, in combination with the nutrient-rich ocean conditions created by the physical process of upwelling, produces a lush feeding ground. for countless invertebrates, fishes (over 180 species), marine mammals (over 25 species), and seabirds (over 60 species). The undersea oasis of the Cordell Bank and surrounding waters teems with life and provides food for hundreds of thousands of seabirds that travel from the Farallon Islands and the Point Reyes peninsula or have migrated thousands of miles from Alaska, Hawaii, Australia, New Zealand, and South America. Cordell Bank is also known as the albatross capital of the Northern Hemisphere because numerous species visit these waters. The US National Marine Sanctuaries are administered and managed by the National Oceanic and Atmospheric Administration (NOAA) who work with the public and other partners to balance human use and enjoyment with long-term conservation. There are four major orders of seabirds: 1) Sphenisciformes – penguins 2) *Procellariformes – albatross, fulmars, shearwaters, petrels 3) Pelecaniformes – pelicans, boobies, cormorants, frigate birds 4) *Charadriiformes - Gulls, Terns, & Alcids *Orders presented in this seminar In general, seabirds have life histories characterized by low productivity, delayed maturity, and relatively high adult survival.
    [Show full text]
  • Tinamiformes – Falconiformes
    LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma
    [Show full text]
  • LAYSAN ALBATROSS Phoebastria Immutabilis
    Alaska Seabird Information Series LAYSAN ALBATROSS Phoebastria immutabilis Conservation Status ALASKA: High N. AMERICAN: High Concern GLOBAL: Vulnerable Breed Eggs Incubation Fledge Nest Feeding Behavior Diet Nov-July 1 ~ 65 d 165 d ground scrape surface dip fish, squid, fish eggs and waste Life History and Distribution Laysan Albatrosses (Phoebastria immutabilis) breed primarily in the Hawaiian Islands, but they inhabit Alaskan waters during the summer months to feed. They are the 6 most abundant of the three albatross species that visit 200 en Alaska. l The albatross has been described as the “true nomad ff Pok e of the oceans.” Once fledged, it remains at sea for three to J ht ig five years before returning to the island where it was born. r When birds are eight or nine years old they begin to breed. y The breeding season is November to July and the rest of Cop the year, the birds remain at sea. Strong, effortless flight is commonly seen in the southern Bering Sea, Aleutian the key to being able to spend so much time in the air. The Islands, and the northwestern Gulf of Alaska. albatross takes advantage of air currents just above the Nonbreeders may remain in Alaska throughout the year ocean's waves to soar in perpetual fluid motion. It may not and breeding birds are known to travel from Hawaii to flap its wings for hours, or even for days. The aerial Alaska in search of food for their young. Albatrosses master never touches land outside the breeding season, but have the ability to concentrate the food they catch and it does rest on the water to feed and sleep.
    [Show full text]
  • Albatross Or Mōlī (Phoebastria Immutabilis) Black-Footed Albatross Or Ka’Upu (Phoebastria Nigripes) Short-Tailed Albatross (Phoebastria Albatrus)
    Hawaiian Bird Conservation Action Plan Focal Species: Laysan Albatross or Mōlī (Phoebastria immutabilis) Black-footed Albatross or Ka’upu (Phoebastria nigripes) Short-tailed Albatross (Phoebastria albatrus) Synopsis: These three North Pacific albatrosses are demographically similar, share vast oceanic ranges, and face similar threats. Laysan and Black-footed Albatrosses nest primarily in the Northwestern Hawaiian Islands, while the Short-tailed Albatross nests mainly on islands near Japan but forages extensively in U.S. waters. The Short-tailed Albatross was once thought to be extinct but its population has been growing steadily since it was rediscovered in 1951 and now numbers over 3,000 birds. The Laysan is the most numerous albatross species in the world with a population over 1.5 million, but its trend has been hard to determine because of fluctuations in number of breeding pairs. The Black-footed Albatross is one-tenth as numerous as the Laysan and its trend also has been difficult to determine. Fisheries bycatch caused unsustainable mortality of adults in all three species but has been greatly reduced in the past 10-20 years. Climate change and sea level rise are perhaps the greatest long-term threat to Laysan and Black-footed Albatrosses because their largest colonies are on low-lying atolls. Protecting and creating colonies on higher islands and managing non-native predators and human conflicts may become keys to their survival. Laysan, Black-footed, and Short-tailed Albatrosses (left to right), Midway. Photos Eric VanderWerf Status
    [Show full text]
  • BLACK-BROWED ALBATROSS THALASSARCHE Melanophrys FEEDING on a WILSON’S STORM-PETREL OCEANITES OCEANICUS
    Seco Pon & Gandini: Wilson’s Storm-Petrel consumed by albatross 77 BLACK-BROWED ALBATROSS THALASSARCHE melanophrys FEEDING ON A WILSON’S STORM-PETREL OCEANITES OCEANICUS JUAN P. SECO PON1,2 & PATRICIA A. GANDINI1,3 1Centro de Investigaciones de Puerto Deseado, Universidad Nacional de la Patagonia Austral–Unidad Académica Caleta Olivia, cc 238 Av. Prefectura, s/n (9050), Puerto Deseado Santa Cruz, Argentina ([email protected]) 2Current address: Av. Colón 1908 8o L, Mar del Plata (7600), Buenos Aires, Argentina 3Consejo Nacional de Investigaciones Científicas y Técnicas and Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, New York, New York, 10460, USA Received 4 April 2007, accepted 10 November 2007 The diet of Black-browed Albatross Thalassarche melanophrys has in the stomachs of albatrosses. Although in general, penguins tend been studied at several sub-Antarctic colonies (e.g. Ridoux 1994, to be recorded more frequently, prions Pachyptila spp. and diving- Reid et al. 1996, Xavier et al. 2003) and found to consist mainly of petrels Pelecanoides spp. also occur in the diet of albatrosses in the fish, cephalopods and crustaceans. Although this albatross species Southern Ocean. Thus, the occurrence of small seabirds, such as travels vast distances during the non-breeding season (Croxall the Wilson’s Storm-Petrel, in the diet of Black-browed Albatrosses & Wood 2002), the types of food taken remain similar, although is not surprising. prey species and percentages tend to vary (Xavier et al. 2003, Gandini et al. unpubl.). Nevertheless, other prey items—such ACKnowledgements as seabirds, chiefly Spheniscidae and Pelecanoididae (Cherel & Klages 1997) and terns Sterna spp.
    [Show full text]
  • Cytochrome-B Evidence for Validity and Phylogenetic Relationships of Pseudobulweria and Bulweria (Procellariidae)
    The Auk 115(1):188-195, 1998 CYTOCHROME-B EVIDENCE FOR VALIDITY AND PHYLOGENETIC RELATIONSHIPS OF PSEUDOBULWERIA AND BULWERIA (PROCELLARIIDAE) VINCENT BRETAGNOLLE,•'5 CAROLE A3VFII•,2 AND ERIC PASQUET3'4 •CEBC-CNRS, 79360 Beauvoirsur Niort, France; 2Villiers en Bois, 79360 Beauvoirsur Niort, France; 3Laboratoirede ZoologieMammi•res et Oiseaux,Museum National d'Histoire Naturelie, 55 rue Buffon,75005 Paris, France; and 4Laboratoirede Syst•matiquemol•culaire, CNRS-GDR 1005, Museum National d'Histoire Naturelie, 43 rue Cuvier, 75005 Paris, France ABSTRACT.--Althoughthe genus Pseudobulweria was described in 1936for the Fiji Petrel (Ps.macgillivrayi), itsvalidity, phylogenetic relationships, and the number of constituenttaxa it containsremain controversial. We tried to clarifythese issues with 496bp sequencesfrom the mitochondrialcytochrome-b gene of 12 taxa representingthree putative subspecies of Pseudobulweria,seven species in six othergenera of the Procellariidae(fulmars, petrels, and shearwaters),and onespecies each from the Hydrobatidae(storm-petrels) and Pelecanoidi- dae (diving-petrels).We alsoinclude published sequences for two otherpetrels (Procellaria cinereaand Macronectesgiganteus ) and use Diomedeaexulans and Pelecanuserythrorhynchos as outgroups.Based on thepronounced sequence divergence (5 to 5.5%)and separate phylo- genetichistory from othergenera that havebeen thought to be closelyrelated to or have beensynonymized with Pseudobulweria,we conclude that the genusis valid, and that the MascarenePetrel (Pseudobulweria aterrima)
    [Show full text]
  • Partial Migration in the Mediterranean Storm Petrel Hydrobates Pelagicus Melitensis
    Lago et al.: Partial migration in Mediterranean Storm Petrel 105 PARTIAL MIGRATION IN THE MEDITERRANEAN STORM PETREL HYDROBATES PELAGICUS MELITENSIS PAULO LAGO*, MARTIN AUSTAD & BENJAMIN METZGER BirdLife Malta, 57/28 Triq Abate Rigord, Ta’ Xbiex XBX 1120, Malta *([email protected]) Received 27 November 2018, accepted 05 February 2019 ABSTRACT LAGO, P., AUSTAD, M. & METZGER, B. 2019. Partial migration in the Mediterranean Storm Petrel Hydrobates pelagicus melitensis. Marine Ornithology 47: 105–113. Studying the migration routes and wintering areas of seabirds is crucial to understanding their ecology and to inform conservation efforts. Here we present results of a tracking study carried out on the little-known Mediterranean Storm Petrel Hydrobates pelagicus melitensis. During the 2016 breeding season, Global Location Sensor (GLS) tags were deployed on birds at the largest Mediterranean colony: the islet of Filfla in the Maltese Archipelago. The devices were retrieved the following season, revealing hitherto unknown movements and wintering areas of this species. Most individuals remained in the Mediterranean throughout the year, with birds shifting westwards or remaining in the central Mediterranean during winter. However, one bird left the Mediterranean through the Strait of Gibraltar and wintered in the North Atlantic. Our results from GLS tracking, which are supported by data from ringed and recovered birds, point toward a system of partial migration with high inter-individual variation. This highlights the importance of trans-boundary marine protection for the conservation of vulnerable seabirds. Key words: Procellariformes, movement, geolocation, wintering, Malta, capture-mark-recovery INTRODUCTION The Mediterranean Storm Petrel has been described as sedentary, because birds are present in their breeding areas throughout the year The Mediterranean Storm Petrel Hydrobates pelagicus melitensis is (Zotier et al.
    [Show full text]
  • (Phoebastria Nigripes) in Canada Black-Footed Albatross
    PROPOSED Species at Risk Act Management Plan Series Management Plan for the Black-footed Albatross (Phoebastria nigripes) in Canada Black-footed Albatross 2015 Recommended citation: Environment Canada. 2015. Management Plan for the Black-footed Albatross (Phoebastria nigripes) in Canada [Proposed]. Species at Risk Act Management Plan Series. Environment Canada, Ottawa. iv+ 30 pp. For copies of the management plan, or for additional information on species at risk, including COSEWIC Status Reports and other related recovery documents, please visit the Species at Risk Public Registry1. Cover illustration: John Ford Également disponible en français sous le titre « Plan de gestion pour l’Albatros à pieds noirs (Phoebastria nigripes) au Canada [Proposition] » © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2015. All rights reserved. ISBN Catalogue no. Content (excluding the illustrations) may be used without permission, with appropriate credit to the source. 1 http://sararegistry.gc.ca/default.asp?lang=En&n=24F7211B-1 Management Plan for the Black-footed Albatross 2015 PREFACE The federal, provincial, and territorial government signatories under the Accord for the Protection of Species at Risk (1996)2 agreed to establish complementary legislation and programs that provide for effective protection of species at risk throughout Canada. Under the Species at Risk Act (S.C. 2002, c.29) (SARA), the federal competent ministers are responsible for the preparation of management plans for listed species of special concern and are required to report on progress five years after the publication of the final document on the SAR Public Registry . The Minister of the Environment and the Minister responsible for the Parks Canada Agency are the competent ministers under SARA for the Black-footed Albatross and have prepared this management plan as per section 65 of SARA.
    [Show full text]
  • 2020 North Carolina Ornithology List
    2020 North Carolina Ornithology List Kingdom – ANIMALIA Phylum – CHORDATA Key: Sub Phylum – VERTEBRATA Regional level (62 in total) Class – AVES Addition for State level (110 in total) Family Grou p (Family Name) Addition for National level (160 in total) Common Name [Scientific name is in italics] ORDER: Anseriformes Ibises and Spoonbills ORDER: Charadriiformes Ducks, Geese, and Swans (Anatidae) (Threskiornithidae) Lapwings and Plovers (Charadriidae) Northern Shoveler Roseate Spoonbill Platalea ajaja American Golden-Plover Green-winged Teal Killdeer Charadrius vociferus Canvasback ORDER: Suliformes Oystercatchers (Haematopodidae) Hooded Merganser Cormorants (Phalacrocoracidae) American Oystercatcher Black-bellied Whistling-Duck Double-crested Cormorant Stilts and Avocets (Recurvirostridae) Snow Goose Chen caerulescens Phalacrocorax auritus Black-necked Stilt Canada Goose Branta canadensis Darters (Anhingidae) American Avocet Recurvirostra Trumpeter Swan Anhinga Anhinga anhinga americana Wood Duck Aix sponsa Frigatebirds (Fregatidae) Sandpipers, Phalaropes, and Allies Mallard Anas platyrhynchos Magnificent Frigatebird (Scolopacidae) Cinnamon Teal Anas cyanoptera American Woodcock Scolopax minor ORDER: Ciconiiformes Spotted Sandpiper ORDER: Galliformes Deep-water Waders (Ciconiidae) Ruddy Turnstone Partridges, Grouse, Turkeys, and Old Wood stork Dunlin Calidris alpina World Quail Wilson’s Snipe (Phasianidae ) ORDER: Falconiformes Gulls, Terns, and Skimmers Ring-necked Pheasant Caracaras and Falcons (Falconidae) (Laridae) Ruffed Grouse
    [Show full text]
  • Census of the Black-Browed Albatross Population of the Falkland Islands 2000 and 2005
    Census of the Black-browed Albatross population of the Falkland Islands 2000 and 2005 Nic Huin & Tim Reid Falklands Conservation June 2006 Falklands Conservation is a company limited by guarantee in England and Wales no 3661322, a Registered charity no 1073859 and registered as an Overseas Company in the Falkland Islands. Registered office: 1 Princes Avenue, Finchley, London N3 2DA, UK Visit our website: www.falklands-nature.demon.co.uk SUMMARY The first two complete censuses of the Black-browed Albatross population of the Falkland Islands were conducted in November 2000 and 2005. The albatross breeds on twelve different islands to the west and south of the archipelago. Colony size ranged from 30 to 181,000 breeding pairs. The total number of breeding pairs in the Falklands changed from 414,268 ± 12,160 in 2000 to 399,416 ± 9,743 in 2005. This represents a decline of 0.7% per annum of original numbers. Although no previous complete census exists, combining historical data showed that the population consisted of around 437,855 pairs in 1995. This represents a total loss of 38,439 pairs in the last ten years, or a decrease of just below 1% per annum. Such changes are not consistent between seasons and sites. The creation of a photographic database helped in identifying areas of the colonies that have shrunk due to the reduction in breeding numbers. The Falkland Islands now holds 65% of the world population of this species, which should retain its status of Endangered species. This decrease is linked with increased mortality at sea due to fishing activities such as longlinning and trawling, not only in Falklands waters, but throughout its range in the southern hemisphere.
    [Show full text]